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Abstract

The current detection methods for stanozolol are all based on targeted approach. The present study aimed to
assess the global biological effect of stanozolol-treatment by means of chemometric models, after generating and
comparing horse urine LC-HRMS fingerprints collected from control and stanozolol-treated horses. The animal study
was conducted according to an ethically approved protocol at two different places in France: Chamberet and Coye la
Forêt. The total duration of the animal phase was seven months and only females were selected to partake. The
sixteen mares in this study were not actively racing horses, but were in good physical condition. SIMCA-P+ software
and R free software environment were used for multivariate data analysis. Principal Component Analysis (PCA) and
Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) were applied to build some
descriptive and predictive models. The analyzed horse urine fingerprints based on the 220 features selected after
suppression of confounding factors show changes in metabolic states after chronic stanozolol treatment. This proof
of concept study confirms the power of untargeted approach in doping control since the changes are present over
seven months after anabolic administration.
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Introduction
Stanozolol is a synthetic derivative of testosterone in which the

androgenic effects of the hormone are minimized, leaving the anabolic
action unchanged, in order to improve its handling and tolerability
even during prolonged treatment. Attempts have been made to obtain
this decoupling between the androgenic and anabolic effect in more
than one hundred testosterone derivatives [1]. However, of these,
stanozolol stands out for its more favorable relationship between the
two effects, with a more pronounced anabolic action that dominates
the androgenic action (Table 1) [2].

Generic name Relative biological activity

Anabolic Androgenic

Methyltestosterone 1 1

Stanozolol 3.17 0.52

Mestanolone 0.7 0.78

Methyl androstenediol 28.2 4.5

Table 1: Anabolic/andogenic activity ratio.

The therapeutic indication of anabolic steroids is therefore among
muscular disorders (hypotonia, hypertrophy), fracture consolidation
difficulties, bone marrow demineralization (osteoporosis), protein-
dispersing pathologies (nephropathies), anaemias, growth disorders
and, in skin diseases, to promote the growth of tissues or to stimulate
their repair, an action that is useful in inflammatory and degenerative
diseases of the skin. Specifically, stanozolol is used in veterinary
medicine to increase appetite, cause weight gain, and treat certain
types of anemia. It was noticed recently its use to stimulate the
condition of the cartilaginous tissue by increasing the production of
collagen and other fundamental protein substances of the cartilage
matrix. The identification of stanozolol as the therapeutic agent
efficacious in tracheal collapse in dogs was also observed [3].

Stanozolol, (17α-methyl-5α-androstano-[3,2-c]-pyrazol-17β-ol)
(Figure 1) was initially synthesized in 1959 [4] and clinically used in
cases of deficiency in protein synthesis and osteoporosis [5].
Stanozolol, commonly sold under the name Winstrol (oral) and
Winstrol Depot (intramuscular) and often called Winny was
commercially developed by Winthrop Laboratories (Sterling Drug) in
1962, and has been approved for human use.

Public recognition of stanozolol was significantly increased in the
late 1980s, when an elite athlete (Ben Johnson) was convicted of its
abuse during the Olympic Summer Games 1988 in Seoul. Also 16 years
later during the Olympic Summer Games in Athens 2004, this
particular steroid was detected in 7 out of 23 doping cases. In the
equestrian sport, it was detected much later, for the first time in 2004.
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Figure 1: Structural formula of stanozolol and its known or
proposed metabolic hydroxylation sites [6].

It has become one of the most commonly used anabolic steroids in
the horse racing industry, being classified as a class III drug by the
International Association of Racing Commissioners. Recent reviews
have discussed in great detail its therapeutic uses and potential as
performance enhancers in the horse [7,8]. Although the use of
stanozolol may be medically warranted for short periods, long-term
use is associated with adverse side effects particularly in terms of the
reproductive and musculoskeletal systems [7,9-13]. Also, chronic use
of stanozolol may induce neurochemical alterations centrally involved
in depression and stress-related states [14].

Unlike most injectable anabolic steroids, stanozolol with its pyrazole
ring cannot be esterified and is sold as an aqueous suspension, or in
oral tablet form. The drug has a high oral bioavailability, due to a C17
α-alkylation which allows the hormone to survive first-pass liver
metabolism when ingested. It is because of this that stanozolol is also
sold in tablet form.

