
Using Machine Learning to Detect APTs on a User Workstation
Adams C*, Tambay AA, Bissessar D, Brien R, Fan J, Hezaveh M and Zahed J

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
*Corresponding author: Dr. Carlisle Adams, Associate Director, Professor, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
Canada, Tel: 613-562-5800/2345; E-mail: cadams@uottawa.ca

Received date: August 27, 2019; Accepted date: October 09, 2019; Published date: October 16, 2019

Copyright: © 2019 Adams C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Advanced Persistent Threats (APTs) are explicitly designed to be difficult to detect, but their activities necessarily
include some differences from what a regular user might do. We present an analysis and comparison of four
machine learning algorithms that were used to first learn a user’s behavior and then to detect APT activity as an
anomaly in that behavior. We also present our methodology for each step of the analysis. In particular, for each user,
we collected data with Osquery on a clean machine before running the Red Team Automation (RTA) scripts to
simulate an APT attack. The four algorithms we tested on each user’s data (neural networks, decision trees, k-
means clustering, and one-class SVM) included supervised, unsupervised and one-class algorithms. This study was
undertaken as a proof-of-concept exercise to see if machine learning could be beneficial in APT detection, and our
results indicate that looking at user behaviour for APT detection appears to be a promising approach. Previous work
focused on APT behaviour (particularly in the context of network traffic), whereas our goal is to detect APTs on the
computer where the legitimate user is present and active and to detect the APTs by discovering anomalies with
respect to typical user behaviour.

Keywords Advanced Persistent Threat (APT); Machine learning;
User behaviour

Introduction
This paper addresses the following problem: When a user is actively

using a machine, how can we distinguish between the activity of the
legitimate user and the activity of a malicious entity, such as an
Advanced Persistent Threat (APT)? Previous work in this field (see, for
example, [1-6]) is effective for intrusion detection generally, and may
help with detecting APT behaviour on an otherwise idle machine, but
those approaches may not be as successful when attempting to identify
the user’s normal behaviour (in order to distinguish it from
deliberately stealthy malware behaviour).

Machine learning can potentially provide an interesting approach to
identifying APTs. If you have a machine that you suspect may host
malicious activity, by eliminating what is known to be the genuine
user’s activity, you can be left with what is most likely to be the
malicious activity; in the case where that malicious activity is the
behaviour of an APT, you would then have indirectly detected the
presence of a APT. This approach differs from misuse-based and
specification-based models of intrusion detection (wherein a precise
model of attack behaviour, or a precise model of proper program
behaviour, is specified and compared with observed system activity),
and is instead in the category of anomaly-based models. However, in
our study we focus on learning the behaviour of a specific targeted user
on the user’s home machine; this differs from many anomaly-based
intrusion detection applications that aim to model “normal” system
activity over an entire network or subnetwork (with many users and
many machines) and then look for deviations from this expected
aggregate behaviour. Furthermore, our work differs from previous
research that uses machine learning to detect APTs (see, for example,
[7-12]). These previous studies use ML algorithms to analyze network
traffic for exfiltrated data or for connections to unknown domains, to

detect suspicious URLs or malicious files, or to examine network traffic
logs with big data analytics. Our approach is rather to learn the typical
behaviour of an individual user and to look for anomalies in the
system activity on that user’s computer.

Therefore, in this paper, we explore the possibility of using machine
learning algorithms to distinguish between user behaviour and APT
behaviour. This paper begins by outlining the methodology used to
accomplish this goal. We then describe how the data was prepared for
training and testing, followed by an overview of the different types of
machine learning algorithms that were analyzed and used. We then
provide information about the algorithms’ implementations that were
used, as well as our experimental results. Finally, we conclude with a
discussion regarding directions for future work in this research area.

Research Methodology
The research for this paper was done in two main phases: the

exploration phase and the experimentation phase. Each phase was
further separated into data collection, data preparation, and the
machine learning step. The exploration step also included an
additional data exploration step. In this section, we describe each of
the two phases. The specific details are covered in sections 3 and 4.

In the exploration phase, we familiarized ourselves with Osquery
[13] (see Section 3.1) and the Red Team Automation (RTA) scripts [14]
(see Section 3.2). Our first step in this phase, the data collection,
consisted of collecting all the data Osquery could provide on a clean
virtual machine with no user activity for a period of time, then
running the RTA scripts. We classified the data collected on the clean
machine with an “attack_state” of 0, and the data collected during the
running of the RTA scripts with an “attack_state” of 1.

The second step was data exploration. In this step, we looked at the
source data to get an “initial sense" for the data's relationships: the
effect of various RTA attacks on the data and on the various Osquery

Internatio
na

l J
ou

rn
al 

of
 Se

nsor Networks and Data Com
m

unications

ISSN: 2090-4886

International Journal of Sensor
Networks and Data Communications

Adams C, et al, Int J Sens Netw Data Commun
2019, 8:3

Research Open Access

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166

mailto:cadams@uottawa.ca


tables. This process included transforming the Osquery logs into a
usable set of files.

The data was then prepared to work as input for the various
machine learning algorithms used in our study. Since the Osquery data
contains repeating groups (i.e., multiple processes, services) and
multiple datatypes (i.e., strings like filenames and process names,
floating-point values like disk read rate, integers, etc.), we made
decisions on how to transform or aggregate the data, and what data to
merge into categories. Every decision went through various iterations;
each iteration was tested on neural networks to see how it would fare.

