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Introduction
In 1961, Levine [1] introduced the notion of weakly continuous 

functions. Popa and Smithson [2,3] independently introduced the 
concept of weakly continuous multifunctions. Noiri [4] introduced the 
concept of minimal structure on a nonempty set. Also they introduced 
the notion of Xm -open set and Xm -closed set and characterize 
those sets using Xm -cl and Xm -int operators respectively. Further 
they introduced m-continuous functions [5] and studied some of its 
basic properties. Noiri and Popa [6] introduced and studied other 
forms of continuous multifunctions namely, slightly m-continuous 
multifunctions.

In this paper, we introduce Xm -αψ -closed set and also we study 
some of the upper/lower Xm -αψ -continuous multifunctions as the 
multifunctions are defined between a set satisfying certain minimal 
condition into a topological space. We obtain some characterizations 
and some properties of such multifunctions. 

Preliminaries 
In this section, we introduce the m-structure and define some 

important subsets associated to the m-structure and the relation 
between them.

Definition 

Let X  be a nonempty set and let ( )Xm P X⊆ , where ( )P X  denote 
the power set of X . Where Xm  is an m-structure (or a minimal 
structure) on X , if φ  and X  belong to Xm .

The members of the minimal structure Xm  are called Xm -open 
sets, and the pair ( , )XX m  is called an m -space. The complement of 

Xm -open set is said to be Xm -closed.

Definition 

[7] Let X  be a nonempty set and Xm  an m -structure on X . For a
subset A  of X , Xm -closure of A  and Xm -interior of A  are defined 
as follows:  

1. Xm - ( ) { : , }XCl A F A F X F m=∩ ⊆ − ∈

2. Xm - ( ) { : , }XInt A F U A U m=∪ ⊆ ∈ .

Lemma

[7] Let X  be a nonempty set and Xm  an m -structure on X . For

subsets A  and B  of X , the following properties hold:  

1.  Xm - ( ) XCl X A X m− = − - ( )Int A and Xm -
( ) )XInt X A X m− = − - ( )Cl A .

2. If ( ) XX A m− ∈ , then Xm - ( )cl A A=  and if XA m∈  then Xm
- ( )int A A= .

3. Xm - ( ) ,Cl φ φ=  Xm - ( )Cl X X= , Xm - ( )int φ φ=  and Xm -
( )int X X= . 

4. If A B⊆  then Xm - ( ) XCl A m⊆ - ( )Cl B  and Xm - ( ) Xint A m⊆
- ( )int B .

5. XA m⊆ - ( )Cl A  and Xm - ( )Int A A⊆ .

6. Xm - ( XCl m - ( )) XCl A m= - ( )Cl A  and Xm - ( XInt m -
( )) XInt A m= - ( )Int A . 

Lemma 

[5] Let ( , )XX m  be an m -space and A  a subset of X . Then
Xx m∈ - ( )cl A  if and only if U A φ∩ ≠  for every XU m∈  containing 

x .

Definition 

[7] A minimal structure Xm  on a nonempty set X  is said to have
the property β  if the union of any family of subsets belonging to Xm
belongs to Xm .

Remark 

[8] A minimal structure Xm  with the property β  coincides with a
generalized topology on the sense of Lugojan.

Lemma 

[9] Let X  be a nonempty set and Xm  an m -structure on
X  satisfying the property β . For a subset A  of X , the following 

property hold:  
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1.  XA m∈  iff Xm - ( )int A A=  

2.  XA m∈  iff Xm - ( )cl A A=  

3.  Xm - ( ) Xint A m∈  and Xm - ( ) Xcl A m∈  

Definition 

A subset A  of an m -space ( , )XX m  is called  

1.  an Xm -preopen set [10] if A U⊆ - ( Xint m - ( ))cl A  and a Xm
-preclosed set if Xm - ( Xcl m - ( ))int A A⊆ ,

2.  an Xm -semiopen set [10] if XA m⊆ - ( Xcl m - ( ))int A  and a 
Xm -semiclosed set if Xm - ( Xint m - ( ))cl A A⊆ , 

3.  an Xm -semi generalized-closed [10] (briefly Xm - sg -closed) 
set if Xm - ( )scl A U⊆  whenever A U⊆  and U  is Xm -semi-open in 
( , )XX m . The complement of an Xm - sg -closed set is called an Xm -
sg -open set. 

