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Introduction
Molecular interaction networks representing the human protein 

coding gene universe have become widely used for analyzing Omics 
profiles. The intention is to traverse the descriptive set of features 
identified as statistically relevant into the context of pathways and 
processes being effectively amenable for results interpretation and 
hypothesis generation. This need is even more pronounced for cross-
Omics data interpretation, where the challenge is the combined analysis 
of heterogeneous feature types essentially spanning from the genome 
to the metabolome level [1]. Such integrated analysis strategies rest on 
expanding knowledge regarding molecular feature catalogues, on their 
biological role and interaction specifics, altogether resembling a core of 
systems biology approaches [2], in the clinical context contributing to 
systems medicine [3,4].

Repositories for molecular catalogues are maintained by major 
institutions such as the National Center for Biotechnology Information 
(NCBI) or ENSEMBL operated by the European Bioinformatics Institute 
together with the Wellcome Trust Sanger Institute. The same is true for 
specific molecular interaction networks with the Kyoto Encyclopedia 
of Genes and Genomes [5] (KEGG) or PANTHER [6] as prominent 
representatives. Further databases focus explicitly on protein-protein 
interaction data, as the Online Predicted Human Interaction Database 
[7] (OPHID), IntAct [8], or BioGRID [9]. Each such repository exhibits
specific characteristics regarding type of interaction represented,
coverage of molecular catalogues, as well as evidence and relevance of

interactions in the biological context. KEGG for example offers various 
types of interactions ranging from protein complex formation to 
enzyme-substrate interactions at high level of evidence, but falls short 
on completeness regarding the human molecular catalog, as 6,198 
(version as of January 2012) human protein coding genes (compared 
to the total set of 19,980 reported in ENSEMBL [10]) are represented. 
OPHID on the other hand provides a considerable set of protein 
interactions covering 14,612 UniProt/SwissProt identifiers which can 
be translated to a roughly similar number of protein coding genes, but 
lacks evidence regarding biological relevance of listed interactions. 

Protein interactions represented in such repositories span 
heterogeneous types as physical interactions or procedural 
dependencies [11], resting on different experimental methods such as 
affinity chromatography, yeast-2-hybrid screens, or being predicted 
based on cross-species analogies. Consequently, the data hold false-
positives [12-14], as well as an undetermined false negative rate [15-
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Abstract
Molecular interaction networks have emerged as central analysis concept for Omics profile interpretation. This 

fact is driven by the need for improving hypothesis generation beyond the mere interpretation of molecular feature 
lists derived from statistical analysis of high throughput experiments. A number of human gene and protein interaction 
networks are available for such task, but these differ with respect to biological nature of interactions represented, 
and vary with respect to coverage of molecular feature space on the gene, transcript, protein and metabolite level. 
Naturally, both elements impose major impact on hypothesis generation. We here present a methodology for deriving 
expanded interaction networks via consolidating available interaction information and further adding computationally 
inferred interactions.

Integrating interaction data as provided in the public domain repositories IntAct, BioGrid and Reactome resulted 
in a core interaction network representing 11,162 human protein coding genes (out of a total of 19,980 protein coding 
genes) and 145,391 interactions. Utilizing annotation from ontologies on involvement in specific molecular pathways 
and function, combined with structural (domain) information as gene/protein node parameterization allowed 
computation of probabilities for additional interactions resting on the information content of individual sources. 
Utilizing topological information as degree centrality, global clustering coefficient and characteristic path length 
allowed defining a cutoff for interaction probabilities, resulting in an expanded interaction network holding 13,730 
protein coding genes and 830,470 interactions. Evaluating such hybrid network against established interaction 
networks as KEGG showed significant recovery of evident interactions, indicating the validity of the expansion 
methodology.

Integrating available interaction data, further enlarged by inferred interactions, provided an expanded human 
interactome regarding both, number of represented molecular features as well as number of interactions, thereby 
promising improved Omics profile interpretation.
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17]. Further uncertainty arises if e.g. identified binding affinities exhibit 
relevance in the biological context, altogether only becoming amenable 
via functional studies. On top the total number of protein-protein 
interactions in the human proteome is not known, with estimates 
ranging from 130,000 to 650,000 [18,19].

Obviously, the type of specific interaction network used for 
Omics profile interpretation influences hypothesis generation, driven 
by mere quantity of represented features, and biological nature of 
encoded interactions. For respecting these facts hybrid interaction 
networks have been developed, aiming at integrating diverse sources 
for obtaining networks showing improved coverage on the level of 
molecular feature catalogs, and at the same time providing a more 
complete representation of biologically relevant interactions at the 
various levels. Alexeyenko et al. [1], for example, delineated a network 
by inferring edge probabilities using diverse high-throughput data and 
achieved high gene coverage through orthology-based integration of 
different model organisms. Tyagi et al. [13] described a framework 
for delineating a human protein interactome including experimental 
details on complex structures and their binding interfaces together with 
evolutionary conservation. Kuchaiev et al. [16] presented a technique 
using geometric graphs to assess the confidence levels of interactions 
in protein-protein interaction networks obtained from experimental 
studies in order to predict new interactions.