The whole process was then repeated with user activity on the
virtual machine and led to choosing general user activities for data
collection, narrowing the data collected with Osquery to relevant
tables. The preliminary data preparation rules were encoded in a
python script.

The experimentation phase first consisted of data gathering: three
users worked on virtual machines performing the user activities we
selected during the exploration phase (Section 3.3). We then iterated
between using and updating our data preparation rules, and testing the
data on the various machine learning algorithms we chose. We then
gathered, analysed and compiled the results (Section 5).

Data Collection and Preparation

Osquery
Osquery [13] was used for this paper; this is a product developed by

Facebook to gather detailed information about the operating system.
The collected information can then be queried as a relational database.
Osquery can be used as an interactive console or as a monitoring tool.
Its console version, Osqueryi, can be used to query the current state of
the machine. The second version, Osqueryd, is a daemon that can be
used to schedule queries and record logs of the machine state over
time. The daemon logs the changes to the database since the last time
the query was executed.

Red Team Automation (RTA)
The Red Team Automation (RTA) [14] is a collection of python

scripts that executes or emulates various types of attacks seen from
actual APTs. RTA is widely used by researchers and malware detection
experts for testing and training purposes since it conveniently packages
the malicious activities of many different APTs (and so testing does not
need to be done on a single APT at a time). We used their scripts
during data collection to simulate malicious activities. Note that the
following RTA scripts do not currently run on Windows 10; therefore,
they were omitted from our attack list:

at_command.py delete_shadow.py msxsl_network.py net_user_add.py

egsvr32_scrobj.py sip_provider.py system_restore_process.py

trust_provider.py user_dir_escalation.py
tab

Data acquisition
Our goal is to determine if it is possible to use a machine learning

algorithm to detect the presence or absence of APT activity on a
machine. As such, we wished to label our data as “clean” (i.e., data from

an uncompromised machine), and “dirty” (i.e., data from a machine
that was potentially compromised due to the presence of an APT). For
the purposes of our study, simulated data was generated and captured
for both the “clean” and “dirty” environments (with the help of
Osquery and the RTA scripts, as described above).

Using Osquery's daemon, multiple sets of data spanning three-hour
periods were aggregated. To simulate a working user, we defined a
series of tasks as activities likely to be performed by a regular user in an
office context. These tasks were executed during those three hours on a
virtual machine while all queries available were run with a 1-minute
interval between queries. RTA scripts used to simulate APT activity
were then run on the machine to emulate the behavior of a machine
under attack. In addition, to emulate the noise generated by python
while running the RTA scripts, an additional dummy python script ran
alongside the tasks on the clean version of the machine.

From Osquery’s available tables, we kept the following:

Interface_Detail
s

Listening_Ports Logical_Drives Physical_Disk_Performan
ce

pipes process_memory_map process_open_sockets

registry scheduled_tas
ks

services windows_events

tab

The importance of good data cannot be overstated. The data used
for training has a large impact on the effectiveness of the model. As
such, getting data generated by real users working at their own
workstations would be ideal. If this is not possible, simulated data can
replace it but, in this case, one should try to use a workstation that
simulates “normal usage” as closely as possible for more accurate
results. Therefore, one should try to study a real working user in order
to replicate his/her behavior. If possible, multiple types of users
recorded should be recorded in order to resemble a typical
organization more closely. In either case, one should record for long
periods of time (ideally in periods spanning full work days, with
multiple such periods per user).

The study described in this paper is intended to be a proof-of-
concept exercise to determine the feasibility of using machine learning
to detect APT activity. Because our study was constrained in both the
number of users and the time we had available to conduct our
experiments, we were able to construct only a very limited initial
dataset. To create our data, three users collected Osquery results from a
virtual machine running Windows 10 for approximately 2 to 3 hours.
During the data collection, the users tried to behave like normal users.
Here is the list of tasks each user had to do during data collection:

• Use Microsoft Office (Word, Excel, Power-Point). Save, copy, Delete
documents. Empty data from the recycle bin.

• Use Gmail to send emails and attach some data.
• Use Dropbox to upload and download data.
• Run a python script on the command prompt.
• Search the web using Google.
• Watch YouTube videos.

The tasks were to be done in no particular order, as we tried to
capture an individual’s typical behavior. Note that these actions were
repeated during the initial (i.e., “clean”) data collection, and after
running the RTA script (i.e., in the “dirty” environment) the user
continued working on her/his machine as a normal user.

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 2 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166



Data preparation
A python script was used to convert the data from the logs

generated by Osquery to a usable format. The logs are in a JSON
format and need to be manipulated before being saved as csv files that
can be used for machine learning. The script loads the JSON file into
memory and for each line identifies a few crucial details:

• The name of the table queried, to determine the corresponding
query

• The name of all the fields that contain data, to be used as columns
• The timestamp at which the query was executed, for time series

analysis
• The source file, to label the data
• The action taken, as an indicator of whether this was a change added

to the machine state, or removed, as per Osqueryd’s differential logs
[15].

