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Abstract

Background: Data preparation, such as missing values imputation and transformation, is the first step in any
data analysis and requires crucial attention. We take advantage of availability of replication samples to identify the
empirical distribution of missing values through utilization of statistical techniques. We apply these techniques to
metabolomics data for imputation.

Results: Using replication samples, we obtained the empirical distribution of missing values. After application of
the techniques on metabolites, we observed that the rate of missing values is approximately distributed uniformly
across metabolite range. Therefore, the missing values cannot be imputed with the lowest values. To have a realistic
simulation, we designed a simulation study based on empirical distribution of missing values to find an optimal
imputation approach. Our findings validated the optimal approach introduced previously for metabolomics.

Conclusions: Our analysis utilized replication samples as a new approach to metabolite imputation and found
empirical distribution of missing values, designed a simulation study close to reality, and compared different
approaches for selecting an optimal imputation approach. The result of this study validated the optimal approach for
metabolite imputation through a different data set and different approach, and the aim was to encourage researchers
to pay more attention to metabolite imputation since imputing metabolomic missing values with lowest value is going
to be a common approach, for example in genomic-metabolomic data analysis.
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Background
Extracting relevant and substantial biological information from

large-scale datasets at different biological levels is one of the challenges
in modern biomedical research and is highly dependent on data
preparation, including imputation and data transformation to hold
underlying assumptions. To provide a valid analysis, missing value
imputation. Using inappropriate imputation approaches results in
losing power and misleads conclusions.

Missing value imputation has been addressed through a wide range
of approaches, including: disregarding all variables with missing values
or using univariate, multi variate, Bayesian approaches, and algorithms
for imputation, e.g. [1-4]. Some studies highlight the importance of
imputation of missing values in data processing pipelines by
demonstrating the major effect of imputation algorithms on the
outcome of data analysis, e.g. [5-7]. Here we introduce a simple
technique through utilizing replication samples instead of discarding
them. Replication samples happen in many biomedical and biological
studies and this approach facilitates to estimate the distribution of
missing values.

Missing values widely occur in mass spectrometry metabolomics
datasets due to a variety of reasons, such as values that exist below the
detection limit of the mass spectrometer or technical issues unrelated

to the metabolite processing [1,8,9]. The first step of pre-processing
raw metabolomics data includes baseline correction, noise reduction,
smoothing, peak detection, and alignment [2,5,10,11]. After this pre-
processing, some other steps, such as imputation and transformation,
are required to prepare the data for further analysis. It has been shown
that K nearest neighborhood is an optimal approach for imputation of
missing values in metabolomics [5,7]. However, imputing
metabolomics missing values with lowest value of measured
metabolites is going to be a common approach. Using the replication
samples, we obtained the empirical distribution of missing data in a
metabolomics data set and showed the missing values are not
necessarily low. Since we had estimated the distribution of missing
values, we designed a simulation study close to real data. We found
that the KNN algorithm performs better than the other approaches.
The result of this study provides a validation to other studies that made
the same conclusion [5,7,12] through different approaches, and is an
encouragement to pay more attention to missing value imputation in
metabolomics data analysis, instead of easily imputation by the lowest
values.

Methods and Results

Study sample
Our metabolomics data were collected on a subset of the

Atherosclerosis Risk in Communities (ARIC) study [13]. Metabolite
profiling was completed in June 2010 using fasting serum samples that
had been stored at -80 degrees centigrade since collection at the
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baseline examination in 1987-1989. For the discovery of African-
American samples, detection and quantification of metabolites was
completed over 2475 individuals, using an untargeted, gas
chromatography-mass spectrometry, GC-MS, and liquid
chromatography-mass spectrometry, LC-MS, based metabolomics
quantification protocol [14,15]. Pre-processing of the raw data,
including baseline correction, noise reduction, smoothing, peak
detection and alignment, was carried out by Metabolon Inc.