The Xm -pre closure (resp. Xm -semi closure, Xm -α -closure) of 
a subset A  of an m-space ( , )XX m  is the intersection of all Xm -pre 
closed (resp. Xm -semi closed, Xm -α -closed) sets that contain A  
and is denoted by Xm - ( )pcl A  (resp. Xm - ( )scl A , Xm - Xm ).

Xm -αψ -closed and Xm -αψ -open sets 
Definition 

A subset A  of an m -space ( , )XX m  is called an 

1. Xm -α -open set if XA m⊆ - ( Xint m - ( Xcl m - ( )))int A  and an 
Xm -α -closed set if Xm - ( Xcl m - ( Xint m - ( )))cl A A⊆ , 

2. Xm -ψ -closed set if Xm - ( )scl A U⊆  whenever A U⊆  and U  
is Xm - sg -open in ( , )XX m .The complement of an Xm -ψ -closed set is 
called an Xm -ψ -open set. 

3. Xm -αψ -closed set if Xm - ( )cl A Uψ ⊆  whenever A U⊆  and U  
is Xm -α -open in ( , )XX m .The complement of an Xm -αψ -closed set 
is called an Xm -αψ -open set. 

Notation 

For an m -space ( , )XX m , ( , )XO X m  (resp. ( , )XSO X m
, ( , )XPO X m , ( , )XO X mα , ( , )XSGO X m , ( , )XO X mψ , αψ -

( , )XO X m ) denotes the class of all open (resp. Xm -semiopen, Xm
-preopen, Xm -α -open, Xm -sg-open, Xm -ψ -open, Xm -αψ
-open) subsets of ( , )XX m .

Definition 

Let ( , )XX m  be an m -space and let A  be a subset of X . Then  

1. the intersection of all Xm - Xm -closed sets containing A  is called 
the Xm -αψ -closure of A  and is denoted by Xm -αψ - ( )cl A . 

2. the union of all Xm -αψ -open sets that are contained in A  is 
called the Xm -αψ -interior of A  and is denoted by Xm -αψ - ( )int A  

Example (1) 

Let { , , , }X a b c d= . Define the m -structure on X  as follows: 
{ , ,{ },{ },{ , }Xm X a b a bφ= .

Then ( , ) { , ,{ },{ },{ , },XSO X m X a b a cφ= { , },{ , },{ , , }}a d b d a c d ,

( , ) { , ,{ },{ },{ , },{ , },{ , , }}XO X m X a b a b a c a b cα φ=  and 

αψ - ( , ) { , ,{ },{ },{ },{ , },{ , },{ , },{ , },XO X m X a b c a b a c a d b cφ=

{ , },{ , , },{ , , }}b d a b c a c d .

Example (2) 

Let { , , }X a b c= . Define the m -structure on X  as follows: 
{ , ,{ },{ }}Xm X a bφ= .

Then ( , ) { , ,{ },{ },{ , },{ , }}XSO X m X a b a c b cφ= , 

( , ) { , ,{ },{ }}XO X m X a bα φ=  and αψ - ( , ) ( )XO X m P X= .

Example (3) 

Let { , , , }X a b c d= . Define the m -structure on X  as follows: 
{ , ,{ },{ },{ , , },{ , , }}Xm X a b a b c a b dφ= .