This extra information, as well as the data returned by Osquery, is
added to a dictionary as lists split by query. Each of these lists is then
converted to a pandas dataframe. For each of these dataframes, which
represent the information gathered from a single query, a custom
function is used to extract the information pertinent to the machine
learning algorithm. The extracted information is aggregated into a new
dataframe which is saved as a .csv file, which can be loaded by the
machine learning algorithms used.

The data we fed the algorithms in our experimentation are an
aggregation of selected variables in each of the different dataframes.
The aggregate values we used included the number of unique
identifiers in each table at the time of query, as well the number of
“added” and “removed” actions recorded by the Osquery since the last
query on each table. The amount of “added/removed” actions gives us
an idea of how much change occurred since the previous query. We
then combined the various timestamps into observations containing
the changes observed in 60-second intervals.

After all the data preparation, we have three datasets on which we
tested different machine learning algorithms. These are the datasets
that were generated by different users:

• Contained 108 clean observations and 8 attack observations, for a
total of 116 observations.

• Contained 166 clean observations and 7 attack observations, for a
total of 173 observations.

• Contained 153 clean observations and 17 attack observations, for a
total of 172 observations.

Machine Learning Algorithms
This section presents a high-level overview of the machine learning

algorithms that were analyzed and used in this research. For each, we
give a brief description of how the algorithm works, along with a
discussion of its strengths and weaknesses. Readers who are already
familiar with various machine learning algorithms and their properties
may choose to skip to Section 5 (Implementation and Results).

Supervised learning
Supervised learning is a type of machine learning algorithm that

uses two kinds of datasets: a training dataset and a testing dataset. In
these two datasets, both input and desired output data are provided.
Supervised learning uses the training dataset to build a model that can
make predictions of the response values for a new dataset, while the

test dataset is used to validate the model. Larger training datasets
usually means models will yield higher predictive power. Supervised
learning enables humans to interfere with or modify decisions that the
system makes, but it has trouble addressing new information that has
not been included in the training datasets.

Supervised learning algorithms can be roughly categorized into
Classification (for discrete output) and Regression (for continuous
output). Some of the most popular algorithms include Support Vector
Machines (SVM), linear regression, logistic regression, naïve Bayes,
linear discriminant analysis, decision trees, k-nearest neighbor, and
Neural Networks (Multilayer perceptron).

For this paper, we used a neural network [16,17] and a decision tree
[5,18,19]. Both these algorithms can be used for Classification and
Regression.

We first chose neural networks because they can be considered as a
mainstay in supervised learning algorithms and they have been used in
a multitude of areas. As such, libraries implementing them are easily
available. Decision trees were chosen because they provide a “white
box” approach, where a human can look at the resulting model and
gain insight on how and why the model classifies things in any given
way.

Neural network
A neural network is usually structured into an input layer of

neurons, one or more hidden layers, and one output layer. Typically,
neurons are fully connected to the next layer. However, there are
different types of neural networks that may have different topologies of
layer connections and activation functions. A value of the function
corresponding to connections is called a “weight”. To achieve a suitable
output from the input, we need to set a suitable value for weights (in
our implementation we consider two hidden layers with weights of
ten).

Strengths of neural networks [17]: Neural networks are flexible and
can be used for both regression and classification problems. Any data
that can be made numeric can be used in the model because a neural
network is a mathematical model with approximation functions.

• Neural networks are good for modeling nonlinear data with a large
number of inputs (for example, images). It is a reliable approach for
tasks involving many features. It works by splitting the problem of
classification into a layered network of simpler elements.

• Once trained, the predictions are produced very quickly.
• Neural networks can be trained with any number of inputs and

layers.
• Neural networks work best with more data points.

Weaknesses of neural networks [17]: Neural Networks are black
boxes, meaning we cannot know how much each independent variable
is influencing the dependent variables.

• It is computationally very expensive and time consuming to train a
neural network with traditional CPUs.

• Neural networks depend a lot on training data. This leads to the
problem of over fitting and generalization: the model relies heavily
on training data and may inadvertently be tuned to the data.

Decision tree
The goal of decision tree algorithms is to create a model that

predicts the value of a target variable based on several input variables.

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 3 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166



It constructs decision trees from labelled training datasets. Data comes
in attribute vectors of this form: (x1, x2, x3,..., xk, Y). The dependent
variable, Y, is the target variable that the decision trees will try to
“learn” and then to predict. The features, x1, x2, x3 etc., are used for
tasks. A decision tree is a flow-chart-like structure, in which each non-
leaf node is labelled with an attribute (x), each branch represents the
outcome of a test, and each leaf node will have a class label (Y). The
topmost node in a tree is the root node [18].

Strengths of decision trees:

• Fast and accurate in learning a huge dataset [5]
• Able to handle both numerical and categorical data
• Able to handle both continuous and discrete data with the proper

algorithm
• Easy to understand and interpret the created pattern
• Requires relatively little effort for data preparation: the decision tree

has no need for variable scaling, it not affected by outliers, and it can
deal with a reasonable number of missing values

• It uses a white box model, which means that the acquired knowledge
can be explained in a readable form. By contrast, in a black box
model (e.g. SVM and neural network), you cannot read the acquired
knowledge in a comprehensible way

• It makes decisions more like humans do (compared to other
approaches).

Weaknesses of decision trees:

• Exponential calculation growth as the problem gets bigger.
• This technique can create overly-complex trees that do not

generalize well from the training data. Mechanisms such as pruning
are necessarily needed [19].

