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be the set of all complete finite discrete probability distributions. 
There are many information and divergence measures are exist in the 
literature of information theory and statistics. Csiszar [1,2] introduced 
a generalized measure of information using f-divergence measure given 
by
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Where :[0, )∞ →f  is a convex function and , ∈ΓnP Q

The Csiszar’s f-divergence is a general class of divergence measures 
that includes several divergences used in measuring the distance or 
affinity between two probability distributions. This class is introduced 
by using a convex function f, defined on (0, ∞). An important property 
of this divergence is that many known divergences can be obtained 
from this measure by appropriately defining the convex function f. 
There are some examples of divergence measures in the category of 
Csiszar’s f divergence measure. Bhattacharya divergence [3], Triangular 
discrimination [4], Relative J-divergence [5], Hellinger discrimination 
[6], Chi-square divergence [7], Relative Jensen-Shannon divergence 
[8], Relative arithmetic-geometric divergence [9], Unified relative 
Jensen-Shannon and arithmetic-geometric divergence of types [9]. In 
whole paper, we shall derive some well known divergence measures 
with help of new f-divergence measure. An inequality between new f 
divergence and Relative J- divergence measure has established which 
is shown below. Bounds of well known divergence measure in terms of 
Relative J- divergence measure have studied below. Numerical bounds 
of information divergence measure have also studied.

New f-Divergence Measure and Its Particular Cases
Given a function :[0, )∞ →f , a new f-divergence measure 

introduced by Jain and Saraswat [10,11]
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For all  , ∈ΓnP Q

, ( , ) (1)≥fS P Q f               (2.2)

Equality holds in (2.2) iff

1,2,..,= ∀ =i ip q i n              (2.3)

Corollary 4.1.1: (Non-negativity of new f-divergence measure)

Let  :[0, )∞ →f  

be convex and normalized, i.e..

f (1) = 0					             (2.4)

Then for any, P Q from (2.2) of proposition 2.1 and (2.4), we have 
the inequality

Sf (P,Q) ≥ 0					              (2.5)

If f is strictly convex, equality holds in (2.5) iff

[ , 2,........., ]= ∀ ∈i ip q i i n              (2.6)

and

( , ) 0≥fS P Q   and  ( , ) 0=fS P Q  iff  =P Q 		            (2.7)

Proposition 4.2: Let f1 & f2 are two convex functions and g=a f1+b 
f2 then Sg (P,Q)=a Sf1(P,Q)+b Sf2 (P,Q, where a&b are constants and 

, ∈ΓnP Q ,  

Now we give some examples of well known information divergence 
measures which are obtain from new f-divergence measure.

Chi-square divergence measure: If 2( ) ( 1)= −f t t  then Chi-square 
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divergence measure is given by
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Relative Jensen-Shannon divergence measure: If f (t)=log t then 
relative Jensen-Shannon divergence measure is given by
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 		             (2.9)

Relative arithmetic-geometric divergence measure: If f (t)=t log t 
then relative arithmetic-geometric divergence measure is given by
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Triangular discrimination: If 
2( 1)( ) , 0−

= ∀ >
tf t t

t
 then 

Triangular discrimination is given by
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Relative J-divergence measure: If f(t)=(t-1) log t then Relative 
J-divergence measure is given by
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 	         (2.12)

Hellinger discrimination: If ( ) (1 )= −f t t  then Hellinger 
discrimination is given by
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Unified relative Jensen-Shannon and arithmetic-geometric 
divergence of type α  

1[ ( 1)] [ 1], 0,1
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Then Unified relative Jensen-Shannon and Arithmetic-Geometric 
divergence measure of type α  is given by 

( )1

1

1

1

[ ( , ) [ ( 1] 1 , 0,1

2( ) ( , ) log , 0 ( , )

( , ) log 1
2 2

α
α

α

α α α

α

α

−

=

= +

=

  = − + − ≠   
  = = = = Ω  

 
  + +  = =      

∑

∑

∑

n

i i i
i

n
i

i
i i i

n
i i i i

i i

FG Q P q p q

qf t F Q P q Q P
p q

p q p qG Q P
q

   (2.15)

Inequality among New F-Divergence and Relative 
J-Divergence Measure

In the following theorem we have obtained an inequality between 
a new f-divergence measure and Relative J-divergence measure. The 
results are on similar lines to the result presented by Dragomir [12] and 
Jain and Saraswat [13,11,14].

Theorem 3.1: Assume that generating mapping :[0, )∞ →f  is 
normalized i.e. f (1)=0 and satisfies the assumptions.

(i) f is twice differentiable on (r,R), where 0 1≤ ≤ ≤ ≤ ∞r R  (ii) 
there exist constants m, M such that

2

"( )
(1 )

≤ ≤
+
tm f t M

t
  				                   (3.1)

If P, Q are discrete probability distributions satisfying the 
assumptions
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                            (3.2)

Then we have the inequality
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Proof: Define a mapping: :[0, ) , ( ) ( ) ( 1) log , 0∞ → = − − ∀ >m mf F t f t m t t t  

Then F m (.) is normalized and twice differentiable, since
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For all t ∈  (r,R), it follows that F m (.) is convex on (r,R). Applying 
non-negativity property of new f-divergence measure for F m (.) and 
the linearity property, we may state that

( 1)log0 ( , ) ( , ) ( , ) ( , ) ( , )

0 ( , ) ( , )
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⇒ ≤ −

F f t t f R

f R
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      (3.5)

From where the first inequality of (3.3) result 

Now we again Define a mapping: : (0, ) , ( ) ( 1) log ( )∞ → = − −M MF F t M t t f t , 
which is obviously normalized, twice differentiable and by (3.1), convex 
on (r,R). Applying non-negativity property of f-divergence functional 
for F M (.) and the linearity property, we obtain the second part of (3.3) 
i.e.