Then ( , ) = { , ,{ },{ },{ , },{ , },{ , },{ , },{ , , },{ , , },{ , , }}φXSO X m X a b a c a d b c b d a b c a c d b c d

( , ) = { , ,{ },{ },{ , },{ , },{ , },{ , },{ , , },{ , , },{ , , }}φXSO X m X a b a c a d b c b d a b c a c d b c d
( , ) { , ,{ },{ },{ , , },{ , , }}XO X m X a b a b c a b dα φ=  and 

αψ - ( , ) { , ,{ },{ },{ },{ },{ , },{ , },
{ , },{ , },{ , },{ , },{ , , },{ , , },{ , , }}

XO X m X a b c d a b a c
a d b c b d c d a b c a c d b c d

φ= .

Definition 

The intersection of all Xm -α -open subsets of ( , )XX m  containing 
A  is called the Xm -α -kernel of A  (briefly, Xm - ( )ker Aα ) i.e. Xm

-α ( ) { Xker A G m=∩ ∈ - ( ) : }O X A Gα ⊆ . And Xm - s ( )ker A , Xm -
( )sgker A , an Xm -ψ ( )ker A  are defined similarly.

Theorem (1) 

Let A  be a subset of ( , )XX m , then A  is Xm - ( , )α ψ -closed if and 
only if Xm - ( ) Xcl A mψ ⊆ - ( )ker Aα .

Proof 

Suppose that A  is Xm -αψ -closed and let 
{ : , : XD S S X A S Sis an m= ⊆ ⊆ -α -open} . Then Xm -

( )
S D

ker A Sα
∈

=


. Observe that S D∈  implies that A S⊆  follows 

Xm - ( )cl A Sψ ⊆  for all S D∈ .

Conversely, if Xm - ( ) Xcl A mψ ⊆ - ( )aker A , take ( , )XS O X mα∈  
such that A S⊆  then by hypothesis, 

Xm - ( ) Xcl A mψ ⊆ - ( )ker A Sα ⊆ .

This shows that A  is Xm -αψ -closed.

Theorem (2)  

For subsets A  and B  of ( , )XX m , the following properties hold:  

1. If A  is Xm -ψ -closed, then A  is Xm -αψ -closed. 

2. If Xm  has the property β  and A  is Xm -αψ -closed and Xm -
α -open then A  is Xm -ψ -closed. 

3. If A  is Xm -αψ -closed and ( )A B cl Aψ⊆ ⊆  then B  is Xm -
αψ -closed.  

Proof  

1. Let A  be an Xm -ψ -closed set in ( , )XX m . Let A U⊆ , where 
U  is Xm -α -open in ( , )XX m . Since A  is Xm -ψ -closed, Xm -

( )cl A Aψ = , Xm - ( )cl A Uψ ⊆ . Therefore, A  is Xm -αψ -closed. 

2. Since A  is Xm -α -open and Xm -αψ -closed, we have Xm -
( )cl A Aψ ⊆ . Therefore, A  is Xm -ψ -closed 
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3. Let U  be an Xm -α -open set of ( , )XX m  such that B U⊆
, then A U⊆ . Since A  is Xm -αψ -closed, Xm - ( )cl A Uψ ⊆ . Now 

Xm - ( ) Xcl B mψ ⊆ - ( Xcl mψ - ( ))cl A Uψ ⊆ . Therefore, B  is also an 
Xm -αψ -closed set of ( , )XX m  .

Theorem (3)  

Union  of  two  Xm -αψ -closed  sets  is Xm -αψ -closed.

Proof 

Let A  and B  be two Xm -αψ -closed sets in ( , )XX m . Let 
A B U∪ ⊆ , U  is Xm -α -open. Since A  and B  are Xm -αψ -closed 

sets, Xm - ( )cl A Uψ ⊆  and Xm - ( )cl B Uψ ⊆ . This implies that Xm -
( ) Xcl A B mψ ∪ ⊆ - ( )cl Aψ - ( )cl B Uψ ⊆ and so Xm - ( )cl A B Uψ ∪ ⊆ . 

Therefore A B∪  is Xm -αψ -closed.

Theorem (4)  

Let Xm  be an m -structure on X  satisfying the property β  and 
A X⊆ . Then A  is an Xm -αψ -closed set if and only if there does not 

exist a nonempty Xm -α -closed set F  such that F φ≠  and XF m⊆ -
( )cl A Aψ − .

