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Introduction

One of the most prominent quantum phenomena, magnetism of materials, 
is used in a wide range of functional applications, including data storage, high-
resolution imaging, spintronic devices, and magnetism of materials. High-energy 
scientific instruments Particular types of magnetism are thought to be associated 
with unusual quantum phases like topological superconductivity and high-Tc. 
Large materials' spatial correlations between magnetic moments offer a wide 
variety of possible magnetic configurations, in contrast to small molecules, whose 
magnetic structures only contain a few high- and low-spin configurations. With 
an infinite number of wavevector, moment, and correlation length combinations, 
quantum spin liquids spin glass can create structures such as antiferromagnetism, 
non-collinear magnetism, and skyrmions. Therefore, it is essential to determine 
the magnetic structures, either experimentally or theoretically, for the purposes of 
material discovery and technological advancement in general [1].

Description

The most recent experimental method, neutron scattering, as well as 
resonant X-ray scattering, have made it possible to identify magnetic structures 
at the atomic level. However, these measurements, which necessitate large-
scale neutron sources or synchrotron X-ray radiation, are severely constrained 
by the available beam time and capacity. According to the most comprehensive 
database, only 1,500 materials' magnetic structures have been identified through 
these experimental spectra since the 1950s. Therefore, unless the capacity 
of these facilities is increased by orders of magnitude, a pure experimental 
exploration of magnetic materials cannot yet meet the rapidly increasing demand 
for the discovery of new magnetic materials [2].

Theoretically, the magnetism of small molecules has been accurately 
predicted through ab initio simulations made with cutting-edge methods 
from quantum chemistry and physics. However, it is impractical to apply it to 
large materials beyond the nanoscale without any approximation due to the 
exponential expansion of the Fock space with system size. The first-principles 
DFT simulations and the corrections that go along with them provide an 
efficient means of achieving a balance between precision and scalability. Due 
to the absence of static correlation and the delocalization error, the magnetic 
moment and correlations may be underestimated. DFT-based methods have 
made high-throughput calculations on more than 10,000 materials possible, 
allowing for preliminary statistical predictions of the properties of materials. 
Even when compared to experiments and wave function-based approaches, the 
computational complexity of DFT calculations remains negligible, preventing the 
discovery of chemical compositions in a vast, possibly infinite parameter space [3]. 

Due to the fact that electronic structure theory evaluates the energy for 
a specific electronic configuration, which includes the magnetic structure, the 
standard simulation also requires traversing all configurations for a single 

atomic structure and determining the ground-state magnetic configuration. A 
"guessing-computing" duo, or guessing a large number of configurations before 
computing each one individually, is the result of the large number of possible 
magnetic configurations. As a result, the majority of computational effort is spent 
on irrelevant magnetic excited states rather than working on the actual ground 
states. If the ground-state magnetic structure could be accurately predicted, high-
throughput calculations would be significantly sped up, moving us one step closer 
to simulation-free material discovery [4].

Due to the difficulties in determining its structure through calculations 
and experiments, the use of machine learning to improve magnetic structure 
determination has recently received a lot of attention. In some recent studies, 
DFT calculations and machine learning have been combined some of which 
incorporate machine learning models into the "guessing" phase of the guessing-
calculating procedure. For instance, machine learning has been utilized to narrow 
the search space for potential magnetic configurations in the "guessing" step. 
With this strategy, the primary calculation task continues to be performed using 
the standard first-principles DFT calculations. Some other works employ model 
Hamiltonians primarily classical spin models, and machine learning methods to 
fit the model's free parameters, such as from experimental data containing spin. 
All things considered, the immediate prediction of attractive design from simpler 
nuclear construction, also referred to as replacing the "processing" step, is still 
uncertain.

A thorough explanation of magnetism can be challenging, according to 
Rodriguez-Carvajal and Villain. We focus on two distinct descriptions with few 
variables in this work: labels of magnetic order and propagation vectors Magnetic 
ordering labels like ferromagnetic (FM) and antiferromagnetic (AFM) are useful 
because they break down the complexity of magnetic structures into classes that 
are relevant to particular applications and easy to understand. Both ferrimagnetic 
and ferromagnetic materials exhibit a spontaneous magnetization: when there 
is no external magnetic field present, a net magnetic moment that is not zero; 
however, while all of the magnetic dipoles in FM point in the same direction, some 
of them point in the opposite direction in FiM. In antiferromagnetic materials, 
dipoles that point in opposite directions in a regular pattern cancel each other 
out, resulting in zero net magnetic moment. Because the orientation of the 
magnetic dipoles in non-magnetic materials is irregular and void of pattern, the 
net magnetic moment is zero. A propagation vector is a vector in reciprocal space 
that describes the presence of magnetic order and symmetry breaking (ibid.). 
A non-zero propagation vector is one indication of a more intricate magnetic 
structure, which goes beyond the FM, AFM, and NM ternary classifications. 
Even though these descriptions are expressive, they are not all-encompassing; 
subsequent work will provide descriptions of magnetic order that are more in-
depth [5].

Conclusion

The amount of times each element in the training set appears. It is simple 
to identify correlations between large numbers of training samples containing 
certain elements, such as Mn, Fe, Co, Ni, and Cu, and high accuracies of those 
elements. From the point of view of data abundances, this helps us gain a deeper 
comprehension of the various accuracies that exist across various elements. On 
the other hand, the elements with lower prediction accuracies, such as Ga, Lu, 
and Re, tend to be less common. However, it is essential to note that some rare 
earth elements, such as Tb, Dy, and Ho, perform exceptionally well despite the 
small number of training samples. This is because rare earth elements frequently 
exist alongside other abundant elements; For instance, Mn, Fe, Mo, Co, and Ni 
are found in 65.9% of Tb, Dy, and Ho structures.
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