

**Research Article** 

# Upper and Lower Weaky $m_{\chi}$ - $\alpha \psi$ - Continuous Multifunctions

# M. Parimala\*

Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam-638401, Tamil Nadu, India

## Abstract

In this paper, we introduce the notion of  $m_x - \alpha \psi$  -closed set and investigate some of its properties. We introduce upper/lower  $m_x - \alpha \psi$  -continuous, weakly  $m_x - \alpha \psi$  -continuous, slightly  $m_x - \alpha \psi$  -continuous and almost  $m_x - \alpha \psi$  -continuous multifunctions from a set satisfying certain minimal condition into a topological space and also we obtain their characterizations and properties of such multifunctions.

**Keywords:** Minimal structure;  $m_x - \alpha \psi$  -closed set;  $m_x - \alpha \psi$  -continuous functions in minimal structure spaces

**AMS (2000) Subject Classification:** 54A05, 54A20, 54C08, 54D10, 54C60.

# Introduction

In 1961, Levine [1] introduced the notion of weakly continuous functions. Popa and Smithson [2,3] independently introduced the concept of weakly continuous multifunctions. Noiri [4] introduced the concept of minimal structure on a nonempty set. Also they introduced the notion of  $m_x$  -open set and  $m_x$  -closed set and characterize those sets using  $m_x$  -cl and  $m_x$  -int operators respectively. Further they introduced *m*-continuous functions [5] and studied some of its basic properties. Noiri and Popa [6] introduced and studied other forms of continuous multifunctions namely, slightly m-continuous multifunctions.

In this paper, we introduce  $m_x - \alpha \psi$  -closed set and also we study some of the upper/lower  $m_x - \alpha \psi$  -continuous multifunctions as the multifunctions are defined between a set satisfying certain minimal condition into a topological space. We obtain some characterizations and some properties of such multifunctions.

# Preliminaries

In this section, we introduce the m-structure and define some important subsets associated to the m-structure and the relation between them.

## Definition

Let X be a nonempty set and let  $m_X \subseteq P(X)$ , where P(X) denote the power set of X. Where  $m_X$  is an *m*-structure (or a minimal structure) on X, if  $\phi$  and X belong to  $m_X$ .

The members of the minimal structure  $m_X$  are called  $m_X$ -open sets, and the pair  $(X, m_X)$  is called an *m*-space. The complement of  $m_X$ -open set is said to be  $m_X$ -closed.

#### Definition

[7] Let X be a nonempty set and  $m_X$  an m -structure on X. For a subset A of X,  $m_X$  -closure of A and  $m_X$  -interior of A are defined as follows:

1. 
$$m_X - Cl(A) = \bigcap \{F : A \subseteq F, X - F \in m_X\}$$

2. 
$$m_X - Int(A) = \bigcup \{F : U \subseteq A, U \in m_X\}$$
.

#### Lemma

[7] Let X be a nonempty set and  $m_X$  an m -structure on X. For

subsets A and B of X, the following properties hold:

1. 
$$m_X - Cl(X - A) = X - m_X - Int(A)$$
 and  $m_X - Int(X - A) = X - m_X - Cl(A)$ .

2. If  $(X - A) \in m_X$ , then  $m_X - cl(A) = A$  and if  $A \in m_X$  then  $m_X - int(A) = A$ .

3. 
$$m_X - Cl(\phi) = \phi$$
,  $m_X - Cl(X) = X$ ,  $m_X - int(\phi) = \phi$  and  $m_X - int(X) = X$ .

4. If  $A \subseteq B$  then  $m_X - Cl(A) \subseteq m_X - Cl(B)$  and  $m_X - int(A) \subseteq m_X - int(B)$ .

5.  $A \subseteq m_X - Cl(A)$  and  $m_X - Int(A) \subseteq A$ .

6.  $m_X - Cl(m_X - Cl(A)) = m_X - Cl(A)$  and  $m_X - Int(m_X - Int(A)) = m_X - Int(A)$ .

#### Lemma

[5] Let  $(X, m_X)$  be an m-space and A a subset of X. Then  $x \in m_X - cl(A)$  if and only if  $U \cap A \neq \phi$  for every  $U \in m_X$  containing x.

#### Definition

[7] A minimal structure  $m_X$  on a nonempty set X is said to have the property  $\beta$  if the union of any family of subsets belonging to  $m_X$ belongs to  $m_X$ .