Proof 

Suppose that A  is an Xm -αψ -closed set and let F X⊆  be an 
Xm -α -closed set such that XF m⊆ - ( )cl A Aψ − . It follows that, 

A X F⊆ −  and X F−  is an Xm -α -open set. Since A  is an Xm -
αψ -closed set, we have that Xm - ( )cl A X Fψ ⊆ −  and XF X m⊆ −
- ( )cl Aψ . Follows that, ( ) XF V m+ ⊂ - ( ) ( Xcl A X mψ ∩ − - ( ))cl Aψ φ= , 
implying that F φ= .

Conversely, if A U⊆  and U  is an Xm -α -open set, then Xm -
( ) ( ) Xcl A X U mψ ∩ − ⊆ - ( ) ( ) Xcl A X A mψ ∩ − = - ( )cl A Aψ − . Since 

Xm - ( )cl A Aψ −  does not contain subsets Xm -α -closed sets different 
from the empty set, we obtain that Xm - ( ) ( )cl A X Uψ φ∩ − =  and this 
implies that Xm - ( )cl A Uψ ⊆  in consequence A  is Xm -αψ -closed.

We can observe that if in Theorem 3.11., the property β  is omitted 
then the result can be false as we can see in the following example.

Example 

Let { , , , }X a b c d= . The m -structure on X  is defined as

{ , ,{ },{ },{ , }}Xm X a b a cφ= . ( , ) { , ,{ },{ , },
{ , },{ , , },{ , , }}

XC X m X d b d
c d b c d a c d
α φ=

and αψ - ( , ) { , ,{ },{ },{ },{ , },{ , },
{ , },{ , },{ , },{ , , },{ , , },{ , , }}

XC X m X b c d a c a d
b d b c c d b c d a c d a b d

φ= . 

The set { }a  is not an Xm -αψ -closed set and there does not exist 

Xm -α -closed set F  such that F φ≠  and XF m⊆ - ( )cl A Aψ − .

Theorem (5)  

Let ( , )XX m  be an m -space and A X⊆ , then A  is Xm -αψ -open 
if and only if XF m⊂ - ( )int Aψ  where F  is Xm -α -closed and F A⊂ .

Proof

Let A  be an Xm -αψ -open, F  be Xm -α -closed set such that 
F A⊂ . Then X A X F− ⊂ − , but X F−  is Xm -α -closed and X A−  
is Xm -αψ -closed implies that Xm - ( )cl X A X Fψ − ⊂ − . Follows that 

XX m− - ( )int A X Fψ ⊂ − . In consequence XF m⊂ - ( )int Aψ .

Conversely, if F  is Xm -α -closed, F A⊂  and XF m⊂ - ( )int Aψ . 

Let X A U− ⊂  where U  is Xm -α -open, then X U A− ⊂  and X U−  
is Xm -α -closed. By hypothesis, XX U m− ⊂ - ( )int Aψ . Follows 

XX m− - ( )int A Uψ ⊂  but it is equivalent to Xm - ( )cl X A Uψ − ⊂ . 
Therefore, X A−  is Xm -αψ -closed and hence A  is Xm -αψ -open. 

Weak mX -αψ -continuous and almost mX -αψ
-continuous multifunctions 
Definition (1)

Let ( , )XX m  be an m -space and ( , )Y σ  a topological space. A 
multifunction : ( , ) ( , )XF X m Y σ→  is said to be  

1. upper Xm -αψ -continuous (resp. upper almost Xm -αψ
-continuous, upper weakly Xm -αψ -continuous) at a point x  if 
for each open set V  of Y  containing ( )F x , there exists an Xm -
αψ -open set U  of Xm  containing x  such that ( )F U V⊂  (resp. 