The metabolization of stanozolol indicates a quick production of
mono- and dihydroxylated metabolites in humans and animals that are
mainly present in a glucuronide form. The most abundant metabolites
identified in human and animal urine are 16-OH stanozolol, 3’-OH
stanozolol and 4-OH stanozolol. 3’-OH stanozolol was the main
metabolites used in routine detection methods analysing human urine.
16-βOH stanozolol was the main metabolite after administration to
bovine. It should also be noted that depending on the way of
administration, oral or subcutanous, a difference can be observed in
the identity of the metabolites. Several years ago, the authors
confirmed 15 metabolites of stanozolol in human urine and 4 more in
chimeric uPA-SCID mouse [15].

However, Wang et al. in their last study in 2017 while searching to
extend the detection time of Stanozolol through its unknown, long-
term metabolites in human urine, discovered 48 metabolites in total. In
equine, metabolites of stanozolol in urine have been investigated by
atmospheric pressure chemical ionization (APCI) triple-quadrupole
LC-MS [16] and are detected to be hydroxylated at C3, C4, C6 and C16
following oral administration. 16β-hydroxystanozolol was established
as a major equine urinary metabolite of stanozolol following
administration by intramuscular injection. Also, two other metabolites
with additional hydroxylation were tentatively proposed by McKinney
et al. [6] as 16α-hydroxystanozolol and a 15α or -hydroxystanozolol
(Figure 1).

Knowledge of the stanozolol metabolic transformation is necessary
for the development of efficient analytical methods for identification of
parent drug and/or metabolic products. For example, stanozolol is
behaving differently than other anabolic steroids mainly analyzed by
GC/MS. The need for derivatization when using GC-MS was a
negative factor in the detection of 16β-OH stanozolol [17] but for the
detection of 3’-hydroxystanozolol, it can be sufficient [18]. The
detection power of the stanozolol metabolites gave better results using
LC/MS. Van de Wiele et al. reported the optimization of the detection
of stanozolol and its major metabolite 16β-OH stanozolol in faeces and
urine from cattle by LC-MS. The authors discussed two different
methods of detection with LC-MS-MS: first approach in ESI mode,
where the final extract was detected without derivatization, and second
approach in APCI mode, where the derivatizations step with
phenylboronic acid (PBA) for 16β-OH stanozolol was included. Each
approach has some advantages and drawbacks. LC-MS-MS in APCI in
positive mode was also applied by [19] where the protonated
stanozolol molecules [M+H]+ at m/z 329 and m/z 345 for 16β-OH
stanozolol were precursor ions for collision induced dissociation (CID)
in the selected reaction monitoring (SRM). The presence of
interferences was always reported but, by the means of LC-FAIMS-
MS/MS it was finally resolved [20].

This short overview displays the current detection methods for
stanozolol and these methods are all based on targeted approach.
Nevertheless, knowing the limits of targeted approach [21] and the
confirmed potential of untargeted approach [22], the present study
aimed to assess the global biological effect of stanozolol-treatment by
means of chemometric models, after generating and comparing horse
urine LC-HRMS fingerprints collected from control and stanozolol-
treated horses. Furthermore, by the means of metabolomics approach,
the possibility to extend the detection window of stanozolol is
considered.

Materials and Methods

Experimental design and sampling strategies
Experimental design: The animal study was conducted according to

an ethically approved protocol at two different places: Chamberet and
Coye la Forêt. The total duration of the animal phase was seven
months and only females were selected to partake. The mares in this
study were not actively racing horses, but were in good physical
condition.

Fourteen Anglo-Arab 4-year old females, weighting 520 ± 60 kg,
were involved in the study conducted in Chamberet. At this place,
horses were at shelter from mid-November until mid-April and were in
pasture for the rest of the year. At the winter period, these horses were
fed twice per day with hay and manufactured feed.

