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Introduction
History tells that people have been systematically recording and 

comparing meteorological data for some 250 years. But as time goes and 
development of different technologies quickly changes, it has become 
very important and essential to provide meteorological forecasts for the 
near future [1].

The weather on Earth is governed by scientific laws admittedly, 
very complex and imperfectly understood laws. That is why it is very 
difficult to forecast the weather for any one place, or over a very long 
period, with the type of accuracy we associate with the exact sciences. 
Thus forecast must be based on rational study of the phenomenon, 
space and time series data of weather parameters and analyses of 
correlated meteorological conditions.

During the last decade, multi-model ensemble prediction systems 
have become the basis for probabilistic weather and climate forecasts 
at many operational centers throughout the world. Multi-model 
ensemble predictions aim to capture several sources of uncertainty in 
numerical weather forecasts, including uncertainty about the initial 
conditions, lateral boundary conditions and model physics, and have 
convincingly demonstrated improvements to numerical weather and 
climate forecasts and production of more skillful estimates of forecast 
pdf. However, because the current generation of ensemble systems do 
not explicitly account for all sources of forecast uncertainty, some form 
of postprocessing is necessary to provide predictive ensemble pdfs that 
are meaningful, and can be used to provide accurate forecasts.

Bayesian model was originally developed as a way to combine 
inferences and predictions from multiple statistical models, and was 
applied to statistical linear regression and related models in applied 
social and health sciences [2].

Raftery et al. have extended BMA to ensembles of dynamical models 
and showed how it can be used as a statistical post processing method 
for forecast ensembles, yielding calibrated and sharp predictive pdfs 
of future weather quantities [3]. The BMA predictive pdf of any future 
weather quantity of interest is a weighted average of pdfs centered on 
the individual ensemble members. They have applied the method to 

surface temperature and see level pressure and the result of their study 
showed that the predictive pdf were much better calibrated than the 
raw ensemble and BMA yields a deterministic point forecast.

Bayesian model averaging [4] have been used by many scholars 
in different countries and yields consistent improvement in forecast 
performance.

This study focus on short term weather forecasting, which can be 
one day or one week ahead by using BMA to make forecast and to 
assess forecast uncertainty in temperature forecasting at Hawassa City 
SNNPR, Ethiopia.

Data and Methodology
This study has been conducted in Hawassa is a city, on the shores 

of Lake Hawassa in the Great Rift Valley. Located in the Sidama Zone 
270 km south of Addis Ababa via DebreZeit, 130 km east of Sodo, 75 
km north of Dilla and 1125 km north of Nairobi, Hawassa is the capital 
of the Southern Nations, Nationalities, and Peoples Regional State. The 
city lies on the Trans-African Highway 4 Cairo-Cape Town, with a 
latitude and longitude of 73' N 3828' E Coordinates: 73' N 3828' E and 
an elevation of 1708 meters.

Data description

In order to apply the BMA method we used a secondary data from 
the National Meteorological Agency (NMA) in Ethiopia. This includes 
real daily observations from Hawassa station for nine years. However, 
regarding the ensemble data, the NMA is not currently using multi-
models and ensemble data as we stated in the introduction, analogue 
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Abstract
Bayesian model averaging (BMA) is a statistical way of post-processing forecasts ensembles to create predictive 