#### Remark

[8] A minimal structure  $m_X$  with the property  $\beta$  coincides with a generalized topology on the sense of Lugojan.

#### Lemma

[9] Let X be a nonempty set and  $m_X$  an *m*-structure on X satisfying the property  $\beta$ . For a subset A of X, the following property hold:

\*Corresponding author: M. Parimala, Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam-638401, Tamil Nadu, India, E-mail: rishwanthpari@gmail.com

Received March 16, 2012; Accepted May 14, 2012; Published May 18, 2012

Citation: Parimala M (2012) Upper and Lower Weaky  $m_x - \alpha \psi$  - Continuous Multifunctions. J Appl Computat Math 1:107. doi:10.4172/2168-9679.1000107

**Copyright:** © 2012 Parimala M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

- 1.  $A \in m_X$  iff  $m_X int(A) = A$
- 2.  $A \in m_X$  iff  $m_X cl(A) = A$
- 3.  $m_X int(A) \in m_X$  and  $m_X cl(A) \in m_X$

### Definition

A subset A of an m -space  $(X, m_X)$  is called

1. an  $m_X$  -preopen set [10] if  $A \subseteq U$  -  $int(m_X$  - cl(A)) and a  $m_X$  -preclosed set if  $m_X$  -  $cl(m_X$  -  $int(A)) \subseteq A$  ,

2. an  $m_X$ -semiopen set [10] if  $A \subseteq m_X - cl(m_X - int(A))$  and a  $m_X$ -semiclosed set if  $m_X - int(m_X - cl(A)) \subseteq A$ ,

3. an  $m_X$ -semi generalized-closed [10] (briefly  $m_X - sg$ -closed) set if  $m_X - scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $m_X$ -semi-open in  $(X, m_X)$ . The complement of an  $m_X$ -sg-closed set is called an  $m_X$ sg-open set.

The  $m_X$ -pre closure (resp.  $m_X$ -semi closure,  $m_X - \alpha$ -closure) of a subset A of an m-space  $(X, m_X)$  is the intersection of all  $m_X$ -pre closed (resp.  $m_X$ -semi closed,  $m_X - \alpha$ -closed) sets that contain Aand is denoted by  $m_X - pcl(A)$  (resp.  $m_X - scl(A)$ ,  $m_X - m_X$ ).

# $m_x - \alpha \psi$ -closed and $m_x - \alpha \psi$ -open sets

### Definition

A subset A of an m-space  $(X, m_X)$  is called an

1.  $m_X - \alpha$  -open set if  $A \subseteq m_X - int(m_X - cl(m_X - int(A)))$  and an  $m_X - \alpha$  -closed set if  $m_X - cl(m_X - int(m_X - cl(A))) \subseteq A$ ,

2.  $m_X - \psi$ -closed set if  $m_X - scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $m_X - sg$ -open in  $(X, m_X)$ . The complement of an  $m_X - \psi$ -closed set is called an  $m_X - \psi$ -open set.

3.  $m_X - \alpha \psi$ -closed set if  $m_X - \psi cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $m_X - \alpha$ -open in  $(X, m_X)$ . The complement of an  $m_X - \alpha \psi$ -closed set is called an  $m_X - \alpha \psi$ -open set.

#### Notation

For an *m*-space  $(X,m_X)$ ,  $O(X,m_X)$  (resp.  $SO(X,m_X)$ ),  $PO(X,m_X)$ ,  $\alpha O(X,m_X)$ ,  $SGO(X,m_X)$ ,  $\psi O(X,m_X)$ ,  $\alpha \psi$ -  $O(X,m_X)$ ) denotes the class of all open (resp.  $m_X$ -semiopen,  $m_X$ preopen,  $m_X - \alpha$ -open,  $m_X$ -sg-open,  $m_X - \psi$ -open,  $m_X - \alpha \psi$ open) subsets of  $(X,m_X)$ .

#### Definition

Let  $(X, m_X)$  be an *m*-space and let *A* be a subset of *X*. Then

1. the intersection of all  $m_X - m_X$  -closed sets containing A is called the  $m_X - \alpha \psi$  -closure of A and is denoted by  $m_X - \alpha \psi$  - cl(A).