We in this work attempt to expand the set of human protein-
protein interactions as provided by IntAct, BioGrid and Reactome 
[20] with inferred interactions being computed based on pathway 
membership (Reactome, PANTHER), ontology membership (Gene 
Ontology [21]) and protein domain data (InterPro [22]). Goal of such 
approach is to improve coverage of the human protein coding gene set 
represented in a combined network, and at the same time expanding 
on putative interactions. Having such an expanded network in hand 
promises an improved representation of features identified as relevant 
in Omics profiling, additionally providing expanded information 
on interactions, in combination promising improved hypothesis 
generation.

Materials and Methods
Gene and protein identifier cross-referencing

For gene and protein cross-referencing the BioMart interface 
of ENSEMBL [10] was used. Identifiers included ENSEMBL gene 
(19,980) and protein (86,934) IDs, NCBI gene symbols (18,981) and 
IDs (18,994), NCBI protein identifiers (31,628), TrEMBL [23] (42,399) 
and SwissProt IDs and accessions (37,864). The NCBI gene symbols 
and summaries were imported directly from the NCBI ftp site (ftp://ftp.
ncbi.nlm.nih.gov/gene/DATA/), and the lists of deprecated identifiers 
were imported from NCBI and UniProt.

IDs referring to the same biological entity (gene or protein level, 
respectively) were interlinked using abstract hyperstructures. Each such 
structure resembles a protein sequence as retrieved from ENSEMBL. 
All gene identifiers and symbols of genes coding for this sequence, 
and all protein identifiers were linked to such protein sequence. These 
hyperstructures encoded the nodes of the hybrid interaction network.

Data sources on experimentally identified and literature 
curated protein interactions

Human protein-protein interaction data were retrieved from the 
public domain data sources IntAct, BioGrid and Reactome, all in 
their versions as of October 2011. IntAct provided 35,634, BioGrid 

provided 41,496, and Reactome contributed with 91,002 interactions, 
respectively. Reactome offers two types of interactions, namely physical 
associations for all interactors occurring in the same complex, polymer, 
or in the same reaction, as well as associations for interactors involved 
in neighboring reactions or being associated via (positive or negative) 
regulation. Consolidation of these interaction data sources provided 
a core interaction network. All interactions were retrieved and stored 
with their characterization provided as Human Proteome Organization 
(HUPO) Proteomics Standards Initiative (PSI) Molecular Interaction 
(MI) ontology terms [24]. The PSI-MI ontology is rooted in the term 
molecular interaction (MI:0000) and the two branches relevant for 
this work are the interaction detection method (MI:0001) and the 
interaction type (MI:0190).

Gene and protein parameterization

For biological annotation of genes and proteins three categories 
of biological data were explored: biological pathway assignment, 
ontology assignment, and protein domain information. No explicit 
interaction information was used from such sources for annotation. 
Pathway membership information was retrieved from Reactome 
and PANTHER. Reactome provided 1,128 pathways covering 5,292 
genes, while PANTHER contributed 140 pathways covering 2,120 
genes. Ontology information was retrieved from the Gene Ontology 
Consortium for the branches biological process and molecular function. 
The process category contributed 21,433 terms covering 14,110 genes, 
while the function category contributed 9,087 terms covering 14,693 
genes. Protein domain information was retrieved from InterPro, which 
provided 6,041 specific domains covering 38,275 protein sequences. 
These annotation data on pathway membership, ontology membership 
as well as protein domain specifics were subsequently used for inferring 
interactions.

Information consolidation

For each gene/protein entity the respective hyperstructures were 
populated with the retrieved annotation information. This information 
was subsequently used for computing relation scores (edge weights) 
between entities. A major implication of this information inheritance 
approach was that for each gene information became redundantly 
associated to all its splice variants. Considering the large number 
of splice variants, i.e. 86,934 sequences for 19,980 genes, but mostly 
not having splice variant specific annotation available, only one 
representative protein sequence per protein coding gene was further 
considered. For this, the hyperstructure representing the protein 
with the longest sequence of each ENSEMBL gene was marked as the 
canonical sequence. Only such canonical hyperstructures were then 
used as nodes in the interaction network. Protein domain information 
for non-canonical sequences (if available) was also linked to the 
canonical sequence.