The study conducted at Coye la Forêt involved two 6-year old
thoroughbred females, weighting 450 kg and 550 kg. These horses
stayed in boxes bedded with straw, during the entire experiment. They
have the same diet regime all the time: twice per day feeding with hay
and manufactured feed. The horses were moderately exercised for
about one hour each day. Water was provided ad libitum.

Animal administration: In-house preparation (9 mL) of Stanozolol
for chronic intramuscular administration consisted in dissolution of
stanozolol in a mixture of sesame oil/ isoamyl alcohol (7/2). Vehicle of
stanozolol administration was injected to 5 control horses. The
stanozolol treatment consisted of 4 injections every 4 days at 0.12
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mg/kg or 0.31 mg/kg doses. The low-dose treatment (0.48 mg/kg in
total) was given to five mares located in Chamberet. The high-dose
treatment (1.24 mg/kg in total) was given to six mares (five in
Chamberet and one in Coye la Forêt). Since the experiment took place
at the beginning of March, all mares were housed in the boxes during
drug administration.

Sample collection: Sampling consisted in urine collection
spontaneously voided.

In order to assess seasonal and other environmental factors that
influenced metabolomic profiles, sample collection was conducted
during one year. Urine samples (about 200 mL) were collected from all
mares every 2 weeks in the morning at the same time. Samples were
pH measured (8-9) before being frozen and stored at −20°C until
required for analysis. Every individual veterinary treatment (i.e.,
antibiotic) or other special happening were reported.

Urine samples were collected before the beginning of the
administration. During the treatment, urine samples were collected
before each administration. After the end of the treatment, urine
samples were collected every 4 days for 16 days then once per week for
7 months. As previously mentioned, pH was measured and samples
stored at −20°C.

Sample preparation: 400 μL of each urine sample were centrifuged
at 12 000 rpm for 30 min at 20°C, 200 μL aliquot of the supernatant
was collected and 50 μL aliquot of each sample was pooled to obtained
representative quality control (QC) sample. 5 μg.mL-1 of imipramine as
internal standards were added in biological samples and 5 μg.mL-1 of
metformine, amiloride, imipramine, prednisone, colchicine and 2-
aminoanthracene were added in QC samples and vortexed. 1 mL of
acetonitrile was added and supernatant was transferred in tubes to dry
at 60°C until evaporation. Finally, 200 μL of acetonitrile/water mixture
(50/50; v/v) was added and transfer to LC vials.

Chemicals
Analytical standards such as stanozolol, metformine, amiloride,

imipramine, prednisone, colchicine and 2-aminoanthracene were
purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France).
Sesame oil was obtained from Cooper (Melun, France) and isoamyl
alcohol at VWR (Fontenay sous Bois, France).

HPLC grade acetonitrile (ACN) and formic acid were purchased
from Carlo Erba Reactifs (SDS, Peypin, France). Deionized water was
produced using an ultra-pure water system (Milli-Q, Millipore
Corporation, Billerica, Massachusetts, USA).

Analytical platforms
Liquid chromatography: For the MS fingerprinting analysis,

chromatographic separation was performed with an Ultimate 3000
(Dionex, Sunnyvale, USA) pump on a reversed phase Uptisphere
Strategy C18 NEC column (2.1 mm × 100 mm, 2.2 μm particle size,
Interchim). The analytes were eluted by a 25-min gradient, which
started at 100% A (water + 0.1% formic acid) during 2 min, changed to
100% B (acetonitrile + 0.1% formic acid) during the 18 min,
maintained at 100% B during 5 min, and then returned to the initial
condition for equilibration during 2 min. The flow rate was 0.25
mL.min-1 and the column temperature was 25°C. Autosampler was set
at 4°C for the duration of the analysis. 15 μL of samples were injected.

ESI-HRMS: High-resolution mass fingerprints were acquired on a
quadrupole - time of flight analyzer (MicroToF Q II, Bruker, Bremen,
Germany) in positive ESI mode. The mass spectrometer parameters
corresponding to capillary voltage, capillary temperature, nebulizer gas
flow and dry gas flow were set as follow: -4.5 kV, 180°C, 2.4 bar, 8
L.min-1, respectively. External mass calibration of the instrument was
performed using a solution of lithium cluster (16 mM lithium formiate
in isopropanol/water) at the beginning of the chromatographic
gradient using a divert valve and a separate pump. Mass accuracy of
the m/z calibration standard was below 3 ppm for positive mode and
below 2 ppm for negative mode. Centroid mass spectra were acquired
in the m/z 50-1000 range. Hystar (Bruker) software was used for
system controlling and data acquisition.