2. the union of all  $m_X - \alpha \psi$  -open sets that are contained in A is called the  $m_X - \alpha \psi$  -interior of A and is denoted by  $m_X - \alpha \psi$  - int(A)

## Example (1)

Let  $X = \{a, b, c, d\}$ . Define the *m*-structure on *X* as follows:  $m_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}$ .

Then  $SO(X, m_X) = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, c, d\}\}$ ,

 $\alpha O(X, m_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$  and

 $\alpha \psi - O(X, m_X) = \{ \phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a,$ 

 $\{b,d\},\{a,b,c\},\{a,c,d\}\}$ .

## Example (2)

Let  $X = \{a, b, c\}$ . Define the *m*-structure on X as follows:  $m_X = \{\phi, X, \{a\}, \{b\}\}$ .

Then  $SO(X, m_X) = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$ ,

$$\alpha O(X, m_X) = \{\phi, X, \{a\}, \{b\}\} \text{ and } \alpha \psi - O(X, m_X) = P(X).$$

### Example (3)

Let  $X=\{a,b,c,d\}$  . Define the m -structure on X as follows:  $m_X=\{\phi,X,\{a\},\{b\},\{a,b,c\},\{a,b,d\}\}$  .

Then  $SO(X, m_X) = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{a, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b\}, \{$ 

 $\{b,c\},\{b,d\},\{a,b,c\},\{a,c,d\},\{b,c,d\}\}$ 

 $\begin{array}{l} \alpha O(X,m_X) = \{ \phi, X, \{a\}, \{b\}, \{a,b,c\}, \{a,b,d\} \} \text{ and } \\ O(X,m_X) = \{ \phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \\ \alpha \psi \ - \end{array}$ 

 $\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\{a,c,d\},\{b,c,d\}\}$ 

# Definition

The intersection of all  $m_X - \alpha$  -open subsets of  $(X, m_X)$  containing A is called the  $m_X - \alpha$  -kernel of A (briefly,  $m_X - \alpha ker(A)$ ) i.e.  $m_X - \alpha ker(A) = \bigcap \{G \in m_X - \alpha O(X) : A \subseteq G\}$ . And  $m_X - s ker(A)$ ,  $m_X - sgker(A)$ , an  $m_X - \psi ker(A)$  are defined similarly.

### Theorem (1)

Let A be a subset of  $(X, m_X)$ , then A is  $m_X - (\alpha, \psi)$  -closed if and only if  $m_X - \psi cl(A) \subseteq m_X - \alpha ker(A)$ .

#### Proof

Suppose that A is  $m_X - \alpha \psi$ -closed and let  $D = \{S : S \subseteq X, A \subseteq S : Sis \ an \ m_X - \alpha \text{ -open} \}$ . Then  $m_X - \alpha \text{ -open} \}$ . Then  $m_X - \alpha \text{ -open} \}$ .  $\alpha \text{ -apen} = \bigcap_{S \in D} S$ . Observe that  $S \in D$  implies that  $A \subseteq S$  follows  $m_X - \psi cl(A) \subseteq S$  for all  $S \in D$ .

Conversely, if  $m_X - \psi cl(A) \subseteq m_X - aker(A)$ , take  $S \in \alpha O(X, m_X)$  such that  $A \subseteq S$  then by hypothesis,

 $m_X - \psi cl(A) \subseteq m_X - \alpha ker(A) \subseteq S$ .

This shows that A is  $m_X - \alpha \psi$  -closed.

#### Theorem (2)

For subsets A and B of  $(X, m_X)$ , the following properties hold:

1. If A is  $m_X - \psi$  -closed, then A is  $m_X - \alpha \psi$  -closed.

2. If  $m_X$  has the property  $\beta$  and A is  $m_X - \alpha \psi$  -closed and  $m_X - \alpha$  -open then A is  $m_X - \psi$  -closed.

3. If A is  $m_X - \alpha \psi$  -closed and  $A \subseteq B \subseteq \psi cl(A)$  then B is  $m_X - \alpha \psi$  -closed.

#### Proof

1. Let A be an  $m_X - \psi$  -closed set in  $(X, m_X)$ . Let  $A \subseteq U$ , where U is  $m_X - \alpha$  -open in  $(X, m_X)$ . Since A is  $m_X - \psi$  -closed,  $m_X - \psi cl(A) = A$ ,  $m_X - \psi cl(A) \subseteq U$ . Therefore, A is  $m_X - \alpha \psi$  -closed.