Interaction scoring

Based on the consolidated information, interaction scores were 
computed for all pair-wise combinations of canonical hyperstructures. 
For each pair, five individual scores were computed, one for each of 
the available annotation types: GO biological process, GO molecular 
function, Reactome pathway membership, PANTHER pathway 
membership, protein domains. Additionally, for each pair interactions 
as retrieved from the three interaction databases (IntAct, Biogrid, 
Reactome) were included as applicable. These individual scores together 
with available explicit interaction information were subsequently 
combined into an overall score, expressed as edge weight.

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
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All parameters were computed based on the information content 
(IC) of the terms, pathways and domains shared by two hyperstructures. 
For pathways and domains, the information content was computed as 
depicted in equation 1.

( ) ln( ( )) ln( )EnIC E P E
N

=− =−                                                                 (1)

E is the entity (pathway or domain), the information content is 
being computed for. N is the total number of nodes with this type of 
annotation. nE is the number of nodes on this particular pathway or 
having this particular domain.

For computing the information content of the GO terms, this 
general calculation was extended to accommodate for the hierarchical 
structure of the ontology: each node was not only associated to the terms 
explicitly mentioned by GO, but also to all parent terms in the hierarchy 
following the “is-a” relationship. Further, the information content of a 
term is not only a function of the number of genes associated to it and 
its children [25-27], but also a function of its specificity given by the 
relative position in the ontology (number of its child terms) [28]. Based 
on these considerations two separate IC functions needed to be applied: 
one for the genes and one for the terms (equation 2). We added a value 
of 1.0 to the number of genes and child terms to enable computation of 
information content values also for terms which were either empty or 
which had no children.  
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Subsequently, the overall information content of a term was 
computed by using the Root Mean Square (RMS) function (equation 
3).

( ) = ( ( ), ( ))genes termsIC E RMS IC E IC E                                                          (3)

For a given node pair (X,Y), each of the individual parameter 
scores was computed as the sum of the information content values of 
the entities E (domains, pathways and terms) common to both nodes 
(equation 4).

( , ) ( )
E X
E Y

f X Y IC E
∈
∈

=∑                                                                                    (4)

By construction, all parameter values were equal to or greater than 
zero. However, the individual parameter distributions were found to be 
strongly right-skewed. A high number of zero values resulted due to a 
limited set of parameter overlaps. In order to ensure a similar impact 
on the final edge weight obtained by utilizing distance functions on 
the individual parameter level for node pairs, we performed score 
adjustment. Due to the semantic contrast between the zero and the 
non-zero values, i.e. definitively inexistent versus given level of relation, 
we ignored the zero values during the normalization process. Each 
parameter distribution (as resulting from equation 4) was then scaled 
with an individual factor alpha and the logarithm was computed. The 
alpha values were chosen such as to ensure a maximum curve overlap 
after log-transformation and rescaling on the interval (0,1). The 0.5 
quantiles of the resulting distributions were situated around 0.35 
(Figure 1).

For computation of the final edge weight as a proxy for the 
aggregate relation between two nodes, we distinguished between the 

interaction type “procedural” (composed of GO process, Reactome 
pathway membership and PANTHER pathway membership) and 
“functional” (composed of protein domain and GO molecular 
function) parameters. For each node pair, the average relation score of 
each category, i.e. procedural and functional, was computed separately 
utilizing the assigned annotation. The effective weight of a relation 
between two nodes (i.e. the edge weight) was given by the maximum of 
the procedural and the functional parameter, being in the interval (0,1). 
In case an experimentally described interactions (INT1) was present 
for a given pair the edge weight was set to 1.0 irrespective of computed 
procedural or functional relations (equation 5).

Pr( , , )
( , ) max ( , )

1( , ) 1

Reactome PANTHER GO ocess

GOFunction Domains

avg f f f
f X Y avg f f

X Y INT

 
 =  
 ∈ 

                                 (5)

Individual parameters missing due to incomplete node annotation 
were omitted from the computation, with the constraint of having 
at least one shared parameter for effectively computing a score. 
Consequently, node pairs not sharing a single parameter could not be 
further taken into consideration.
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Figure 1: Distributions of parameter values of the five annotation sources 
included in computing pair-wise edge weights before (A) and after (B) 
rescaling: Gene Ontology process (GOP), Gene Ontology function (GOF), 
Reactome pathway assignment (RPA), PANTHER pathway assignment (PPA) 
and protein domains (DOM). For each parameter value in the interval [0,1] the 
number of edges holding at least such value are given.
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Results
Data sets and parameter characteristics