Data pre-processing:
Data files generated after LC-HRMS analysis were converted to a

more exchangeable format NetCDF files (.cdf) using a conversion
function from Data Analysis software program (Bruker). The
converted data were exported in the open-source XCMS software
implemented with the R statistical language for subsequent data
processing based on several steps: peak picking, peak grouping,
retention time alignment [23]. XCMS matched filter algorithm was
used with default values for all parameters, except for fwhm, step,
steps, mzdiff, mzwid and minfrac which were respectively set at 10, 0.1,
5, 0.1, 0.1 and 0.6 for both group functions. Extracted features from all
samples are combined in a single dataset with the following
characteristics: exact mass, retention time and peak intensity.

It was then annotated using the spectral database developed at
CEA-Saclay [24] which contained over 400 compounds at the time of
this study, and bioinformatics tools for automatic query of metabolic
and metabolomic public databases with the measured accurate masses
± 20 ppm. The following databases were used for reference: KEGG
(Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg),
HMDB (Human Metabolome Database, www.hmdb.ca), METLIN
(Scripps Center for Metabolomics, http://metlin.scripps.edu/),
Humancyc (Encyclopedia of Homo Sapiens Genes and Metabolism,
http://humancyc.org/), ChemSpider (The free chemical structure
database, http://www.chemspider.com/), Drug Bank (Open Data
Drug&Drug Target Database, www.drugbank.ca) and MZedDB (Tools
for the annotation of HR-MS metabolomics data http://
maltese.dbs.aber.ac.uk:8888/hrmet/index.html).

Statistical analysis
SIMCA-P+ (v. 12.0, Umetrics, Sweden) software and R (http://

www.r-project.org/ ) free software environment were used for
multivariate data analysis. Principal Component Analysis (PCA) and
Orthogonal Projections to Latent Structures-Discriminant Analysis
(OPLS-DA) were applied to build descriptive and predictive models.
The various m/z peaks constituting the mass fingerprints (i.e., couples
of chromatographic retention time and m/z ratio) were considered as
independent variables. All variables were UV scaled (i.e., centered and
divided by the standard deviation) prior to multivariate analyses.

Results and Discussion
The metabolomic profiles for evaluation of stanozolol-induced

changes were investigated, using the chromatographs and m/z ions of
numerous metabolites achieved after three analytical batches that
analyzed 80, 155 and 148 samples, respectively (Table 2).
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Sampling

Geografical
origin Horse Animal

Status

1st
Anal
Seq

2nd
Anal
Seq

3rd
Anal
Seq

T-7 : 80 days before 1st
adm

T-4 : 38 days before 1st
adm

T-2 : 24 days before 1st
adm Coye la

Foret

1 control

 T-2 T-7

 T-1 T-4

 T0 T0

 T2 T2

T-1: 10 days before 1st
adm 2 high

dose  T3 T5

T0 : 3 days before 1st
adm

Chamberet

3 control  T5 T7

T2 : 8 days after 1st adm 4   T6 T8

T3 : 12 days after 1st
adm 5  T0 T7 T9

T5 : 16 days after 1st
adm 6  T2 T8 T16

T6: 20 days after 1st adm 7 high
dose T8 T9 T20

T7: 24 days after 1st adm 8  T16 T10  

T8 : 28 days after 1st
adm 9  T36 T13  

T9: 35 days after 1st adm 10   T16  

T10 : 42 days after 1st
adm 11   T20  

T13 :63 days after 1st
adm 12

low
dose

 

x x

T16: 84 days after 1st
adm 13  

T19 : 104 days after 1st
adm 14  

T20 : 111 days after 1st
adm 15  

T36: 220 days after 1st
adm 16  

Table 2: List of urine samples and corresponding sampling times
analyzed in 3 analytical sequences.