2. Since A is  $m_X - \alpha$  -open and  $m_X - \alpha \psi$  -closed, we have  $m_X - \psi cl(A) \subseteq A$ . Therefore, A is  $m_X - \psi$  -closed

3. Let U be an  $m_X - \alpha$  -open set of  $(X, m_X)$  such that  $B \subseteq U$ , then  $A \subseteq U$ . Since A is  $m_X - \alpha \psi$  -closed,  $m_X - \psi cl(A) \subseteq U$ . Now  $m_X - \psi cl(B) \subseteq m_X - \psi cl(m_X - \psi cl(A)) \subseteq U$ . Therefore, B is also an  $m_X - \alpha \psi$  -closed set of  $(X, m_X)$ .

## Theorem (3)

Union of two  $m_X - \alpha \psi$  -closed sets is  $m_X - \alpha \psi$  -closed.

#### Proof

Let A and B be two  $m_X - \alpha \psi$ -closed sets in  $(X, m_X)$ . Let  $A \cup B \subseteq U$ , U is  $m_X - \alpha$ -open. Since A and B are  $m_X - \alpha \psi$ -closed sets,  $m_X - \psi cl(A) \subseteq U$  and  $m_X - \psi cl(B) \subseteq U$ . This implies that  $m_X - \psi cl(A \cup B) \subseteq m_X - \psi cl(A) - \psi cl(B) \subseteq U$  and so  $m_X - \psi cl(A \cup B) \subseteq U$ . Therefore  $A \cup B$  is  $m_X - \alpha \psi$ -closed.

#### Theorem (4)

Let  $m_X$  be an m-structure on X satisfying the property  $\beta$  and  $A \subseteq X$ . Then A is an  $m_X - \alpha \psi$ -closed set if and only if there does not exist a nonempty  $m_X - \alpha$ -closed set F such that  $F \neq \phi$  and  $F \subseteq m_X - \psi cl(A) - A$ .

#### Proof

Suppose that A is an  $m_X - \alpha \psi$ -closed set and let  $F \subseteq X$  be an  $m_X - \alpha$ -closed set such that  $F \subseteq m_X - \psi cl(A) - A$ . It follows that,  $A \subseteq X - F$  and X - F is an  $m_X - \alpha$ -open set. Since A is an  $m_X - \alpha \psi cl$  closed set, we have that  $m_X - \psi cl(A) \subseteq X - F$  and  $F \subseteq X - m_X - \psi cl(A)$ . Follows that,  $F^+(V) \subset m_X - \psi cl(A) \cap (X - m_X - \psi cl(A)) = \phi$ , implying that  $F = \phi$ .

Conversely, if  $A \subseteq U$  and U is an  $m_X - \alpha$  -open set, then  $m_X - \psi cl(A) \cap (X-U) \subseteq m_X - \psi cl(A) \cap (X-A) = m_X - \psi cl(A) - A$ . Since  $m_X - \psi cl(A) - A$  does not contain subsets  $m_X - \alpha$  -closed sets different from the empty set, we obtain that  $m_X - \psi cl(A) \cap (X-U) = \phi$  and this implies that  $m_X - \psi cl(A) \subseteq U$  in consequence A is  $m_X - \alpha \psi$  -closed.

We can observe that if in Theorem 3.11., the property  $\beta$  is omitted then the result can be false as we can see in the following example.

#### Example

Let 
$$X = \{a, b, c, d\}$$
. The *m*-structure on *X* is defined as  
 $m_X = \{\phi, X, \{a\}, \{b\}, \{a, c\}\}$ .  
 $\alpha C(X, m_X) = \{X, \phi, \{d\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{b, c, d\}\}$ 

and  $\alpha \psi = \frac{C(X, m_X) = \{X, \phi, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{b, c\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\}}{\{b, d\}, \{b, c\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\}}$ 

The set  $\{a\}$  is not an  $m_X - \alpha \psi$  -closed set and there does not exist

 $m_X - \alpha$  -closed set F such that  $F \neq \phi$  and  $F \subseteq m_X - \psi cl(A) - A$ .