The number of gene/protein nodes taken into consideration for 
the protein interaction graph construction corresponded to the total 
number of protein coding genes represented in ENSEMBL, being 
19,980. Of these, 14,212 had GO process and 14,773 had GO function 
annotation, 5,340 were present in Reactome pathways, 2,138 in 
PANTHER pathways, and 13,681 in InterPro. Characteristics of data 
sources covering experimentally derived interactions (number of 
features and number of interactions) are depicted in table 1. BioGrid 
had with close to 9,000 genes the best node coverage, while Reactome 
showed with close to 91,000 interactions the most extensive edge 
coverage. Next to evidently varying size is the varying overlap of the 
data sources, clearly indicating different background and scope of 
given sources. IntAct and BioGrid for example provide roughly the 
same number of interactions, with only about one third being shared. 

Consolidating the available annotation information from GO, 
PANTHER pathway membership, Reactome pathway membership, 
and InterPro for each gene provided 17,022 of the 19,980 nodes with 
information from at least one data source. This set of nodes was further 
taken into consideration for delineating the inferred interactions, 
neglecting the 2,958 protein coding genes not holding any annotation. 
The level of annotation, given as the number of data sources per node, 
is depicted in figure 2A. 1,199 node pairs showed annotation on the 
level of all five data sources, 6,682 nodes held annotation from three 
sources. Computing all-to-all interactions rested on annotation levels 
as depicted in figure 2B. Based on the 17,022 nodes annotated with at 
least one source a complete undirected graph holding in total 144.8 
million edges (n* (n-1)/2) could theoretically be computed. Of these, 5 
million edges had no basis (i.e. node pairs not sharing a single common 
annotation), and were therefore omitted from further processing. 

Of the remaining about 140 million theoretical interactions 145,391 
rested on experimentally derived/manually curated interactions as 
provided by IntAct, BioGrid or Reactome. Such edges are subsequently 
denoted as INT1 (in contrast to INT0 edges not having such 
experimental background on interaction).

General graph characteristics

The cumulative edge weight distribution in the interval (0,1) of the 
140 million edges, together with completeness, i.e. the number of nodes 

holding at least one edge with a weight above a certain cutoff value, 
is depicted in figure 3A. All 145,391 INT1 interactions (with an edge 
weight set to 1.0, i.e. being considered as true positive interactions, see 
equation 5) provided 11,162 nodes. The maximum number of nodes, 
on the other hand, is only reached at a cutoff value of 0.0. This is due 
to the about 23 million edges holding a weight of zero, as becoming 
evident in the weight dependent number of edges shown in figure 3A. 
Edge weights of zero result from node pairs holding values in at least 
one common parameter (i.e. being valid for computing a weight) but 
showing no overlap in the annotation of that particular parameter (see 
equation 4).

Plotting the number of nodes and edges in dependence of edge 
weight provided for a given number of nodes the number of edges 
being necessary to include the given nodes (i.e. holding at least one 
edge per node, figure 3B). Covering eg. additional 3,000 nodes on 
top of the 11,162 nodes included on the basis of INT1 resulted in 
an increase of the number of additionally required edges to about 1 
million. Further increasing the number of nodes for including 15,000 
protein coding genes already needs more than 3.0 million edges total. 
Adding additional edges by lowering the edge weight cutoff tends to 

A: number of nodes

IntAct BioGrid Reactome

IntAct 8,419 5,348 1,248

BioGrid 8,988 1,925

Reactome 4,458

B: number of edges

IntAct BioGrid Reactome

IntAct 35,634 13,928 2,258

BioGrid 41,496 3,987

Reactome 91,002

Number of unique gene identifiers (A: number of nodes) and interactions (B: 
number of edges), as well as pair-wise overlap, for the data sources used for 
retrieving interaction information.

Table 1: Interaction data source overview.
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Figure 2: Overview of the number of data sources available per node (A) and 
shared by node pairs (B), with a maximum annotation level of five according 
to the annotation sources (GO process, Reactome pathway membership, 
PANTHER pathway membership, protein domain, GO molecular function). 
About 3,000 nodes hold no annotation, about 1,000 nodes hold annotation 
from all five sources. For about 50 million node pairs the number of shared 
annotation sources is three out of five.
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link nodes already being part of the graph rather than adding additional 
nodes. Apparently, for indeed covering all protein coding genes in the 
network an implausible number of edges would be needed.