probability density functions (pdfs) for weather quantities. BMA has been proposed as way of correcting under-
dispersion in ensemble forecasts. The output of ensemble BMA is a weighted average of pdfs centered on the 
individual bias-corrected ensemble forecast. The BMA weights are posterior probabilities of the models generating 
the forecast, and show the relative contribution of the component models to the prediction over the training period. 
This paper focuses on short range forecasting of daily maximum temperature. Forecasting temperature, we have 
approximated the conditional pdf by normal distribution centered at a linear function of the forecast. Since we are not 
able to get an ensemble of forecasts for Ethiopia, we have used the previous eight years from 2003 to 2010 data as 
ensemble and 2011 as observation. The BMA approach yields predictive distribution for temperature thatwere much 
better calibrated than those based on naive averaging of the forecasts.
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the possible future states of a dynamical system. Monte Carlo analysis 
is a means of statistical evaluation of mathematical functions using 
random samples. Ensemble forecasting is a form of Monte Carlo 
analysis: multiple numerical predictions are conducted using slightly 
different initial conditions that are all plausible given the past and 
current set of observations, or measurements. Sometimes the ensemble 
of forecasts may use different forecast models for different members, 
or different formulations of a forecast model. The multiple simulations 
are conducted to account for the two sources of uncertainty in weather 
forecast models: (1) The errors introduced by chaos or sensitive 
dependence on the initial conditions; and (2) errors introduced because 
of imperfections in the model. Ideally, the verified weather pattern 
should fall within past ensemble spreads, and the amount of spread 
should be related to the probability of certain weather events occurring.

The basic idea here is that for any given forecast ensemble there 
is a best model, or member, but we do not know what it is, and our 
uncertainty about the best member is quantified by BMA. Each 
deterministic forecast can be bias-corrected using any one of many 
possible bias corrected methods, yielding a bias-corrected forecast. 
Then the fkt is linked to yt by a conditional pdf of [yt|fkt]. This is the 
conditional pdf of y given that fk is the forecast in the ensemble. 
Consider K forecast ensembles: [fk1,…, fkT, fkT+1] where k=1,…, K. 
Hence the bias-corrected forecast ensembles are;

yt=ak+bk+fkt+E                          (2)

For t=1,…. T, T+1 and k=1,…K, where E∼N(.;0,σ2)

When forecasting temperature, it is often reasonable to approximate 
the conditional pdf by a Gaussian distribution centered at a linear 
function of the forecast, hence

[yt|fkt]∼N(.;ak+bkfkt.,σ
2)                        (3)

Hence forecast y based on fk for k=1,…, K can be written as follows.
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Where; wk, ak, bk for k=1,…, K; and σ2 are model parameters. The 
wk is the posterior probability of the forecast k being the best one and 
is based on the forecast performance in the training period; see also 
expression (1).

For temperature forecasting, since the normal distribution is 
appropriate, we can apply directly the above method [3]. The best 
forecast for y (in our first case y is temperature) is then:
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This can be viewed as a deterministic forecast in its own right and 
can be compared with the individual forecast ensembles, or with the 
ensemble mean. The predictive variance of y can be written as:
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= = + − +∑                (6)

This variance can be seen as:

Predictive Variance=Between-Forecast Variance+Within-Forecast 
Variance

Hence as we can see that the right hand side has two terms, the first 
part summarizes between-forecast (ensemble) spread. The ensemble 
spread alone may underestimate uncertainty, since it ignores the second 
term on right-hand side which is the expected uncertainty conditional 
on one of the forecast being best. Therefore BMA capture the spread-

methods are used which mean that it is impossible to obtain the 
ensemble data from Ethiopia.

We have chosen to collect historical data from NMA for several 
years and will later explain how we have adapted this to the ensemble 
setting needed to perform BMA. The historical data obtained from 
NMA consists of daily observations of maximum temperature 
Hawassa city for 2003-2011 [5-8]. The data is presented according to 
the Gregorian calendar starting from January 1st to December 31st and 
discussed in the rest of this section.

Maximum temperature

The temperature data obtained from NMA, expose yearly seasonal 
variations – higher in June-August and lower in December-February. 
Otherwise, there seems to be fairly erratic variations (unpredictable), 
possibly with some short-term correlations.

Methodology

Consider y the quantity of interest to be forecasted on the basis of 
training data (set of data in which we observe the outcome and feature 
measurements for a set of objects) andby using K statistical models 
M1,…, MK.

Consider [y1, y2,…, yT, yT+1] where the first T terms are observed, 
let it be denoted by y0 and the other term at T+1 is the forecast, let it 
be denoted by y. In other words the forecasting variable can be written 
as [y0, y].

Also consider forecast ensemble from the K models [fk1,…, fkT, fkT+1] 
where k=1,…, K. The reference t represents time interval between each 
observation, which is normally one day or one week, and which is the 
same for y and f variables.