( ) ( ( )), ( ) ( ))F U int cl V F U cl V⊂ ⊂ , 

2. lower Xm -αψ -continuous (resp. lower almost Xm -αψ
-continuous, lower weakly Xm -αψ -continuous) at a point x X∈  if 
for each open set V  of Y  such that ( )F x V φ∩ ≠  , there exists an Xm
-αψ -open set U  of Xm  containing x  such that ( )F u V φ∩ ≠  (resp. 

( ) ( ( )) , ( ) ( ) )F u int cl V F u cl Vφ φ∩ ≠ ∩ ≠  for each u U∈ , 

3. upper/lower Xm -αψ -continuous (resp. almost Xm -αψ
-continuous, weakly Xm -αψ -continuous) if it has this property at each 
point x X∈ . 

Definition (2)  

A multifunction : ( , ) ( , )XF X m Y σ→  is said to be almost Xm -αψ
-open if ( ) ( ( ( )))F U int cl F U⊂  for every Xm -αψ -open set U  of Xm .

Theorem (1) 

If a multifunction : ( , ) ( , )XF X m Y σ→  is upper weakly Xm -αψ
-continuous and almost Xm -αψ -open, then F  is upper almost Xm
-αψ -continuous.

Proof 

Let V  be any open set in Y  containing ( )F x . Then there exists an 
Xm -αψ -open set U  of Xm  containing x  such that ( ) ( )F U cl V⊂ . 

Since ( )F x  is almost Xm -αψ -open, ( ) ( ( ( ))) ( ( ))F U int cl F U int cl V⊂ ⊂
. Therefore, F  is upper almost Xm -αψ -continuous.

Theorem (2) 

Let : ( , ) ( , )XF X m Y σ→  be a multifunction such that ( )F x  is open 
in Y  for each x X∈ . Then, the following properties are equivalent:  

1. F  is lower Xm -αψ -continuous; 

2. F  is lower almost Xm -αψ -continuous; 

3. F  is lower weakly Xm -αψ -continuous. 

Proof

(i) ⇒  (ii) and (ii) ⇒  (iii): The proofs of these implications are 
obvious.

(iii) ⇒  (i): Let x X∈  and V  be any open set such that 
( )F x V φ∩ ≠ . There exists an Xm -αψ -open set U  of Xm  such that 
( ) ( )F u cl V φ∩ ≠  for each u U∈ . Since ( )F u  is open, ( )F u V φ∩ ≠  for 

each u U∈  and hence F  is lower Xm -αψ -continuous. 
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Slightly mX -αψ -continuous Multifunctions
Definition 

Let ( , )XX m  be an m -space and ( , )Y σ  a topological space. A 
multifunction : ( , ) ( , )XF X m Y σ→  is said to be  

1. upper slightly Xm -αψ -continuous if for each XA m∈  and each
clopen set V  of Y  containing ( )F x , there exists an Xm -αψ -open set 
U  of Xm  containing x  such that ( )F U V⊂ , 

2. lower slightly Xm -αψ -continuous if for each x X∈  and each
clopen set V  of Y  such that ( )F x V φ∩ ≠  , there exists an Xm -αψ
-open set U  of Xm  containing x  such that ( )F u V φ∩ ≠  for each
u U∈ .

Theorem (1)

For a multifunction : ( , ) ( , )XF X m Y σ→ , the following are 
equivalent:  

1. F  is upper slightly Xm -αψ -continuous;

2. ( ) XF V m+ = -αψ - ( ( ))int F V  for each ( )V CO Y∈ ;

3. ( ))F V− -αψ - ( ( ))cl F V−  for each ( )V CO Y∈ .

Proof 

(i) ⇒  (ii): Let V  be any clopen set of Y  and ( )x F V+∈ . Then
( )F x V∈  . There exists an xm -αψ -open set U  of xm  containing 

x  such that ( )F U V⊂ . Thus ( )x U F V+∈ ⊂  and hence Xx m∈ -
αψ - ( ( ))int F V+ . Therefore, we have ( ) XF V m+ ⊂ -αψ - ( ( ))int F V+

. But , xm -αψ - ( ( )) ( )int F V F V+ +⊂ , we obtain ( ) XF V m+ = -αψ -
( ( ))int F V+ .