In order to investigate potential bias in deriving edge weights as 
a consequence of specific level of annotation, the association of edge 
weight and gene characterization index (GCI, indicating to what extent 
a protein-encoding gene is functionally described) [29] was calculated. 
The Pearson correlation coefficient between each node’s highest edge 
weight and its GCI was 0.43, thus a weak positive correlation between 
the two parameters could be observed. No substantial correlation 
(Pearson R=0.15) could be determined for comparing each node’s 
highest edge weight to the number of papers associated to the 
respective gene based on NCBI’s gene2pubmed [30] links. A third 
analysis regarding eventual bias in node or edge annotation focused 
specifically on the node annotation level (Figure 2A). An increase in 
the maximum edge weight per node with rising annotation level was 
identified (Pearson correlation score of 0.53). To estimate the impact 
of this bias, we performed a complementary analysis involving the 

edge annotation basis (Figure 2B). The Pearson correlation coefficient 
between edge weights and edge annotation basis was found to be-0.2.

Topological graph characteristics

Already at the maximum edge weight of 1.0 (essentially resembling 
INT1, as no computed IC value reached a value of 1.0) the Index of 
Aggregation (IoA) was close to 1.0, i.e. paths between virtually all 
11,162 nodes represented in IntAct, BioGrid or Reactome were found. 
Nodes with inferred interactions are added to this given graph when 
lowering the edge weight cutoff levels. The node degree distribution 
of the graph at different cutoff levels, expressed as median, upper 
and lower quartiles and outliers, is provided in figure 4. The median 
number of neighbors remained below 1% of included nodes for the 
weight interval [0.7, 1.0]. Connectivity outliers at each cutoff provided 
an explanation for the high IoA, i.e. a relatively small number of hub 
nodes is responsible for building the giant component. To further 
investigate this finding the five nodes with the highest degrees were 
exemplarily extracted at various cutoffs. At high edge weight cutoff 
levels of 0.8-1.0, where the graph is mainly composed of INT1 edges, 
genes such as ubiquitin and the MYC oncogene [31] were identified as 
strongly connected to other nodes. This finding may be explained in 
the light of the biological function of e.g. ubiquitin [32], or reflecting 
the substantial association of e.g. MYC in a wide range of molecular 
processes [33]. At lower edge weight cutoff levels of 0.5-0.7 a different 
effect contributed to connectivity outliers. Here mainly groups of genes 
jointly annotated by highly specific ontology terms, as e.g. members 
of the sirtuin [34] family or genes such as the P2RX4 [35] (purinergic 
receptor P2X, ligand-gated ion channel 4) are present. Following our 
procedure for the computation of edge weights, highly specific ontology 
terms result in higher edge weights for all genes sharing at least one of 
such specific terms.

The global clustering coefficient (GCC) in relation to edge weights 
in the interval [0.5, 1.0] is depicted in figure 5A. The graph provided 
on the basis of INT1 alone (i.e. at an edge weight of 1.0 holding 11,162 
nodes and 145,391 edges) served as the start network, showing a GCC of 
0.33. Decreasing the edge weight cutoff, i.e. gradually adding computed 
relations as edges together with further nodes not holding an INT1 edge 
to the network, resulted in an increase of the GCC, reaching a plateau 
at edge weights of 0.6. To contrast this graph behavior in terms of the 
GCC to the respective curve obtained when adding edges randomly 
two additional analyses starting from the same INT1 network were 
performed. In the first approach edges were added to the given INT1 
graph in a random manner in the same pace as for adding computed 
edges when decreasing the edge weight cutoff. In the second approach 
the same procedure was performed but additionally respecting the 
node degree distribution seen when adding the computed edges. The 
results showed a strong GCC divergence for the three networks with 
increasing number of edges, with the two reference networks generated 
by adding edges in a random fashion reaching GCC values of about 
0.4 (when respecting the node degree distribution) and 0.1 (adding 
edges entirely random), in contrast to a GCC value of 0.6 reached for 
the relations network. Clearly, the inferred graph differs on the level of 
the GCC significantly from networks populated by edges instantiated 
randomly between nodes.

For the three graphs also the Characteristic Path Length (CPL) 
was computed (Figure 5B). The initial characteristic path length of the 
INT1 network was found to be 3.5, decreasing with lower edge weight 
cutoffs to a length of 2.0 at an edge weight of 0.5. The divergence of 
the computed network in comparison to adding random effects also 
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Figure 3: (A) Edge weight distribution and node coverage as a function of edge 
weight. Node and edge count are presented for each weight cutoff in % with 
respect to the entire set of nodes and theoretical edges, with a start number 
of nodes of 11,162 at an edge weight of 1.0 (145,391 edges as extracted from 
experimentally verified interaction data sources), and a maximum number of 
nodes being 17,022 with a maximum number of edges when considering all 
node pairs being about 140 million. (B) Relation of node and edge count at 
the different edge weight cutoff values, starting at an edge weight of 1.0 (with 
11,162 nodes).
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became clear on the level of the CPL, with smallest CPL values reached 
for the graph holding randomly added edges. At an edge weight of 
about 0.5 the three graphs converged on the level of the CPL.