• Small changes in the training data can result in large changes in the
tree construction and consequently the final predictions [20].

• Too much comprehensive information and all possible solutions to
an issue will require more time to process and will slow down
decision-making capacity [21].

There are many notable decision-tree algorithms, such as ID3
(Iterative Dichotomiser 3), C4.5 (successor of ID3) and CART
(Classification and Regression Tree). ID3 applies information theory
and its class is based on entropy. Since ID3 is not likely to use
continuous attributes, the C4.5 algorithm was developed to
complement this [5]. C4.5 also addresses the problems of over-fitting
and tree pruning in ID3 that will degrade the performance and
increase the cost [4]. We utilize the C4.5 algorithm in our study; it can
use continuous data and still build a relatively accurate model even
with many input attributes [5].

The algorithm has some premises, such as the following [22]:

• If all cases are of the same class, a leaf node will be created, labeled
with this class.

• For each attribute, calculate the potential information provided by a
test on it. Also, calculate the information gain that would result from
a test on the attribute.

• Find the most proper attribute to have the splitting criterion.

C4.5 works in this way [18]: at each node of the tree, the algorithm
chooses the attribute of the data that most effectively splits its set of
samples into subsets enriched in one class or the other. The attribute
with the highest normalized information gain will be chosen to make
this splitting decision. Then the algorithm works recursively on the
subtrees. Pruning happens after the tree is created completely. This will

reduce the classification errors that are caused by outliers in training
data, and will make the tree more general.

The authors of the Weka machine learning software described the
C4.5 algorithm as "a landmark decision tree program that is probably
the machine learning workhorse most widely used in practice to date"
[23].

Unsupervised learning
So far, in all the supervised machine learning algorithms we

considered, a training example that contains a set of features
categorized with labels was used. In unsupervised learning, a training
set contains just a set of features alone with no labelling. The purpose
of unsupervised learning is to attempt to find natural partitions in the
training set where the data has no target attribute [24]. In
unsupervised learning techniques, we are trying to analyze the data to
find the connections between them.

Clustering is a technique for finding similarity groups in data, called
clusters. In this technique, the algorithm tries to find the data points
that are nearest to each other and classifies them in one group, and the
data points that are furthest away from this set are classified in another
group. The quality of a clustering result depends on the algorithm, the
distance function, and the application [25].

K-means
The k-means algorithm divides the data into k clusters. Each cluster

has a cluster center, called a centroid. The parameter k is specified by
the user. In our implementation, k is equal to 2, as we have two states:
“attack” and “no-attack”. It may also be valuable to test this scheme by
considering k=3 for three states: “attack”, “no-attack-user present” and
“no-attack-without user”.

Given k, the k-means algorithm works as follows [26]:

• Randomly choose k data points (seeds) to be the initial centroids/
cluster centers

• Assign each data point to the closest centroid
• Re-compute the centroids using the current cluster memberships
• If a convergence criterion is not met, go back to step 2.

Strengths of k-means [26]:

• It is easy to understand and easy to implement
• It has time complexity , where is the number of data points, is the

number of clusters, and is the number of iterations. Since both k and
t are small, k-means is considered a linear algorithm. k-means is the
most popular clustering algorithm.

Weaknesses of k-means [26]:

• The algorithm is only applicable if the mean is defined
• The user needs to specify k
• The algorithm is sensitive to outliers
• Outliers are data points that are very far away from other data points
• Outliers could be errors in the data recording or some special data

points with very different values.

In conclusion, k-means is the most popular algorithm due to its
simplicity and efficiency. However, it has some serious weaknesses. We
should mention that the other clustering algorithms have also their
own lists of weaknesses. There is no concrete evidence that shows that
one clustering algorithm performs better than another one. It all
depends on the data or applications, and the best way to measure

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 4 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166



performance is by trying them with the data and comparing the
results. We chose k-means for our study because we found an open-
source implementation of it with Tensor Flow [27] and it is a well-
known and widely used algorithm for unsupervised learning.

One-class SVM
Support Vector Machines (SVM) is a class of supervised learning

algorithm. Given training data belonging to two classes, an SVM will
build a hyperplane or line that separates them while maximizing the
distance between each class and the hyperplane. The data points are
then classified either with y =1 or y = -1 depending on which side of
the hyperplane they are.

Although SVMs are built to do linear classification, they can also be
used to do non-linear classification with the use of “kernel functions”.
These kernels are special distance functions that act on the data by
implicitly mapping it into a higher dimensional space. The data is then
separated by a hyperplane in that new space, which translates to non-
linear classification in the original space.

The one-class SVM is a special case of SVM first presented in [28]. It
is a supervised algorithm where the training data only belongs to one
class. The model is then trained to assign data that is different from the
training data into a second class. One-class SVMs are thus useful for
anomaly detection, where a significant amount of “normal” data is
available, and the abnormal data is either rare, harder to collect, or
simply hard to define.

Results and Discussion

Implementation
Three users gathered their data on a Windows 10 VMware machine

for 2 to 3 hours. At first, users gathered data on their clean machine by
acting as a normal user who checks his/her email, searches on Google,
works with Microsoft tools such as Word, Excel and PowerPoint,
watches YouTube videos, uploads and downloads files from/to
Dropbox, etc. Then, they ran RTA attacks while continuing their
activities. During all these activities, Osquery gathers system statistics.
Our implementation results are the result of this data being fed into
different machine learning algorithms.