(ii) ⇒  (iii): Let K  be any clopen set of Y  . Then Y K−  is clopen
in Y  . By (ii) and Lemma 2.3., we have ( ) ( ) XX F K Y K m+− = − = -
αψ - ( ( )) [ Xint F Y K X m+ − = − -αψ - ( ( ))]cl F K− . Therefore, we
obtain ( ) XF K m− = -αψ - ( ( ))cl F K− .

(iii) ⇒  (ii): This follows from the fact that ( ) ( )F Y B F B− +− =  for
every subset B  of Y .

(ii) ⇒  (i): Let x X∈  and V  be any clopen set of Y  containing
( )F x . Then ( ) Xx F V m+∈ = -αψ - ( ( ))int F V+ . There exists an xm -

αψ -open set U  of xm  containing x  such that ( )x U F V+∈ ⊂
. Therefore, we have x U∈ , U is an xm -αψ -open set of xm  and 

( )f U V⊂ . Hence F  is upper slightly xm -αψ -continuous.

Theorem (2)

For a multifunction : ( , ) ( , )XF X m Y σ→ , the following are 
equivalent:  

1. F  is lower slightly xm -αψ -continuous;

2. ( ) XF V m− = -αψ - ( ( ))int F V−  for each ( )V CO Y∈ ;

3. ( ) XF V m+ = -αψ - ( ( ))cl F V+  for each ( )V CO Y∈ .

Proof 

(i) ⇒  (ii): Let ( )V CO Y∈  and ( )x F V−∈ . Then ( )F x V φ∩ ≠  and
by (i) there exists an xm -αψ -open set U  of xm  containing x  such 
that ( )F u V φ∩ ≠  for each u U∈ . Therefore, we have ( )U F V−⊂  and 
hence Xx U m∈ ⊂ -αψ - ( ( ))int F V− . Thus, we obtain ( ) XF V m− ⊂ -
αψ - ( ( ))int F V−  and by Lemma 2.3., ( ) XF V m− = -αψ - ( ( ))int F V− .

(ii) ⇒  (iii): Let ( )V CO Y∈ . Then ( )Y V CO Y− ∈  and by (ii) we
have ( ) ( ) XX F V F Y V m+ −− = − = -αψ - ( ( )) Xint F Y V X m− − = − -

αψ - ( ( ))cl F V+ . Hence we obtain ( ) XF V m+ = -αψ - ( ( ))cl F V+ .

(iii) ⇒  (i): Let x  be any point of X  and V  any clopen set of Y  such
that ( )F x V φ∩ ≠ . Then ( )x F V−∈  and ( ) ( )x X F V F Y V− +∉ − = −
. By (iii), we have Xx m∉ -αψ - ( ( ))cl F Y V+ − . By Lemma 2.4.,
there exists an Xm -αψ -open set of xm  containing x  such that 

( )U F Y V φ+∩ − = , hence ( )U F V−⊂ . Therefore, ( )F u V φ∩ ≠  for 
each u U∈  and F  is lower slightly xm -αψ -continuous.

Corollary (1) 

For a multifunction : ( , ) ( , )XF X m Y σ→ , where xm  has the 
property β , the following are equivalent:  

1. F  is upper slightly xm -αψ -continuous;

2. ( )F V+  is xm -αψ -open in ( , )XX m  for each ( )V CO Y∈ ;

3. ( )F V−  is xm -αψ -closed in ( , )XX m  for each ( )V CO Y∈ .

Corollary (2) 

For a multifunction : ( , ) ( , )XF X m Y σ→ , where xm  has the 
property β , the following are equivalent:  

1. F  is lower slightly xm -αψ -continuous;

2. ( )F V−  is xm -αψ -open in ( , )XX m  for each ( )V CO Y∈ ;

3. ( )F V+  is xm -αψ -closed in ( , )XX m  for each ( )V CO Y∈ .
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