Bayesian model averaging

The traditional idea is that at any particular time, there is one best 
ensemble member, and that if we knew which it was, we would use 
that member as forecast. Hence we will not take account of that the 
uncertainty in identifying that ensemble, and this is accounted for 
through Bayesian model averaging. BMA can be used to calibrate 
forecast ensembles and is currently being implemented in many 
weather centers. The BMA can be defined either with a model or an 
ensemble focus [9-15].

Model

Consider K forecast models, M1,…, MK. For the quantity y to be 
forecasted on the basis of data y0 using K statistical models, the law of 
total probability tells us the forecast pdf, P(y) named BMA pdf. The 
best forecast model, is given by

0

1
( ) ( | ) ( | )

K

k k
k

P y P y M P M y
=

= ∑                   (1)

Where, P(y|Mk); k=1,…, K is forecast pdfs based on each model 
Mk alone, and P(Mk|y

0)is posterior probability of model Mk being 
correct given the training data y0. It reflects how well model Mk fits the 
training data. The BMA pdf is a weighted average of the conditional 
pdfs given each of individual model, weighted by their posterior model 
probabilities.

Ensemble focus

Ensemble generated values from slightly different models of 
the climate system. Ensemble forecasting is a numerical prediction 
method that is used to attempt to generate a representative sample of 
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error variable, but also accounts for the possibility that ensembles may 
be under dispersive.

BMA provides a theoretical framework for understanding these 
apparently contradictory effects and suggests ways to correct for them.
The parameters of the model, namely (wk; ak; bk for k=1,…, K, and σ2) 
are unknown and must be estimated.

Parameter estimation

Here we consider estimate of the model parameters based on the 
training dataset consisting of the ensemble forecast and the verifying 
observations. If the forecasts have not yet been bias corrected, ak; bk for 
k=1,…, K, can be estimated by simple linear regression of y0, f0

k ;k=1,…, 
K for the training data.

Moreover σ2 and wk for k=1,…, K can be estimated by maximum 
likelihood from y0, f0

K where k=1,…, K from the training data. The 
likelihood model is defined as the probability of the training data given 
the parameter to be estimated. The maximum likelihood estimator is the 
value of the parameter vector that maximizes the likelihood function, 
that is, that value of parameter vector under which the observed data 
where most likely to have been observed. The log-likelihood function 
to be used in optimization is:

2 0 0 0 0 2

1 1

ˆˆ( , ; , ) log ( ; , )
T K

k k k t k k kt
t k

l w y f w y a b fσ ϕ σ
= =

= +∑ ∑                    (7)

for k=1,…, K. Where ϕ(,; μ, σ2) is the Gaussian pdf, y0 is the observed 
values .

The maximum likelihood estimator is defined as:
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Where, f 0 is the ensemble forecasts up to t. This cannot be 
maximized analytically, but we maximize it numerically using the 
expectation-maximization (EM) algorithm.

EM algorithm

The EM algorithm is method for finding the maximum likelihood 
estimator when the problem can be recast in terms of unobserved 
quantities such that, if we knew what they were, estimation would be 
straightforward.

The BMA model in expression 4 is a finite mixture model. We 
introduce the unobserved quantities zkt, where zkt=1 if ensemble 
member k is the best forecast for verification time t, and zkt=0 otherwise. 
For each t, only one of z1t,…, zKt is equal to 1; the others are all zero. The 
EM algorithm is iterative and alternates between two steps, the E (or 
expectation) step and the M (or maximization) step. It starts with an 
initial guess, Θ0, for the parameter vector.

In the E step, the zkt are estimated given the current guess for the 
parameters; the estimates of the zkt are not necessarily integers, even 
though the true values are 0 or 1. In the M step, Θ is estimated given 
the current values of the zkt. For the normal BMA model given by 
expression (3) and (4), the E step is;
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Where the superscript j refers to the jth iteration of the EM 
algorithm, and ϕ(yt | fkt, σ(j-1))is normal pdf with mean ˆ ˆ ˆk k k kta b b f+ +  
and standard deviation σ(j-1) evaluated at yt. The M step then consists 
of estimating the wk and σ using as weights the current estimates of 
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Where; T is the number of observations in the training set.