The horse urine fingerprints were obtained through an unbiased
sample preparation method optimized previously following
“nontargeted approach” basis [25]. The analytical information acquired
from the profiles is transformed to coordinates on the basis of mass,
retention and response intensity by XCMS software for data treatment.
Therefore, the comparison of these coordinates from different
metabolic patterns is undertaken using sophisticated statistical
software SIMCA to highlight dissimilarities. However, before
concluding with relevant differences, successful use of metabolomics
methodology depends on a number of critical analytical and statistical
issues. One aspect is the stability of the analytic measurements. The

retention time fluctuation in chromatogram or MS signal modification
were assessed by monitoring of QC samples from pooled biological
samples and spiked with several different internal standards chosen for
their various chemical structures, molecular mass or polarities. QC
samples were injected repetitively (every ten runs) throughout
analytical batch and by this means eventual system variability or
source fouling was supervised.

To follow injection reproducibility over time, all samples were
spiked with imipramine as internal standard selected for its stable
response in positive ionization mode. Stability of the signal intensity
throughout the analytical batch was improved by consecutive
injections of CQ for several times (ten injections in present study)
before the biological samples, at the beginning of acquisition sequence.
After the validation of this stage of workflow, XCMS output of aligned
data with an Excel-type format was subject to additional filtering step
since the number of extracted ions was huge (5649, 2382, 3582,
respectively) and it was already demonstrated for LC/ESI/MS
experiments that about 3/4 of ionized molecules derived from
contaminants, chemical noise or analytical system. To eliminate signals
that occur in both blank and biological samples at the intensity level
and to select only analytically relevant features, biological to blank
samples 5:1 intensity ratios was applied. Another criterion was based
on serial dilutions of QC samples (1/2; 1/4; 1/8; 1/16) and only the
features whose intensity levels correlate with the dilution factor
(superior to absolute 0.5 value) were taken into account. Hereby, final
data sets with 1935, 1222 and 1147 ions for first, second and third
analytical experiments, respectively were submitted to data analysis by
multivariate statistics.

Multivariate data analysis (unsupervised and supervised)
To obtain important number of urine fingerprints of stanozolol

treated population, two experiments were realized in several months
aiming to analyze a maximum of samples after stanozolol
administration. First investigation encompassed samples from all
horses in two experimental centers that participate in this study
(Chamberet and Coye la Foret), with both dose level administration
(0.4 and 1.2 mg/kg) and for a wide time range (from T0, before
administration until T36, more than seven months after
administration). The second one, included more sampling time but in
shorter period after administration (about 3 months and a half after
treatment) and with no low-dose administration. In this batch, one
16β-hydroxy stanozolol positive case from our routine screening was
also joined to experimental samples. The dataset were imported into
SIMCA software and PCA was realized for the first, global approach. A
qualitative visual inspection of the clustering patterns in PCA score
plots showed the similar results for both of analysis. As already
underlined in previous study [26], the sample data for different
metabolic states are clearly separated into distinct clusters following
some environmental factors. Considering the variance along 1st
principal component that accounts for the greatest possible variance in
the data set, there is a clear separation between samples collected from
horses staying in pasture and horses housed in boxes (Figure 2A). The
2nd principal component distinguishes samples from two
experimental centers (Figure 2B). Regarding the second analytical
batch, besides two factors that are the different nutrition regimens and
geographical origin (detailed in previous chapitre), there is one more
group of samples collected two months after stanozolol administration
(T13) behaviouring like outliers. The possible explanation is that the
horses’ metabolome was highly impacted by environmental changes.
Indeed, T13 urine samples were sampled just few days after the horse
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migration from boxes to pasture (Figure 2C). Once accommodate,
their metabolic states are similar for all other sampling times from
“pasture” period (T16, T19, T20, T36).

Figure 2: PCA score plot of 80 and 155 samples from two
experimental centers. Three score plot (A, B, C) are the same one;
only color code is different to highlight various environmental
factors that highly impact horse urine metabolome. One positive
sample from routine screening was included in 2nd batch. 