Inferred edges as surrogate for experimentally determined 
interactions

To investigate the suitability of the inferred edge weights for 
predicting interactions resting on experimental evidence as provided 
in databases, the inferred interactions were investigated with respect to 
their prediction performance when using experimentally determined 
interactions (INT1) as reference. For this all computed edges were split 
into two groups, namely with (INT1) and without (INT0) experimental 
backup, subsequently comparing their computed edge weights. As no 
explicit information on interactions was included in computing the edge 
weights such testing against experimentally determined interactions 
can be considered as independent validation. Weight distributions of 
the two edge sets showed a highly significant (p<10-16, student’s t-test) 
right shift for INT1, indicating higher computed scores for interactions 
also holding experimental background (mean edge weight of 0.52) than 
for edges only holding computed scores (mean edge weight of 0.29). 
To assess the impact of this shift in terms of prediction accuracy, as 
well as regarding the specific composition of a relation being of type 
“procedural” resting on an integration of GO process, Reactome and 
PANTHER pathway membership annotation, or “functional” via 
integrating protein domain and GO molecular function annotation, 
the receiver operator characteristic (ROC, plotting true positive rate 
versus false positive rate at various edge weight threshold settings) 
for the two groups of edges with INT1 as the prediction target were 
computed. INT1 edges above a specific computed edge weight cutoff 
were therefore interpreted as true positive interactions, while edges 
above the same value but not holding experimental evidence were 
interpreted as false positive interactions. The latter assumption needs 
to be seen with caution, as intention of the approach is to expand given 

interactions, in this verification setting being per definition interpreted 
as false positives.

Considering the entire INT1 set of 145,391 edges in the analysis, and 
using the computed edge weights for these interactions for deriving the 
AUC (area under the ROC curve) as composite expression regarding 
sensitivity and specificity of computed relations in contrast to INT1 
provided an AUC value of 0.82 (Figure 6A). However, Reactome was 
used both for deriving interactions contributing to INT1 but also 
independently for pathway category annotation utilized in computing 
edge weights. Consequently, the computed edge weights and the 
target edges being compared against cannot be considered as fully 
independent. To identify a potential bias resting on this assignment, 
the computation of the ROC curves was also performed on an INT1 
data set omitting interaction data from Reactome (contributing 
3,872 interactions to the total set of 145,391 edges with experimental 
backup), resulting in a minor decrease of the AUC to 0.78 (Figure 6B). 
Performing the same procedures separately for edge weights for the 
edge classes “procedural” and “functional” (see equation 5) indicated 
improved performance for the “procedural” score regarding correct 
recovery of INT1 (Figure 6A), and seeing the expected decrease for the 
INT1 data set omitting Reactome (Figure 6B), as Reactome annotation 
was only used for computation of weights of type “procedural”.

As second quantification strategy for evaluating the correctness of 
computed edges with respect to recovering edges also being reported 
experimentally the precision (the percentage of true positives from all 
positives) was computed. Precision values started off at 100% at an edge 
weight of 1.0, and dropped to 13.5% at a cutoff of 0.92, being mainly 
due to noise as only a small number of edges are included in this edge 
weight range. Precision peaked again at 63% at a cutoff of 0.89 and then 
decreased continuously with decreasing cutoff (data not shown). For 
estimating the test accuracy the F1 score, computed as the harmonic 
mean of the precision and recall rates, was investigated to identify the 
best precision/recall ratio, being identified at an edge weight cutoff of 
0.74.
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Figure 5: Global clustering coefficient (GCC) (A) and characteristic path length 
(CPL) (B) in relation to edge weight computed for the edge weight interval 
[0.5,1.0]. GCC and CPL are provided for the INT1 graph (only including edges 
with experimental background) extended by inferred edges according to 
equation 5 (Net), by extending with the same number of edges being randomly 
distributed between nodes (RandEqual), and by the adding the same number 
of edges as for Net but in addition taking the graph degree distribution of the 
computed graph (Net) into account (RandNet).

An equivalent analysis, but now utilizing a completely independent 
interaction dataset, was performed using 31,996 interactions derived 
from KEGG as the set of true positive interactions. For each cutoff 
in the edge weight interval (0,1) the true positive rate (the number of 
KEGG interactions correctly identified as such with respect to the total 
number of KEGG interactions) and the false positive rate (the number 
of non-KEGG interactions above that cutoff with respect to the total 
number of non-KEGG interactions) was computed. The resulting ROC 
showed an AUC of 0.79 (Figure 7). Similarly to evaluation of INT1 
edges as shown in figure 6 the “procedural” score performed equally 
well as the effective edge weight (AUC of 0.77), while the “functional” 
score showed a lower AUC of 0.69.