The E and M step are then iterated to convergence, which we define as 
no changes not greater than small tolerance in any of the log likelihood, 
the parameter value or the 

( )ˆ j
ktz  in one iteration. The log likelihood is 

expected to increase at each EM iteration which implies that in general 
it converges to a local maximum of the likelihood. Convergence to a 
global maximum cannot be guaranteed, so the solution reached by the 
algorithm can be sensitive to the starting values. Starting values based 
on past experience usually give good solutions [16-19].

Assessing calibration

Calibration refers to statistical consistency between the predictive 
distribution and observation [4]. The ensemble function for verification 
can be used whenever observed weather condition is available. This 
function computes the mean absolute error, continuous ranked 
probability score. The mean absolute error (MAE) computes the mean 
absolute difference between the ensemble or BMA median forecast and 
the observation, whereas the CRPS is the integral of Brier scores.

Results and Discussion
The temperature data is analyzed as follows. For each season 

Predict temperature of last day in each season of 2011-that is y.

 Two types of training data; y0:

1. Three first months of season- average of month, and average 
of the first fifteen days of last month. Daily observations from 
last half of last month. This provides 4+15=19 training data for 
each season in 2011.

2. Average of the first fifteen days of month and daily observation 
from last half of last month of the season. This provides 
1+15=16 training data for each season.

Ensembles are defined to be the temperature profile for the 
same season through the years 2003- 2010. This provides 8 ensemble 
members f1,…, f8. Note that NMA do not provide forecasts ensembles, 
hence we have chosen to use historical data for the same season as the 
ensemble. This approach has been recommended in Hamill et al. [15].

We will provide Ensemble BMA temperature forecast for three 
days-the last day of each season. We will provide three forecasts for 
each day. Based on training data, set 1 and 2 respectively, and a naive 
average of the same day from the eight ensemble members, Prediction 
variance is also estimated.

We start with data set-1 for each season and continue data set-
2. The results are presented in Figures 1, 2 and Table 1. But for this 
paper we only present the result for the January 31st using both data 
set 1 and 2, respectively. Finally, the actual temperature prediction 
with prediction variance is presented. First we present the results for 
January 31st with training data set 1, in Figure 2A.

Figure 2A the individual eight ensemble forecast and observed 
values for Bega (January 31st) are displayed. From this figure, we can 
see that the observed values (shown by dots) are almost inside the 
ensemble. However, there is variability in closeness of the ensemble to 
the corresponding true value. To correct, then we did the bias correction 
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and it is displayed in Figure 2B. The bias correction coefficients are 
listed in Table 1(i). Here negative sign indicates ensemble is negatively 
corrected with the training data. This may happen when real historical 
ensembles are used. If we assume that the pattern is equal for increasing 
and decreasing temperature profile, this negative correlation is 
acceptable.

Furthermore, after the bias correction, weighted bias corrected 
forecast were calculated. Hence this is shown in Figure 2C by thickness 
of the line. The more thick the line the more it is closer to the true 
values. The weights are given to each ensemble according to their 
power to forecast the truth values.

We have ensemble forecasts day t+1 and observed values for t 
days. Our aim is to forecast the last values t+1. Each figure contains 
several displays. The first display presents the training y0 and the eight 
ensembles f1,…,f8. The next display is the bias corrected ensemble 
members yi;i=1,…,8. The actual coefficients (ak; bk); k=1,…,8 are also 
listed. The last display present the bias-corrected ensembles with line-
thickness proportional to the weights (yi;wki); i=1,…,8. Lastly, the 
actual weights are listed with the associated estimated variance. We 
have used the ensemble BMA package in the package in R library.

Hence more weights is given to ensemble 8 and 3, in our case data 
from 2010 and 2004 respectively. As consequence, from our results we 
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Figure 1: Histogram of daily observation of maximum-temperature of Hawassa City the year 2003-2011 and it shows the temperature variable is approximately 
normally distributed.