In addition to accuracy, we also chose to look at recall, precision,
and Matthews Correlation Coefficient (MCC). This is because
accuracy alone is not a reliable metric for the real performance of a
classifier since it will yield misleading results if the data set is
unbalanced.

We found and tested the open source implementations of a decision
tree C4.5 from GitHub [29], a neural network classifier model from
TensorFlow [30], a k-means clustering model from TensorFlow [27],
and a one-class SVM machine learning algorithm from the scikit-learn
python library [31]. We separated our datasets into training datasets
and testing datasets. Typically, most of the data is used for training and
the smaller portion is used for testing. For decision tree, neural
network, and k-means, we separated our three datasets to 90%, 80%,
70%, and 60% of the clean data and under-attack data for training,
with 10%, 20%, 30%, and 40%, respectively, for testing. This gave us a
number of variations to try so that we could see what produced the
best results.

For one-class SVM, we took about 85% of the clean data (the first
85%, to simulate a real application) as training data and kept the
remaining clean data and all the attack data for testing. One-class SVM
takes three main parameters as inputs to generate the model: a kernel,
a value ‘gamma’, and a value ‘nu’ between 0 and 1. The available kernels
in scikit-learn are “linear”, “poly”, “rbf ”, and “sigmoid”. The value
‘gamma’ is a coefficient used with a non-linear kernel. The value ‘nu’
relates to a bound on the maximum amount of training error allowed
as well as a bound on the minimum number of training inputs that will
be in the support of the classifier.

Furthermore, for one-class SVM, each dataset was tested on the 4
available kernels with various pairs of gamma and nu values. The
values of gamma and nu were iterated over their permissible range of
values.

Outside of the numbers themselves, it is important to recall that
neural networks and decision trees are supervised algorithms, k-means
is unsupervised, and one-class SVM is trained only on clean data.
Tables 1-3 show the best results of the implemented methods for three
users (the complete results for user A are available in the Appendix).

User A: 108 rows clean data
and 8 rows under attack

Neural Network 80% for
Training and 20% for testing

K-means 60% for Training and
40% for testing

Decision Tree 70% for
Training and 30% for

testing

One-Class SVM ‘poly’, d=3,
nu=0.007751 gamma=0.05

TP FP 1 0 0 0 3 0 13 2

FN TN 1 22 4 44 0 33 3 5

Recall 0.5 0 1 0.8125

Precision 1 0 1 0.8667

MCC 0.691564 0 1 0.5089

Accuracy 0.9583333 0.9166666 1 0.7826

Table 1: Confusion matrix and results for user A.

From the results of the three users, we can see that neural networks
work best with more data points. The results show the algorithm is
always correct in guessing the true negatives as we have more data in

our “no-attack” state. In addition, the machine cannot really guess the
true positives correctly in many situations for two reasons. First, there
is not enough data in our “attack” state; second, it could be that some

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 5 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166



states in our “attack” category should really be in the “no-attack”
category (because it is possible that at the specific point in time that

Osquery was gathering that data, there was no attack running and
therefore the data was mislabelled).

User B: 166 rows clean data
and 7 rows under attack

Neural Network 80% for
Training and 20% for testing

K-means 60% for Training
and 40% for testing

Decision Tree 60% for
Training and 40% for testing

One-Class SVM ‘linear’, d=3,
nu=0.007751 gamma=0.05

TP FP 0 0 0 4 3 0 22 0

FN TN 1 33 3 63 0 67 6 1

Recall 0 0 1 0.7857

Precision 0 0 1 1

MCC 0 -0.052093226 1 0.3350

Accuracy 0.905882 0.9 1 0.7931

Table 2: Confusion matrix and results for user B.

User C: 154 rows clean data
and 17 rows under attack

Neural Network 70% for
Training and 30% for testing

K-means 60% for Training
and 40% for testing

Decision Tree 80% for
Training and 20% for testing

One-Class SVM ‘sigmoid’,
d=3, nu=0.007751
gamma=0.05

TP FP 1 0 0 0 4 0 2 20

FN TN 4 46 7 62 0 31 11 6

Recall 0.2 0.0 1 0.1538

Precision 1.0 0.0 1 0.0909

MCC 0.428952211 0.0 1 -0.5850

Accuracy 0.9019608 0.898550724 1 0.2051

Table 3: Confusion matrix and results for user C.

In the case of k-means, results are not good at all for true positives,
which gives us reason to think that k-means, with k=2, might not be a
good technique to use for our current purpose. We plan to try other
unsupervised learning algorithms as well to confirm that the
unsupervised learning technique is truly not suitable for APT
detection.

While we were testing the k-means algorithm, we noted that there
can be an issue with mapping the results of the k-means clustering to
the ground truth state [32,33]. The issue is that k-means is a clustering
algorithm rather than a classification algorithm, and clustering works
on unlabelled data. In general, there is an unknown correlation
between the clusters derived and the ground truth state of the
unlabelled data. In our study, however, we have labels. We can do a k-
means on the element attributes without the labels, and then compare
the clusters with the known labels to determine a) a semantic mapping
between our cluster centroids and our classes, and b) a sense of
"confidence" on how our model performs against the known classes of
the training data. Given a) and b) above, we can evaluate a test set
against the centroids. The closest centroid to a test row and our
semantic mapping (from a) gives us the predicted class. Since the test
set is labelled, we have our ground truth. We can then come up with
the two vectors 'actual' and 'predicted' required to create our confusion
matrix. The "sense of confidence" obtained in b) is a function of the
error observed in a cluster centroid (given the semantic mapping from
a) and the ground truth (given by the label on the training rows).