Evaluation of graph characteristics as discussed above rested 
on the absolute edge weight above a certain cutoff. Consequently, 
nodes holding edges with low weights were neglected, hampering 
the completeness of the node set effectively represented in the graph 
derived at a specific edge weight cutoff.

As alternative edge selection strategy a relative order relationship 
rather than an absolute one may be applied, e.g. by picking the top 
ranked x % edges of each node irrespective of the absolute weight, 
by this naturally maximizing coverage of nodes. Validation of such 
edge selection strategy was performed, again using the set of INT1 
interactions, as well as KEGG interactions. Prediction performance 
with respect to INT1 decreased only marginally (AUC of 0.77 compared 
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classes “procedural” (resting on annotation from GO process, Reactome and 
PANTHER pathway membership) and “functional” (resting on annotation from 
protein domain and GO molecular function).
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to an AUC of 0.82 when using the absolute cutoff criterion), while 
predicting KEGG edges was basically identical to the former approach 
(data not shown). While this alternative edge selection approach raised 
the node coverage at apparently little cost on accuracy, other factors 
need to be considered: Highly weighted edges were omitted if they do 
not fit in the top x % of their adjacent nodes, obviously increasing the 
false negative count.

Discussion
Correct molecular network representations address a major leap 

in understanding cellular processes, specifically when utilizing feature 
sets derived from Omics profiling. Various types of networks exist, 
including protein-protein interaction networks [36], metabolic [37] or 
regulatory networks as well as RNA networks [38]. A major shortcoming 
of available interaction data is their lack of completeness on both 
molecular feature level as well as interaction information, frequently 
coupled with a significant number of false positive interactions when 
considered in the context of biological relevance.

A number of approaches have become available utilizing alternative 
data sources and algorithmic approaches for computing probabilities for 
interactions. Examples include e.g. HumanNet, offering a probabilistic 
functional gene network of human protein-encoding genes utilizing a 
modified Bayesian integration of 21 types of ‘omics’ data from multiple 
organisms [39], or specific interaction networks e.g. for identification 
of disease genes [40,41]. In a previous work [42], we presented 
an approach to construct a dependency network based on adding 
biological information next to protein-protein interaction datasets. 
These additional data sources included pathways and ontologies, gene 
expression profiles and subcellular localization information utilizing 
predicted cellular location information as computed by WPSORT 
[43]. In the current work we present a generalized methodology based 
on a core network embedding interactions backed by experimental 
evidence or literature curation, and then expanding this core network 
with computed interactions utilizing information content to increase 
coverage both on a node (gene/protein) as well as on the edge 
(interaction) level. Datasets used for delineating such interactions 
included pathway membership information from Reactome and 
PANTHER, ontology information from Gene Ontology, and protein 
domain data from InterPro. Data were mapped to all human protein 
sequences as provided in ENSEMBL (86,934 entries), subsequently 
reduced to the canonical sequence of each gene/protein for which also 
data were available in the annotation sources used (17,022 entries).

Cutoff values for optimal coverage and accuracy

Inferring relations between these 17,022 nodes resulted in a 
complete graph with interaction weights for edges between 0.0 and 
1.0, imposing the need for identifying an edge weight cutoff showing 
optimal accuracy at maximum node coverage. While a higher 
edge weight implies a higher probability regarding a true positive 
interaction, such a cutoff also leads to a drop in the number of edges 
included, in turn reducing the number of nodes represented in the 
graph. Accordingly, lowering the cutoff increased node coverage, going 
in hand with loss of precision on the edge level. The process of choosing 
an edge weight cutoff implies finding a balance between node coverage 
and edge accuracy.

We evaluated two methods for defining a cutoff, one where a single 
cutoff value was defined for all edges (absolute ranking method), and a 
second where for each node the top ranked x % edges were considered 
as true positive interactions (relative ranking method). Following the 

absolute ranking identified an edge weight of 0.65 as intrinsic lower 
boundary, as the network selected at an edge weight cutoff below 
0.65 did not differ from a network generated by adding interactions 
randomly when tested on the level of global clustering coefficient 
(GCC) and characteristic path length (CPL). Such edge weight cutoff 
provided approximately 2,5 million edges for 14,872 nodes.

As upper edge weight boundary a value of 0.8 may be perceived. 
At this cutoff the network holds 204,128 edges and 11,921 nodes, 
i.e. providing only a minor increase with respect to the core (INT1) 
network holding 145,391 edges and 11,162 nodes.