Note:: (A)
(orange); (C) one color par sampling time; Positive sample (red)

The PCA analysis visual investigation showed that the current
environmental aspects influence more urine metabolome than
stanozolol treatment, imperceptible in PCA scatter plots. To extract
and explore biological variations due to stanozolol administration, it is
necessary to remove or at least to reduce these confounding factors
that mask probably very discreet metabolic changes after stanozolol
treatment. To highlight and then take out the variables responsible for
discrimination of two populations (“box” vs. “pasture”; “Chamberet”
vs. “Coye la Foret”), the supervised OPLS-DA analysis was applied.

This multivariate regression method is used principally for
extracting systematic variations (e.g. batch order, drift in the system)
from the variables related to specific responses (e.g. from drug intake).
In addition, with its S-plot function and VIP ion list, OPLS-DA
permits the selection of the features influencing the discrimination.
The first visualization tool, so-called ‘‘S-plot’’ provides the visual
contribution of each ion to the model and highlights which of them are
the most correlated to the first discriminant component. The second
one concerns VIP (Variable Importance in Projection). The features
displaying score larger than 1 are considered as statistically relevant for
discrimination between groups, and thus, could be taken into account.
This step allowed obtaining a PCA model devoid of mentioned
confounding factors and based on 614 and 546 features for two
analytical batches respectively (Figure 3).

Step by step removing of confounding factor variables: (A) Model of
1st PCA analysis based on MS intensities of 1935 ions. The first
discriminant axis corresponds to environmental factor and the second

one is related to geographical difference between 2 experimental
centers; (B) Model of 2nd PCA analysis based on MS intensities of
1168 ions, after having removed variables responsible of
discrimination between horses living in the pasture and horses living
in the boxes. The most important principal component is the
separation between 2 locations: Coye la Forêt and Chamberet; (C)
Model of 3rd PCA analysis based on MS intensities of 614 ions, after
having removed variables responsible of discrimination between
horses living in Coye la Forêt and horses living in Chamberet.

Figure 3: PCA score plot of 80 urine samples analyzed in 1st batch.
Note: One color par sampling time (T0, T2, T8, T16, T36)

However, the principal advantage of supervised OPLS-DA (or PLS-
DA) analysis over PCA is access to the knowledge on class
membership. Discriminant analyses are well-suited for treated vs.
untreated classification and OPLS-DA maximizes the covariance
between the predicting data set, where X is matrix constituting the
fingerprints and Y the class assignment. OPLS-DA also shows the
differences between preselected classes. The fraction of variation of the
Y variables “explained” by the selected components (R2Y), along with
the fraction of the variation of the Ys that can be “predicted” by a
component according to cross-validation (Q2Y), is calculated to plot
and validate the model. The two main, significant components are
orthogonal and were selected in the way that most of the association
with dummy Y variables can be explained by the variation in X.
Indeed, high coefficient values of R2Y and Q2Y represent good
discrimination.

First OPLS-DA analysis were performed on the basis of 614 and 546
features for two analytical batches respectively in order to set up a
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descriptive model and to select ions more particularly involved in the
discrimination of control and stanozolol-treated populations by ‘‘S-
plot’’ and VIP list (explained previously). After selection of 221 and
262 ions for each model, the new OPLS-DA analysis was performed on
the basis of these selected ions (Figure 4). The both models
demonstrated excellent separation between urines collected from
control or stanozolol-treated animals.

Figure 4: OPLS-DA score plot of models based on MS intensities of
221 and 262 selected ions.

Orthogonal Partial Least Squares (OPLS) were applied to build
descriptive and predictive models. Models built with an OPLS attempt
to explain a Y variable which in the present study represents the
animal status: stanozolol-treated (red) or control (green) from the X
matrix of all the features constituting the fingerprint.

Then, the robustness of models was investigated by several steps.
First, a cross-validation was performed. It consists to build a new OPLS
analysis on the basis of 2/3 of the original dataset. The other 1/3 of the
dataset is considered as validation test and is incremented in the model
for the prediction.