For decision trees, the algorithm seems very good at learning on a
huge dataset that has many attributes. In our case, it shows 100%
accuracy on prediction with significantly high probabilities (which, in
fairness, likely indicates over-fitting to the data). To be specific, our
model can accurately predict the true negatives, while sometimes it
cannot accurately predict the true positives. This is because we have
more data in our “no-attack” state than in our “attack” state.
Furthermore, there is not enough data in our “attack” state. One piece
of evidence is that the metrics (recall, precision, and MCC) rise with
the increase of “attack” data used for training and testing. The higher
these metrics are, the better the performance of this model.

Finally, the results of one-class SVM’s predictions vary greatly
depending on the choice of kernel and the choice of the ‘nu’ parameter.
In many cases, the model is either too strict by classifying most inputs
as attacks, or too lenient by classifying most inputs as non-attacks.
There are nonetheless a few promising results (some shown in the
table), notably using the kernels “sigmoid” or “poly” on User A’s
dataset. Reducing the dimensionality of the data by using different
aggregate variables, subsets of the variables used, or various
dimensionality reduction methods (ex: Principal Component Analysis)
may improve the strength of the algorithm. An increased amount of
data for training and testing would also make the algorithm perform
better.

Although the decision tree algorithm seems to provide the best
overall results, it suffers from the fact that it is a supervised algorithm.

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 6 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166



This means that to find the attacks, we need to know what they look
like. For the goal of this research, which is detecting when an APT
attack is happening, we recommend looking more deeply at one-class
SVM and other algorithms that can be considered as “one-class”. This is
due to their ability to discover anomalies that were not in the training
data. In any case, more data gathering and testing is required to
improve the results of all the algorithms.

It is important to note that the results shown in this section are
largely specific to the very limited data we were able to gather and are
based on certain decisions we made in our algorithm implementations.
Results obtained with further work may be (very) different due to the
following factors:

• Different algorithm parameters
• Different machine setting (e.g., controlled VM, test environment,

live production environment, etc.)
• Different hardware and software on the target machine (e.g.,
different operating systems, different version/performance of
hardware, different installed applications/programs/features, etc.)

• Different models for user behaviour and APT behavior (e.g.,
business user, IT admin user, passive attacker, active attacker, etc.)

• Different data preparation (e.g., which Osquery tables/attributes are
being considered, how the data is represented in a CSV, etc.)

• Different training/testing data (e.g., amount of data used, portions of
the data split between training and testing, etc.).

Furthermore, in our research, only four machine learning
algorithms were analyzed and used. As discussed in Section 4, there are
many other machine learning algorithms [35, 36]. It is possible that
other algorithms (including recent algorithms, such as random forest
and neural network refinements for deep learning applications) could
perform better than the ones chosen in our study. Exploring all the
above variations with more extensive testing will allow us to confirm or
modify the preliminary results that we have achieved with our current
study.

Conclusion and Future Work
This study was intended as a proof-of-concept exercise to see if

machine learning could be beneficial in detecting the presence of
malware (in particular, APTs, which are specifically designed to be as
stealthy as possible) on a computing platform.

This paper presented the details of how we approached the use of
machine learning algorithms for APT detection. It highlighted how we
generated our datasets, how the data was prepared for the algorithms,
and the different types of machine learning algorithms that were
analyzed; we also presented the results achieved from the use of these
algorithms on our simulated data. Given the preliminary results that
we have obtained, we feel that a machine learning technique focused
on user behavior appears to be a viable approach for detecting the
presence of an APT on a user workstation. We do recognize that our
data set is very limited, and so any deductions about the effectiveness
of specific algorithms are highly tentative at this point. While extensive
testing with a much larger data set will of course increase the
confidence in any particular results found, our primary conclusion
from this study is that this approach to APT detection holds promise
and is worth pursuing. Our approach (i.e., learning typical user
behaviour in order to detect the presence of an APT, and focusing on
computer activity rather than network traffic) differs from previous
approaches to APT detection, but appears to be a potentially useful
tool in the ongoing battle against APT malware. (Note that some

recently published independent research [34] uses a very similar
approach with good success, which helps to confirm the viability of
this approach).

In terms of future work, many options are available. Studying the
effect of all the factors mentioned at the end of Section 5 is certainly
one important avenue. Other possibilities include assessing other
techniques to gather data, generating bigger datasets over longer
periods of time, testing on more users and user behaviour types, using
different aggregate values on the data, and trying different
dimensionality reduction techniques, to name a few. We feel that there
is much opportunity for further work in this field.

References
1. Biswas SK (2018) Intrusion detection using machine learning: A

comparison study. Int J Pure Appl Math 118: 101-114.
2. Çavuşoğlu Ü (2019) A new hybrid approach for intrusion detection using

machine learning methods. Appl Intelligence 49: 2735-2761.
3. Ghafir I, Hammoudeh M, Prenosil V, Han L, Hegarty R, et al. (2018)

Detection of advanced persistent threat using machine-learning
correlation analysis. Future Generation Computer Systems 89: 349-359.