### Theorem (5)

Let  $(X, m_X)$  be an *m*-space and  $A \subseteq X$ , then *A* is  $m_X - \alpha \psi$ -open if and only if  $F \subset m_X - \psi$ int(*A*) where *F* is  $m_X - \alpha$ -closed and  $F \subset A$ . **Proof** 

Let A be an  $m_X - \alpha \psi$ -open, F be  $m_X - \alpha$ -closed set such that  $F \subset A$ . Then  $X - A \subset X - F$ , but X - F is  $m_X - \alpha$ -closed and X - A is  $m_X - \alpha \psi$ -closed implies that  $m_X - \psi cl(X - A) \subset X - F$ . Follows that  $X - m_X - \psi int(A) \subset X - F$ . In consequence  $F \subset m_X - \psi int(A)$ .

Conversely, if F is  $m_X - \alpha$  -closed,  $F \subset A$  and  $F \subset m_X - \psi int(A)$ .

Let  $X - A \subset U$  where U is  $m_X - \alpha$  -open, then  $X - U \subset A$  and X - Uis  $m_X - \alpha$  -closed. By hypothesis,  $X - U \subset m_X - \psi int(A)$ . Follows  $X - m_X - \psi int(A) \subset U$  but it is equivalent to  $m_X - \psi cl(X - A) \subset U$ . Therefore, X - A is  $m_X - \alpha \psi$  -closed and hence A is  $m_X - \alpha \psi$  -open.

# Weak $m_X - \alpha \psi$ -continuous and almost $m_X - \alpha \psi$ -continuous multifunctions

## Definition (1)

Let  $(X,m_X)$  be an *m*-space and  $(Y,\sigma)$  a topological space. A multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$  is said to be

1. upper  $m_X - \alpha \psi$ -continuous (resp. upper almost  $m_X - \alpha \psi$ -continuous, upper weakly  $m_X - \alpha \psi$ -continuous) at a point x if for each open set V of Y containing F(x), there exists an  $m_X - \alpha \psi$ -open set U of  $m_X$  containing x such that  $F(U) \subset V$  (resp.  $F(U) \subset int(cl(V)), F(U) \subset cl(V))$ ,

2. lower  $m_X - \alpha \psi$ -continuous (resp. lower almost  $m_X - \alpha \psi$ -continuous, lower weakly  $m_X - \alpha \psi$ -continuous) at a point  $x \in X$  if for each open set V of Y such that  $F(x) \cap V \neq \phi$ , there exists an  $m_X$ - $\alpha \psi$ -open set U of  $m_X$  containing x such that  $F(u) \cap V \neq \phi$  (resp.  $F(u) \cap int(cl(V)) \neq \phi, F(u) \cap cl(V) \neq \phi$ ) for each  $u \in U$ ,

3. upper/lower  $m_X - \alpha \psi$  -continuous (resp. almost  $m_X - \alpha \psi$  -continuous, weakly  $m_X - \alpha \psi$  -continuous) if it has this property at each point  $x \in X$ .

## Definition (2)

A multifunction  $F:(X,m_X) \to (Y,\sigma)$  is said to be almost  $m_X - \alpha \psi$ -open if  $F(U) \subset int(cl(F(U)))$  for every  $m_X - \alpha \psi$  -open set U of  $m_X$ .

## Theorem (1)

If a multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$  is upper weakly  $m_X - \alpha \psi$ -continuous and almost  $m_X - \alpha \psi$ -open, then F is upper almost  $m_X$ - $\alpha \psi$ -continuous.

## Proof

Let V be any open set in Y containing F(x). Then there exists an  $m_X - \alpha \psi$ -open set U of  $m_X$  containing x such that  $F(U) \subset cl(V)$ . Since F(x) is almost  $m_X - \alpha \psi$ -open,  $F(U) \subset int(cl(F(U))) \subset int(cl(V))$ . Therefore, F is upper almost  $m_X - \alpha \psi$ -continuous.

#### Theorem (2)

Let  $F:(X,m_X) \rightarrow (Y,\sigma)$  be a multifunction such that F(x) is open in Y for each  $x \in X$ . Then, the following properties are equivalent:

- 1. F is lower  $m_X \alpha \psi$  -continuous;
- 2. *F* is lower almost  $m_X \alpha \psi$  -continuous;

3. F is lower weakly  $m_X - \alpha \psi$  -continuous.

#### Proof

(i)  $\Rightarrow$  (ii) and (ii)  $\Rightarrow$  (iii): The proofs of these implications are obvious.