Blood samples were sent to laboratory for metabolomics
measurement in 4-5 years apart. There was a set of 97 blood samples
that were sent to laboratory twice. These 97 replication samples shared
159 metabolites. Instead of discarding the set of the replication
samples, we used them to obtain the empirical distribution of missing
values. Since the source of missing metabolomics data varies from
biological to technical reasons, using statistical techniques here, we
focused on imputation of metabolites that have 50 percent or less
missing values. Since this study is based on data driven techniques, we
do not bias the result and conclusions by combining large rate of
missing values (>50%) that might have purely biological reasons. We
introduced a technique that includes three main stages to identify an
optimal approach for missing value imputation based on the data in
our hand. For each stage of the analysis and the requirements, we used
a particular subset of the data with specific features to efficiently use
available data. These stages are:

Assessing the effect of freezing: Since these replication samples were
acquired 4-5 years apart, we first determined the effect of 4-5 years
longer freezing on serum metabolites. We note here that the
metabolites were measured from frozen serum more than 20 years,
which may have already resulted in the loss of some metabolites.
However, we wanted to address whether 4-5 years longer freezing
(after 20 years total freezing) has a significant impact on metabolite
loss. The data set considered in this stage includes 39 metabolites
measured for 97 individuals with no missing values.

Identifying the distribution of missing values: We considered 47
metabolites measured twice for 97 individuals (replication samples).
Number of missing values of metabolites ranges from 1 to 55. At this
stage, we pooled missing values in order to overcome the small set of
missing values for each metabolite. The pooled set included 575 values
to have sufficient sample size for estimating the distribution of missing
values. To pool the missing data, we carried out some assessments
described later.

Identifying the optimal imputation approach using identified
missing values distribution: This stage of analysis includes 39
metabolites measured for 1977 individuals that are large enough for
illustrating a simulation study.

Effect of freezing
By comparing the empirical distributions of 39 metabolites with no

missing values in replication set, we evaluated whether the effect of
longer freezing up to 5 years was significant. To see if the measured
metabolites in two different time points were comparable at an
individual level, we plotted the replication samples for each metabolite
versus each other, Supplementary 1. The plots do not represent any
significant evidence of differences or trends associated to the time
points, although they might be slightly different. We employed
parametric approaches for set of metabolites that were normally
distributed, and nonparametric approaches for metabolites that were
not normal. For the set of metabolites with a normal distribution, we
applied t-test and F-test, and for the set of non-normal metabolites, we
applied two-sample Kolmogorov-Smirnov Test and Wilcoxon signed-
rank test to assess whether the distribution of a metabolite in
replication samples was statistically the same. Using those approaches,
the null hypothesis was not rejected at level 0.05, which means there is
no significant difference between metabolites that are frozen for ~20
years and those that are frozen for 4-5 years longer (~25 years).
Furthermore, we calculated the Kullback-Leibler divergence (KLD)
presented for each metabolite in Supplementary 1 that ranges from
0.02 to 0.271. The calculated KLDs that are close to zero reveal the
similar distribution of replication samples at the two time points that is
in consistence with the other results and plots.

Empirical distribution of missing values
Since the missing values in each metabolite did not provide enough

sample for making any conclusion, we pooled all the missing values
that are observed through replication to assess how they were
distributed across the range of metabolites. In order to provide
sufficient conditions that allow us to pool missing values, we carried
out some assessments:

The first assessment was related to distribution of metabolites. We
noticed that different transformations were required to transform
metabolites to normal distribution. Therefore, we selected 47
metabolites that were normally distributed using the same
transformation. We then standardized the metabolites in order to pool
their missing values.

The second assessment was related to the missing values that were
not observed in any replication. We excluded those missing values
from the analysis for this step. Table 1 shows the number of those
missing values that are not observed in any replication.

Metabolite Trehalose Theophylline Stearoylcarnitine Phenyl acetate Glycodeoxycholat
e

Non-observed missing values 2 4 1 3 4

Table 1: Number of missing values remained unobserved in replication samples.