4. Jidiga GR, Sammulal P (2014) Anomaly detection using machine learning
with a case study. In: IEEE International Conference on Advanced
Communications, Control and Computing Technologies.

5. Moon D, Im H, Kim I, Park JH (2017) DTB-IDS: An intrusion detection
system based on decision tree using behavior analysis for preventing APT
attacks. J Supercomputing 73: 2881-2895.

6. Zamani M (2013) Machine learning techniques for intrusion detection,
Yale University.

7. Bodstrom T, Hamalainen T (2019) A novel deep learning stack for APT
detection. Appl Sci 9: 1055.

8. Cho DX, Nam HH (2019) A method of monitoring and detecting APT
attacks based on unknown domains. Elsevier. Procedia Computer Science
150: 316-323.

9. Gavrilut D (2016) The value beyond the hype: Applying machine learning
in APT detection, Bitdefender Business Insights Blog.

10. Meckl S, Tecuci G, Marcu D, Boicu M, Bin Zaman A (2017) Collaborative
cognitive assistants for advanced persistent threat detection, cognitive
assistance in government and public sector applications. AAAI Technical
Report FS-17-02.

11. Palozza F (2018) Detecting malware/APT through automatic log analysis,
Radware blog.

12. https://techbeacon.com/enterprise-it/counter-security-threats-machine-
learning-real-time-data-analytics.

13. https://osquery.readthedocs.io/en/stable/.
14. https://github.com/endgameinc/RTA.
15. https://osquery.readthedocs.io/en/stable/deployment/logging/.
16. Nilsson NJ (1996) Introduction to machine learning: An early draft of a

proposed textbook.
17. Venkateswaran B, Ciaburro G (2017) Neural Networks with R: Smart

models using CNN, RNN, deep learning, and artificial intelligence
principles. Packt Publishing, Birmingham, UK.

18. Körting T (2006) C4.5 algorithm and multivariate decision trees. Image
Processing Division, National Institute for Space Research–INPE São José
dos Campos–SP, Brazil.

19. Strobl C, Malley J, Tutz G (2009) An introduction to recursive
partitioning: Rationale, application and characteristics of classification
and regression trees, bagging and random forests. Psychol Methods 14:
323-348.

20. James G, Witten D, Hastie T, Tibshirani R (2015) An introduction to
statistical learning. Springer, New York, USA.

21. https://www.brighthubpm.com/project-planning/106005-disadvantages-
to-using-decision-trees/.

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 7 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166

https://www.researchgate.net/publication/326572673_Intrusion_Detection_Using_Machine_Learning_A_Comparison_Study
https://www.researchgate.net/publication/326572673_Intrusion_Detection_Using_Machine_Learning_A_Comparison_Study
https://link.springer.com/article/10.1007/s10489-018-01408-x
https://link.springer.com/article/10.1007/s10489-018-01408-x
https://www.dora.dmu.ac.uk/xmlui/handle/2086/16441
https://www.dora.dmu.ac.uk/xmlui/handle/2086/16441
https://www.dora.dmu.ac.uk/xmlui/handle/2086/16441
https://www.researchgate.net/publication/259212150_Machine_Learning_Techniques_for_Intrusion_Detection
https://www.researchgate.net/publication/259212150_Machine_Learning_Techniques_for_Intrusion_Detection
https://doi.org/10.3390/app9061055
https://doi.org/10.3390/app9061055
https://www.sciencedirect.com/science/article/pii/%20S1877050919304041
https://www.sciencedirect.com/science/article/pii/%20S1877050919304041
https://www.sciencedirect.com/science/article/pii/%20S1877050919304041
https://businessinsights.bitdefender.com/machine-learning-apt-detection
https://businessinsights.bitdefender.com/machine-learning-apt-detection
https://www.aaai.org/ocs/index.php/FSS/FSS17/paper/%20viewFile/15999/15307
https://www.aaai.org/ocs/index.php/FSS/FSS17/paper/%20viewFile/15999/15307
https://www.aaai.org/ocs/index.php/FSS/FSS17/paper/%20viewFile/15999/15307
https://www.aaai.org/ocs/index.php/FSS/FSS17/paper/%20viewFile/15999/15307
https://blog.radware.com/security/2018/05/detecting-malware-apt-through-automatic-log-analysis/
https://blog.radware.com/security/2018/05/detecting-malware-apt-through-automatic-log-analysis/
https://techbeacon.com/enterprise-it/counter-security-threats-machine-learning-real-time-data-analytics
https://techbeacon.com/enterprise-it/counter-security-threats-machine-learning-real-time-data-analytics
https://osquery.readthedocs.io/en/stable/deployment/logging/
https://www.worldcat.org/title/neural-networks-with-r-smart-models-using-cnn-rnn-deep-learning-and-artificial-intelligence-principles/oclc/1008968699
https://www.worldcat.org/title/neural-networks-with-r-smart-models-using-cnn-rnn-deep-learning-and-artificial-intelligence-principles/oclc/1008968699
https://www.worldcat.org/title/neural-networks-with-r-smart-models-using-cnn-rnn-deep-learning-and-artificial-intelligence-principles/oclc/1008968699
https://www.academia.edu/1983952/C4._5_algorithm_and_Multivariate_Decision_Trees
https://www.academia.edu/1983952/C4._5_algorithm_and_Multivariate_Decision_Trees
https://www.academia.edu/1983952/C4._5_algorithm_and_Multivariate_Decision_Trees
https://www.brighthubpm.com/project-planning/106005-disadvantages-to-using-decision-trees/
https://www.brighthubpm.com/project-planning/106005-disadvantages-to-using-decision-trees/