(i)  ens1 ens2 ens3 ens4 ens5 ens6 ens7 ens8
ak 21.725 27.136 40.3 16.97 43.474 23.606 24.266 6.042
bk 0.26 0.073 -0.388 0.399 -0.493 0.191 0.174 0.793

(ii)   ens1 ens2 ens3 ens4 ens5 ens6 ens7 ens8
wk 6.61e-21 2.85e-25 3.33e-01 1.80e-06 1.18e-06 1.01e-22 6.75e-28 4.87e-01
sig 0.485

(iii)  ens1 ens2 ens3 ens4 ens5 ens6 ens7 ens8
ak 17.692 28.735 41.312 5.485 44.02 23.989 24.087 6.546
bk 0.395 0.013 -0.423 0.446 -0.515 0.176 0.177 0.772

(iv)  ens1 ens2 ens3 ens4 ens5 ens6 ens7 ens8
wk 4.56e-15 3.35e-56 2.03e-01 2.40e-02 2.30e-49 5.20e-49 4.48e-55 5.35e-01
sig 0.504

(v) Data True value BMA forecast Pre. variance naïve forecast var. of naïve 
set-1 31 30.077 30.077 0.485 29.187 
set-2 31 30.026 30.026 0.503 29.216 

Table 1: (i) Bias-coefficients for January 31st of data set 1; (ii) Weights given to ensembles for January 31st of data set 1; (iii) Bias-coefficients for January 31st of data set 2; 
(iv) weights given to ensembles for January 31st of data set 2; (v) BMA for January 31st.
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Figure 2: (A) the eight ensembles and the training data set 1 for January 31st; (B) The Bias-corrected ensembles for January 31st
. (C) Weighted-Bias-corrected 

ensembles for January 31st; (D) The eight ensembles and training data set 2 for January 31st
. (E) Bias-corrected ensembles for January 31st; (F) Weighted Bias-

corrected ensembles for January 31st.
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may say that the season in these years is more closed to the weather 
condition of the corresponding season of the year 2011. But we should 
know every ensemble has its own weights even if their power may be 
small. The estimated weights are listed in Table 1(iii). Some weights are 
very close to zero, which shows that the ensemble have less predictive 
power. Note that the sum of the weights is always equal to one.

The next Figures 2D-2F displays the results from the analysis based 
on training data set 2, and they display almost similar behavior to the 
corresponding result of dataset 1. Our main reason to use data set 2 is 
to see changes in the value of the forecast with different length of the 
training data. However, there was no dramatic change in the values of 
bias coefficients and weights values.

Table 1(v) show the true values, BMA forecast and the 
corresponding prediction variance, and finally, the naive forecast and 
its variance. The BMA forecast look reliable than the corresponding 
naive ones closer to true value in almost cases and considerably less 
prediction variance which still is representative. The true value is well 
within two standard deviations of the BMA forecast. Forecast based on 
data set 2, the one month data set, does as well as the four month data 
set, hence the one month training has smaller variance and better to use 
ensemble forecast.

Conclusion
In this study we have applied a normal ensemble BMA to forecast 

the temperature at the last day of the three seasons, Bega, Belg and 
Kiremt. Two different conditioning schemes are used. One of which 
is four month long and one month long. From our study it seems that 
forecasts based on four months of observations are only slightly more 
reliable than the one-month forecast. These forecasts are also superior 
to naive forecasts based on the average of previous years temperature. 
The forecast variance appears reliable. Hence from our study, we 
can conclude that Bayesian model averaging yields much better and 
calibrated results than the individual forecast ensembles and the naive 
forecasts.

From our study we have argued that it is important to take 
account of model uncertainty when making forecast. A coherent 
and conceptually simple way to do this is Bayesian model averaging; 
it provides better average predictive performance than any single 
model that could be selected. Bayesian model averaging also avoids the 
problem of having to defend the choice of any particular model, thus 
simplifying the presentation of the results.
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