We plotted empirical distribution of the metabolites for missing and
observed values separately. Figure 1 demonstrates the distributions for
three metabolites, while the distributions of the entire set are provided
in Supplementary 2. The distributions showed that the missing values
were distributed across the range of metabolites and were not only low
values.

Citation: Yazdani A, Yazdani A (2018) Using Statistical Techniques and Replication Samples for Missing Values Imputation with an Application
on Metabolomics. J Biom Biostat 9: 393. doi:10.4172/2155-6180.1000393

Page 2 of 5

J Biom Biostat, an open access journal
ISSN: 2155-6180

Volume 9 • Issue 2 • 1000393



Figure 1: Blue: empirical distribution of observed metabolites. Red:
empirical distribution of missing metabolites. The captions
represent name of metabolites and number of missing values.

We pooled missing values across 47 metabolites normally
distributed with the same transformation and estimated the
distribution of missing values using Kolmogorov-Smirnov Goodness-
of-fit. The p-value 0.026 [16] reveals that the missing values are
approximately normally distributed, Figure 2. While the metabolites
were normally distributed, we concluded that rate of missing values
was approximately uniform, Figure 3, over the range of metabolite
values. Although, the rate of missing values in the first quartile is
slightly higher than the others.

Figure 2: Distribution of missing metabolites observed through
replication. Null hypothesis of normal distribution of the missing
values is not rejected using Kolmogorov-Smirnov Goodness-of-fit
at level 0.01 [16].

Figure3: Rate of missing value across range of metabolites. Qith in
x-axis stands for ith quartile.

Hence, the assumption that metabolites are missing because they
are low is not supported by this analysis. Therefore, replacing missing
values with the lowest values can severely distort the distribution of
metabolites and result in misleading and inaccurate conclusions.

ptimal approach for imputation
To obtain an optimal approach for metabolomics imputation, we

conducted a cross validation based analysis. We used 39 metabolites
measured for 1977 individuals who had no missing values. While the
distribution of rate of missing values is approximately uniform, for
each metabolite, we considered 14 equal intervals across the range of
the metabolite and randomly selected 10% of measured metabolites in
each interval (14 values) and set them as missing values. To impute
those missing values, we utilized five approaches that are widely
applied: Iterative Robust Model-based Imputation (IR-MI) [17], which
each iteration uses one variable as an outcome and the remaining
variables as predictors. Multiple Imputation (MU-IM) [18], which
includes multiple imputations of incomplete multivariate data values in
place of missing values by running a bootstrapped EM (expected
maximization) algorithm. Maximum Likelihood estimation for
multivariate normal data (ML-ES) [19], which is focused on a
complete variance-covariance matrix based on maximum likelihood. K
nearest neighbor (KNN) [20], which assumes data are missing at
random and missing data depends on the observed data. Finally,
Random Forest approach [21], which is a combination of tree
predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all
trees in the forest. For imputation using these approaches, we used the
R packages irmi [22], AMELIA II [23], Mvnmle [23], SeqKnn [24], and
missForest [25], respectively. The performance of these methods was
evaluated in terms of mean square imputed errors (MSIE) of 40 times
repeated simulation scenario. Among those methods, the KNN
algorithm, which uses sequential imputation, performed better than
the other methods. Although it was slightly better than RF, it
significantly performed better than the other approaches. Figure 4
shows the performance of the models for K=5 as parameter of KNN,
while K in (6 to 12) did not shown significant difference in our
analysis.
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Figure 4: Performance of imputation methods as a function of
MSIE. Y-axes: average of MSIE over 40 sets of simulation.