As further criterion the characteristics of the degree centrality may 
be considered, being at steady values in the interval [0.71, 1.0], and 
seeing a significant increase below an edge weight cutoff of 0.71 (at this 
point providing 830,470 edges for 13,730 nodes). A further supportive 
factor for setting an edge weight cutoff in this range is the computed 
precision, seeing a maximum at an edge weight of 0.74, at this point 
providing 12,891 nodes and 533,020 edges.

Result graph characteristics

Stumpf et al. [18] estimated the size of the human interactome 
to hold about 650,000 interactions. In this context, the size of our 
resulting network at an edge weight cutoff of 0.74 is the same order of 
magnitude. Hart et al. [44] estimated the number of human protein-
protein interactions to be situated somewhat lower between 154,000 
and 369,000, while Venkatesan and colleagues [19] speculated on 
approximately 130,000 interactions. Certainly, with respect to node 
coverage there is still a gap of about 7,000 protein coding genes with 
respect to the 19,980 entries provided in ENSEMBL. However, utilizing 
the annotation approach presented in this work excluded 2,958 nodes 
due to lack of any annotation data for given sources, leaving 3,292 
protein coding genes not exhibiting a single interaction scoring with an 
edge weight of at least 0.71. Contrasting the hybrid network with given 
reference networks provides additional 2,568 nodes when compared to 
the consolidated data from IntAct, Reactome, and BioGrid, naturally 
showing significantly increased coverage when e.g. compared to high 
evidence interaction networks as KEGG. 

Notably, the hypothesis that the inferred edges exhibit a strong 
bias regarding general annotation level proved unfounded (Pearson R 
for comparing edge evidence level and edge weight of -0.2). Positive 
correlation, however, was identified for each node’s strongest edge and 
the node’s Gene Characterization Index (Pearson R=0.43) and specific 
level of node annotation (Pearson R=0.53), respectively.

The network at an edge weight cutoff of 0.71 is found to be more 
compact than the INT1 network, with a clustering coefficient of 0.51 
as compared to 0.32 for the INT1 graph. The characteristic path length 
is found at about 3.0 compared to 3.5 for the INT1 graph. New edges 
added to the graph tend to link already included nodes in contrast to 
adding further nodes.

Graph validation

Validating such hybrid network is an essential step towards 
assessing the quality of the underlying methodology for inferring 
interactions. This is, however, in practice difficult to perform. One 
of the main challenges to address is finding an appropriate dataset 
to validate against. As the method aims at extending the presently 
referenced set of interactions, it is sensible to address the quality of 
the INT1 prediction. This is achieved by assessing the discriminative 
power of the method with respect to the INT0/INT1 classification. 
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An inherent feature of the INT1 dataset, however, is that it is by itself 
a heterogeneous collection of interactions. For the complete INT1 
dataset, the receiver operating characteristic curve showed an AUC 
of 0.82 for different cutoff values in the interval between 0.0 and 1.0. 
While this value is indicative for good prediction quality with respect 
to INT1 detection, this is still subjected to debate as the goal of the 
method lies not in the sole prediction but in the extension of the INT1 
dataset. In this context it can be argued that a high prediction value 
adds little novelty to the existing network, whereas a low prediction 
value may add novelty, but presumably also a significant fraction of 
false positive interactions.

Additional difficulty is added to the validation by the strongly 
asymmetric character of the two interaction set sizes, i.e. 145,391 
edges for INT1 and 60 million for INT0 (only considering the set 
of INT0 edges between nodes present in INT1). While an AUC of 
0.82 stands both for good precision and still significant novelty, the 
disproportionately large number of INT0 edges adds a great absolute 
number of INT0 edges already at a small false positive rate. At a cutoff 
at 0.71 the true positive and false positive rates were 11% and 0.7%, 
respectively. This stands for approx. 16,000 INT1 edges and 685,000 
INT0 edges. By comparison, a 50% true positive rate with an 8% 
false positive rate was reached at a cutoff of 0.55. Utilizing KEGG as 
independent interaction source provided an AUC value of 0.79, being 
very much in the range of AUC values seen for INT1.

Conclusions
Molecular networks have become a central ingredient in Omics 

profile interpretation and hypothesis generation, consequently 
demanding networks with significant coverage of molecular entities 
combined with a comprehensive representation of interactions. The 
latter see various types of interactions, together with different levels 
of evidence regarding biological relevance. Hybrid networks aiming 
at integrating diverse data sources are a straightforward approach for 
expanding both, node and edge count, and provide a single reference 
network for Omics data mapping and interpretation. Although 
information on interactions of protein coding genes expands on a 
continuous basis, computational inference of interactions on top 
of database information, as introduced in this work, adds to a more 
complete representation of the interactome, expanding opportunities 
for Omics profile-based hypothesis generation.
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