The results were satisfactory since they show the possibility to build
a reliable descriptive models (R2(Y)=0.935; Q2(Y)=0.789 for the first
analytical batch and R2(Y)=0.906; Q2(Y)=0.631 for the second one)
where control and stanozolol-treated populations are discriminated. In
addition, permutation tests by reallocating randomly the status of the
animals (non-treated vs. stanozolol-treated) were performed to ensure
that these results are not due to a chance factor.

Finally a CV-ANOVA (Cross Validation-Analysis of Variance) was
calculated. It allows attributing a degree of significance to the test-
permutation. The CV-ANOVA variants imply that the models are
significant with P values of 1.9e-27 and 1.8e-20 for both models,
respectively. All these results suggest that the predictive ability of the
models is high and it was proved by classification without
misallocation of all samples from Chamberet when datasets related to
each horse was considered as validation test and added to the model
for the prediction (Figure 5).

However, the correct classification of all samples from Coye la Foret
and a positive sample from the laboratory screening routine was not
totally satisfactory. Indeed, the Chamberet population is a small
population (N=14) and not representative of large population of
horses. Thus, to improve the model it was necessary to incorporate in
the study design a larger number of subjects and also a wide variety of
subject populations. With the help of Italian antidoping laboratory for
horse races, 18 cases of stanozolol abuse in past were obtained and they
were added into a new analytical batch, third one.

Figure 5: Prediction model applied to non-treated horse (A) and
stanozolol-treated horse (B). Obtained on the bases of 221 selected
features from the 1st analytical batch. All samples are correctly
classified. 
Note: Stanozolol-treated (red); control (green); predicted

Beside these positive samples, 18 samples from our laboratory
declared as negative for the research of prohibited substances were also
added. The same workflow was realized as for two previous
experiments. The visualization of PCA score plots permitted to observe
the similar grouping of samples coming from two experimental centers
with in addition a cluster related to samples from race horses (Figure
6).

Figure 6: PCA score plot of 148 urine samples analyzed in 3rd
analytical batch. 
Note: 36 samples (18 declared positive and 18

Selection of common features in three different analytical
batches

Automatic selection by MetaXCMS analysis: In this stage of work,
with an aim to include complete information available in three
analytical batches, the software called metaXCMS was used [27]. The
XCMS is well suited for the analysis of large sample numbers, but it is
limited in possible comparing of only two different sample groups
directly. Meta-analysis is an approach capable to compare the results
from two or more independently performed studies to identify data
points that are unique or shared among all or some of the experimental
groups [14]. However, some experimental conditions should be
followed, such as the same metabolite-extraction method and the same
column and chromatographic method. The three analytical sequences
responded to these criteria since the sample were prepared by the same
sample preparation method and were analyzed under the same
analytical conditions. The pairwise comparisons of each model with its
respective control resulted in 5649, 2382 and 3582 features,
respectively, but after the metaXCMS data reduction strategy, we
obtained 1218 features with significant differences. Unfortunately, the
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second-order analysis of the results with metaXCMS showed that only
thirty-three of the altered molecules were shared among all of the
models (Figure 7).

Figure 7: Peak alignment realized by the metaXCMS (a) and its final
result Venn diagram (b).

Multivariate statistical analyses (PCA and OPLS-DA) realized on
the basis of these thirty-three selected features showed no
discrimination between control and stanozolol-treated populations
(Figure 8).

Figure 8: Score plot of ACP (A) and OPLS-DA (B) based upon 33
ions selected by second order analysis in metaXCMS. 
Note: One

(B)

The model based on the 33 features failed to separate two
populations since the features selected by second-order analysis by
metaXCMS are not sufficiently discriminatory.

Manual selection: With the aim to increase the statistical power of
model, all analyzed samples from the three different analytical batches
were pooled together. The manual selection of features common to the
three analytical batches was undertaken with complex step of intra-
batch peak alignment based on already accomplished XCMS inter-
batch peak alignment; 220 features emerged by this way. However, the
well-known problem of analytical sequences realized in different time
period is fluctuation in mass spectrometry sensitivity and
consequently, fluctuation in abundance of signal response of followed
ions. To withdraw the disparity of the mass spectrometer sensitivity for
the acquisitions within different time periods data from each sequence
were mean-centered and scaled to unit variance separately and then
merged in one dataset for further multivariate data analysis. As the
selection of common features was achieved on the bases of dataset
already filtered for the variables related to confounding factors, the
sample grouping following these factors (e.g., box/pasture or
Chamberet/Coye la Foret) is not emphasized in the obtained PCA
scatter plot (Figure 9).