KNN imputation is based on Euclidean and correlation based
distance metrics and is a simple but efficient approach that attempts to
preserve original data structure and avoids distorting the distribution
of imputed variables. The KNN approach is able to take advantage of
multivariate relationships in the complete data. The algorithm starts
from a complete subset of the data set, Xc, and sequentially estimates
the missing values for an incomplete observation, x*, by minimizing
the determinant of the covariance of the augmented data matrix, X* =
[Xc; x’]. Then the observation x* is added to the complete data matrix,
and the algorithm continues with the next observation [26].

As mentioned, to preserve characteristics and relationship between
different metabolites, KNN takes into account correlation among
metabolites as similarity criteria. To assess how the correlation affects
the imputation performance, we illustrated a simulation analysis for a
set of metabolites that were selected with different correlation cutoff
(0.5, 0.4, 0.3). Figure 5 demonstrates the average of correlation
between imputed values and observed values of metabolites over 40
sets of simulation for each cutoff. Using this result, we imputed
metabolites that showed at least 30% correlation with other
metabolites and discarded the others from the analysis to avoid
inaccurate imputation.

Figure 5: Performance of the KNN algorithm for different
correlation cutoff (x-axes) among metabolites. Y-axes: average of
correlation among imputed and observed values over 40 sets of
simulation.

Discussion
Imputation of missing values is the major tasks in data pre-

processing since no presentation of analysis of metabolomics data is
complete without careful consideration of missing data. The aim of this
manuscript was to introduce techniques for missing value imputation
by taking advantage of dozens-to-hundreds of replication samples. The
introduced techniques can be generalized to a variety of studies,
although we applied the techniques to metabolomics data.

Missing values widely occur in mass spectrometry metabolomics
datasets due to a variety of reasons, from biology to totally technical
reasons [1,8,9]. After pre-processing of metabolomics data including
baseline correction, noise reduction, smoothing, peak detection, and
alignment [2,5,10,11] some other steps, such as imputation and
transformation, are required to prepare the data for analysis. Missing
value imputation has been addressed through a wide range of
approaches. However, most attempts for metabolomics imputation
involve easy approaches, such as using the mean, median, or lowest
value of measured metabolites.

Each data set is unique, and imputation of missing values needs to
be carried out carefully. Our metabolomics data set, included
replication samples. Thus, we estimated the distribution of missing
values in a set of 97 individuals with replication samples and noticed
that rate of missing values across range of metabolites was
approximately scattered as uniform. The results contradict the
common belief that missing metabolite values are low values.
Therefore, replacing missing data with the lowest value imposes biases
to data analyses. Furthermore, based on our assessments, we observed
that different transformations were required for different metabolites
to be transformed to normal, and log transformation did not
normalize all metabolites.

Using the empirical distribution of missing values, we conducted a
simulation study close to real data to compare the performance of
different imputation approaches and identify an optimal imputation
method. We compared the performance of five commonly applied
imputation approaches, IR-MI, MU-IM, ML-ES, KNN, and RF.
Among those five approaches, the KNN algorithm showed the best
performance for metabolite imputation. The KNN algorithm which
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assumes data are missing at random was employed to impute the
missing values in our metabolomics data set.

The KNN algorithm has already been suggested by some other
studies as an optimal approach to metabolite imputation. However, the
common approach utilized by metabolomics data analyzers is
replacing metabolite missing values by the lowest value. Therefore, the
purpose of this study was to approach metabolomics imputation with
new techniques. Our findings provide another validation for the
optimal approach to metabolite imputation through a different
metabolite data set, ARIC metabolites, and a new approach, using
replication samples.

Conclusion
Using replication samples, we could identify the empirical

distribution of missing values which did not support the assumption
that metabolites are missing because they are low. Therefore, replacing
missing values with the lowest values can mislead the analysis and
result in inaccurate conclusions. We could observe that the rate of
missing values are uniformly distributed across the range of
metabolites. Based on this fact, we conducted a simulation study to
select the best approach for imputation. We could see the KNN
algorithm performs better than some other approaches for
metabolomics imputation which was a validation to some studies with
the same conclusion e.g. [5,12].
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