(iii)  $\Rightarrow$  (i): Let  $x \in X$  and V be any open set such that  $F(x) \cap V \neq \phi$ . There exists an  $m_X - \alpha \psi$ -open set U of  $m_X$  such that  $F(u) \cap cl(V) \neq \phi$  for each  $u \in U$ . Since F(u) is open,  $F(u) \cap V \neq \phi$  for each  $u \in U$  and hence F is lower  $m_X - \alpha \psi$ -continuous.

# Slightly $m_X - \alpha \psi$ -continuous Multifunctions

### Definition

Let  $(X,m_X)$  be an *m*-space and  $(Y,\sigma)$  a topological space. A multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$  is said to be

1. upper slightly  $m_X - \alpha \psi$ -continuous if for each  $A \in m_X$  and each clopen set V of Y containing F(x), there exists an  $m_X - \alpha \psi$ -open set U of  $m_X$  containing x such that  $F(U) \subset V$ ,

2. lower slightly  $m_X - \alpha \psi$ -continuous if for each  $x \in X$  and each clopen set V of Y such that  $F(x) \cap V \neq \phi$ , there exists an  $m_X - \alpha \psi$ -open set U of  $m_X$  containing x such that  $F(u) \cap V \neq \phi$  for each  $u \in U$ .

#### Theorem (1)

For a multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$ , the following are equivalent:

1. F is upper slightly  $m_X - \alpha \psi$  -continuous;

2.  $F^+(V) = m_X - \alpha \psi - int(F(V))$  for each  $V \in CO(Y)$ ;

3.  $F^{-}(V)$ ) -  $\alpha \psi$  -  $cl(F^{-}(V))$  for each  $V \in CO(Y)$ .

## Proof

(i)  $\Rightarrow$  (ii): Let *V* be any clopen set of *Y* and  $x \in F^+(V)$ . Then  $F(x) \in V$ . There exists an  $m_x - \alpha \psi$  -open set *U* of  $m_x$  containing *x* such that  $F(U) \subset V$ . Thus  $x \in U \subset F^+(V)$  and hence  $x \in m_X - \alpha \psi$  - *int*( $F^+(V)$ ). Therefore, we have  $F^+(V) \subset m_X - \alpha \psi$  - *int*( $F^+(V)$ ). But,  $m_x - \alpha \psi$  - *int*( $F^+(V)$ )  $\subset F^+(V)$ , we obtain  $F^+(V) = m_X - \alpha \psi$  - *int*( $F^+(V)$ ).

(ii)  $\Rightarrow$  (iii): Let *K* be any clopen set of *Y*. Then *Y*-*K* is clopen in *Y*. By (ii) and Lemma 2.3., we have  $X - F^+(K) = (Y - K) = m_X - \alpha \psi - int(F^+(Y - K)) = X - [m_X - \alpha \psi - cl(F^-(K))]$ . Therefore, we obtain  $F^-(K) = m_X - \alpha \psi - cl(F^-(K))$ .

(iii)  $\Rightarrow$  (ii): This follows from the fact that  $F^{-}(Y-B) = F^{+}(B)$  for every subset *B* of *Y*.

(ii)  $\Rightarrow$  (i): Let  $x \in X$  and V be any clopen set of Y containing F(x). Then  $x \in F^+(V) = m_X - \alpha \psi - int(F^+(V))$ . There exists an  $m_x - \alpha \psi$ -open set U of  $m_x$  containing x such that  $x \in U \subset F^+(V)$ . Therefore, we have  $x \in U$ , U is an  $m_x - \alpha \psi$ -open set of  $m_x$  and  $f(U) \subset V$ . Hence F is upper slightly  $m_x - \alpha \psi$ -continuous.

#### Theorem (2)

For a multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$ , the following are equivalent:

1. *F* is lower slightly  $m_x - \alpha \psi$  -continuous;

2.  $F^{-}(V) = m_X - \alpha \psi - int(F^{-}(V))$  for each  $V \in CO(Y)$ ;

3.  $F^+(V) = m_X - \alpha \psi - cl(F^+(V))$  for each  $V \in CO(Y)$ .