22. Quinlan J (1992) C4.5: Programs for machine learning. Morgan
Kaufmann.

23. Witten IH, Frank E, Hall MA (2011) Data mining: Practical machine
learning tools and techniques. (3rd edn). Morgan Kaufmann, San
Francisco.

24. https://en.wikipedia.org/wiki/Unsupervised_learning.
25. https://www.coursera.org/lecture/machine-learning/unsupervised-

learning-olRZo.
26. http://www.mit.edu/~9.54/fall14/slides/Class13.pdf.
27. https://github.com/serengil/tensorflow-101/blob/master/python/

KMeansClustering.py.
28. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001)

Estimating the support of a high-dimensional distribution. Neural
Computation pp: 1443-1471.

29. https://github.com/dpkravi/DecisionTreeClassifier.
30. https://github.com/tensorflow/models/tree/

8cf24f468fa72e779e8e6ae26079fadbd34c3ab9/samples/core/get_started.

31. Gramfort A, Pedregosa F, Varoquaux G (2001) Scikit-learn: Machine
Learning in Python.

32. https://www.researchgate.net/post/
How_can_I_test_the_performance_of_a_clustering_algorithm, last
accessed 2018/09/10.

33. Olaode AA, Naghdy G, Todd CA (2014) Unsupervised image
classification by probabilistic latent semantic analysis for the annotation
of images.

34. Lin TC, Guo CC, Yang CS (2019) Detecting advanced persistent threat
malware using machine learning-Based threat hunting. European
Conference on Cyber Warfare and Security, Reading pp: 760-768.

35. https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-
machine-learning-newbies-dde4edffae11.

36. https://www.kdnuggets.com/2017/10/top-10-machine-learning-
algorithms-beginners.html.

 

Citation: Adams C, Tambay AA, Bissessar D, Brien R, Fan J, et al. (2019) Using Machine Learning to Detect APTs on a User Workstation. Int J
Sens Netw Data Commun 8: 166.

Page 8 of 8

Int J Sens Netw Data Commun, an open access journal
ISSN: 2090-4886

Volume 8 • Issue 3 • 1000166

https://www.wi.hs-wismar.de/~cleve/vorl/projects/dm/ss13/HierarClustern/Literatur/WittenFrank-DM-3rd.pdf
https://www.wi.hs-wismar.de/~cleve/vorl/projects/dm/ss13/HierarClustern/Literatur/WittenFrank-DM-3rd.pdf
https://www.wi.hs-wismar.de/~cleve/vorl/projects/dm/ss13/HierarClustern/Literatur/WittenFrank-DM-3rd.pdf
https://www.coursera.org/lecture/machine-learning/unsupervised-learning-olRZo
https://www.coursera.org/lecture/machine-learning/unsupervised-learning-olRZo
http://www.mit.edu/~9.54/fall14/slides/Class13.pdf
https://github.com/serengil/tensorflow-101/blob/master/python/KMeansClustering.py
https://github.com/serengil/tensorflow-101/blob/master/python/KMeansClustering.py
http://users.cecs.anu.edu.au/~williams/papers/P132.pdf
http://users.cecs.anu.edu.au/~williams/papers/P132.pdf
http://users.cecs.anu.edu.au/~williams/papers/P132.pdf
https://github.com/dpkravi/DecisionTreeClassifier
https://github.com/tensorflow/models/tree/8cf24f468fa72e779e8e6ae26079fadbd34c3ab9/samples/core/get_started
https://github.com/tensorflow/models/tree/8cf24f468fa72e779e8e6ae26079fadbd34c3ab9/samples/core/get_started
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://www.researchgate.net/post/How_can_I_test_the_performance_of_a_clustering_algorithm,%20last%20accessed%202018/09/10
https://www.researchgate.net/post/How_can_I_test_the_performance_of_a_clustering_algorithm,%20last%20accessed%202018/09/10
https://www.researchgate.net/post/How_can_I_test_the_performance_of_a_clustering_algorithm,%20last%20accessed%202018/09/10
https://search.proquest.com/docview/2261007238?pq-origsite=gscholar
https://search.proquest.com/docview/2261007238?pq-origsite=gscholar
https://search.proquest.com/docview/2261007238?pq-origsite=gscholar
https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11
https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11

	Contents
	Using Machine Learning to Detect APTs on a User Workstation
	Abstract
	Keywords
	Introduction
	Research Methodology
	Data Collection and Preparation
	Osquery
	Red Team Automation (RTA)
	Data acquisition
	Data preparation

	Machine Learning Algorithms
	Supervised learning
	Neural network
	Decision tree

	Unsupervised learning
	K-means

	One-class SVM

	Results and Discussion
	Implementation

	Conclusion and Future Work
	References