Figure 9: PCA scatter plot based on 220 common features for three
analytical batches. 
Note: One color per sampling time

Finally, once all validation steps successfully achieved, an efficient
discrimination was observed between control and stanozolol-treated
animals with R2(Y)=0.835 and Q2(Y)=0.646 values (Figure 10).

Figure 10: OPLS-DA scatter plot based on 220 commun features for
three analytical batches where Y variable represents animal status
(untreated/stanozolol treated). 
Note: Stanozolol treated (red); control (green)

Permutation test of the presented model based on 100
permutations.

The predictive model is able to classify correctly the majority of
analyzed samples. In Figure 11 all samples collected from stanozolol-
treated horse before stanozolol administration (T-7, T-4, T0) and after
stanozolol treatment (T2, T3; T5, T6; T7, T8; T9, T10; T13, T16; T19,
T20) were correctly classified. Only T36 (more than seven months after
stanozolol treatment) could not be discriminated from control
population which may be explained by the fact that metabolic
perturbations associated to stanozolol administration are no longer
detectable with this predictive model.

All samples in the scatter plot are correctly classified.

However, the prediction ability of existing statistical model is not
sufficient for its application in routine screening since the 0.646 value
represents third of population with prediction incertitude and too high
possibility of false negative/positive classification.

To increase the robustness of statistical model, a larger population is
needed. The response to this request is straightforward in the case of
negative samples easily attainable in routine laboratory, but more
demanding in the case of positive samples since in routine screening
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the stanozolol detection is rare and animal experimentation that
includes high number of horses is difficult to realize.

Figure 11: Prediction model applied to stanozolol-treated horse (A)
and several samples declared positive and negative in routine
screening (B).

Nevertheless, the discrimination of control and stanozolol-treated
population is efficient and thus almost 4 months after anabolic steroid
administration which is significantly longer than the detection window
of stanozolol obtained by different target analysis. Although, the
detection window is greatly improved with the screening of stanozolol
long-term metabolites [28] it is mandatory to carry on further.

Conclusion
The analyzed horse urine fingerprints show changes in metabolic

states several months after chronic stanozolol treatment which
demonstrate the potential of such approach as a screening tool.
However, the obtained model cannot be incorporated as a routine
screening method in its present form due to prediction capacity of
current model. It is important to mention that for the moment, there
are no established criteria regarding the acceptable rate of false positive
or false negative. In the clinical diagnosis, a false negative is much
more important to avoid than is a false positive, since if the metabolite
is a disease marker a false negative may be life-threatening. In doping
control, it depends on the type of analysis which can be screening or
confirmatory. In the case of screening, false positive is unwanted but
acceptable given that there is further complementary analysis to
confirm the presence of prohibited substance. Regarding confirmatory
analysis, the rate of false positive must be nonexistent. However, the
obtained predictive ability of presented model needs to be improved.

In order to keep superior sample size of statistical model by
including three realized analytical batches in the same time, other
normalization methods can be applied (i.e. LOESS signal correction by
QC samples). Furthermore, beside performed PCA, PLS and OPLS
data analysis, there are alternative multivariate statistical techniques
that need to be considered. Nevertheless, when the identification of
specific biomarkers of drug abuse is required, the solution is to
integrate a wide variety of subject populations in the study design in
order to minimize the effects of nonrelevant metabolic variations. It
can be done through another animal phase conducted on a larger
number of animals (very expensive, thus difficult) or simply, through
integration of new samples originating from laboratory routine
(declared negative or stanozolol positive when possible).

Once the metabolic pattern of stanozolol administration defined, it
will be compared to metabolic patterns of other anabolic steroids
administration with aim to release a common one. Fundamentally,
they should share some common invariant properties of biological
signatures, whatever the anabolic steroid (mis)used. Obviously, the

identification of these selected metabolites remains as an ultimate step
to explain their biological significance.
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