#### Proof

(i)  $\Rightarrow$  (ii): Let  $V \in CO(Y)$  and  $x \in F^-(V)$ . Then  $F(x) \cap V \neq \phi$  and by (i) there exists an  $m_x - \alpha \psi$  -open set U of  $m_x$  containing x such that  $F(u) \cap V \neq \phi$  for each  $u \in U$ . Therefore, we have  $U \subset F^-(V)$  and hence  $x \in U \subset m_X - \alpha \psi$  -  $int(F^-(V))$ . Thus, we obtain  $F^-(V) \subset m_X - \alpha \psi$  -  $int(F^-(V))$  and by Lemma 2.3.,  $F^-(V) = m_X - \alpha \psi$  -  $int(F^-(V))$ .

(ii)  $\Rightarrow$  (iii): Let  $V \in CO(Y)$ . Then  $Y - V \in CO(Y)$  and by (ii) we have  $X - F^+(V) = F^-(Y - V) = m_X - \alpha \psi - int(F^-(Y - V)) = X - m_X - m_$ 

J Appl Computat Math ISSN: 2168-9679 JACM, an open access journal  $\alpha \psi - cl(F^+(V))$ . Hence we obtain  $F^+(V) = m_X - \alpha \psi - cl(F^+(V))$ .

(iii)  $\Rightarrow$  (i): Let x be any point of X and V any clopen set of Y such that  $F(x) \cap V \neq \phi$ . Then  $x \in F^-(V)$  and  $x \notin X - F^-(V) = F^+(Y - V)$ . By (iii), we have  $x \notin m_X - \alpha \psi - cl(F^+(Y - V))$ . By Lemma 2.4., there exists an  $m_X - \alpha \psi$  -open set of  $m_x$  containing x such that  $U \cap F^+(Y - V) = \phi$ , hence  $U \subset F^-(V)$ . Therefore,  $F(u) \cap V \neq \phi$  for each  $u \in U$  and F is lower slightly  $m_x - \alpha \psi$  -continuous.

#### Corollary (1)

For a multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$ , where  $m_x$  has the property  $\beta$ , the following are equivalent:

1. F is upper slightly  $m_x - \alpha \psi$  -continuous;

2.  $F^+(V)$  is  $m_x - \alpha \psi$  -open in  $(X, m_x)$  for each  $V \in CO(Y)$ ;

3.  $F^{-}(V)$  is  $m_{x} - \alpha \psi$  -closed in  $(X, m_{X})$  for each  $V \in CO(Y)$ .

## Corollary (2)

For a multifunction  $F:(X,m_X) \rightarrow (Y,\sigma)$ , where  $m_x$  has the property  $\beta$ , the following are equivalent:

1. F is lower slightly  $m_x - \alpha \psi$  -continuous;

2.  $F^{-}(V)$  is  $m_x - \alpha \psi$  -open in  $(X, m_X)$  for each  $V \in CO(Y)$ ;

3.  $F^+(V)$  is  $m_x - \alpha \psi$  -closed in  $(X, m_X)$  for each  $V \in CO(Y)$ .

## References

- Levine N (1961) A decomposition of continuity in topological spaces. Amer Math Monthly 68: 44-46.
- 2. Popa V (1978) Weakly continuous multifunctions. Boll Un Mat Ital 15: 379-388.
- Smithson RE (1978) Almost and weak continuity for multifunctions. Bull Calcutta Math Soc 70: 383-390.
- Noiri T (2006) 11th meetings on topological spaces Theory and its Applications. Fukuoka University Seminar House 1-9.
- Popa V, Noiri T (2000) On M-continuous functions, Anal. Uni. "Dunarea De, Jos" Galati.Ser. Mat. Fiz. 18: 31-41.
- Noiri T, Popa V (2006) Slightly m-continuous multifunctions. Bull Inst of Math 1: 485-505.
- Maki H, Rao KC, Gani AN (1999) On generalizing semi-open and pre open sets. Pure Appl Math Sci 49: 17-29.
- 8. Lugojan S (1982) Generalized topology. Stu Cercet Mat 34: 348-360.
- Noiri T, Popa V On (2000) On upper and lower M-continuous multifunctions. Filomat 14: 73-86.
- Rosas E, Rajesh N, Carpintero C (2009) Some new types of open sets and closed sets in minimal structure-I. Int Mat Forum 4: 2169-2184.