0 ( , ) ( , )
2

≤ −R f
M J P Q S P Q   			                 (3.6)

From (3.5) and (3.6) give the result (3.3).

Some Particular Cases
Using the result (3.3) of Theorem (3.1) we able to point out the 

following particular cases which may be interest in Information Theory 
and Statistics.

Result 6.1: Let ,  ∈ΓP Q n  be two probability distribution with the 
property that
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Then we have the following relation
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Proof: Consider the mapping  : ( , ) →f r R
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So function is convex and normalized i.e. (1) 0=f  

Define 
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2 2
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M g t m g t
r R

  	              (4.2)

Also Sf (P,Q)=F (Q,P) from (2.9)

From equation (2.9), (3.3), (4.2) then prove of the result (4.1).

Result 6.2: Let,   ∈ΓP Q n  be two probability distribution satisfying 
(3.2), then we have the following relation
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  	              (4.3)

Proof: Consider the mapping  : ( , ) →f r R
1( ) log , '( ) 1 log , "( ) 0, 0= = + = > ∀ >f t t t f t t f t t
t  

So function f is convex and normalized i.e. (1) 0=f  

Define 
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Hence function f is increasing, then we get
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Also ( , ) ( , )=fS P Q G Q P  from (2.10)

From equation (2.10), (3.3) & (4.4) prove of the result (4.3).

Result 6.3: Let P Q Î G n be two probability distributions satisfying 
(3.2), then we have the following relation
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Proof: Consider the mapping : ( , ) →f r R  
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So function f is convex and normalized i.e. f (1)=0
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Also ( ) 21,  ( , )
4
χ=fS P Q P Q  (P,Q) from (2.8)

From equation (2.8), (3.3) & (4.6) prove of the result (4.5).

Result 6.4: Let   ∈ΓP Q n  be two probability distributions satisfying 
(3.2), then we have the following relation

4 4( , ) ( , ) ( , )
(1 ) (1 )

≤ ∆ ≤
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R R r r
 	               (4.7)

Proof: Consider the mapping  : ( , ) →f r R
2
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"( ) 0≥f t   and  (1) 0=f , so function f is convex and normalized.

Define

 
2 2

3 2 2
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 [ , ][ , ]

2 2sup ( ) , inf ( )
(1 ) (1 )∈∈

= = = =
+ +t r Rt r R

M g t m g t
r r R R                 (4.8)

Since 1( , ) ( , )
2

= ∆fS P Q P Q  from equation (2.11), from equation 

(2.11), (3.3) & (4.8) prove of the result (4.7).

Result 6.5: Let,   ∈ΓP Q n  be two probability distributions satisfying 
(3.2), and then we have the following relations

( , ) ( , ) ( , )
2(1 ) 2(1 )

α α
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R r  	           (4.10)

Proof: Consider the mapping : ( , ) →f r R  and from equation 

(2.14), then we get
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If  ( ) ' 0
1
α
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−

g t t

If α <1 then function g(t) is increasing and if  α >1 then function 
g(t) is decreasing, we get
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Also ( , ) ( , )α= ΩfS P Q Q P  from (2.15)

From equation (3.3), (2.14), (2.15), (4.11) & (4.10) prove of the 
results (4.9) & (4.10).

Corollary 6.5.1: For α =1/2 of equations (4.9) and (4.10) and Let,   
  ∈ΓP Q n  be two probability distributions satisfying (3.2), then we have 

the following inequality

( , ) 4 1 , ( , )
2(1 ) 2 2(1 )
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 1α <   	             (4.14)
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R R
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Where 1 , , ,
2 2 2

 +  + +     − =            

P Q P Q P QB Q h Q and B Q  is Bhattacharya

divergence measure [1].

Numerical Illustrations
Example 7.1: Let P be the binomial probability distribution for the 

random valuable X with parameter (n=8 p=0.5) and Q its approximated 
normal probability distribution

Here  2 ( , )χ P Q =0.00145837 and  ( , )RJ P Q =0.00151848

It is noted that r=(0.774179933) (1.050330018)
2

≤ ≤
p R    

We shall consider the upper and lower bounds of 
2F (P,Q) , (P,Q), G(P,Q) & ( , )χ∆ P Q  are following.

(i) 
1 1( , ) ( , ) ( , )

2(1 ) 2(1 )
≤ ≤

+ +R RJ P Q F Q P J P Q
R r  

1 ( , ) 0.00042791
2(1 )

=
+ RJ P Q

r

Lower bound: 0.00042791 ≤ F (Q,P) ≤ 0.24386318
1 ( , ) 0.24386318

2(1 )
=

+ RJ P Q
R

 The width of the interval is 

0.243435

Upper bound:			

( , ) ( , ) ( , )
2(1 ) 2(1 )

≤ ≤
+ +R R
r RJ P Q G P Q J P Q

r R

Lower bound:

( , ) 0.000331
2(1 )

=
+ R
r J P Q

r

Upper bound:

( , ) 0.256137
2(1 )

=
+ R
R J P Q

R

0.000331  G(P,Q)  0.256137≤ ≤

The width of the interval is 0.255806

iii  
2 2( , ) (P,Q) ( , )

(1 ) (1 )
≤ ∆ ≤

+ +R RJ P Q J P Q
R R r r  

Lower bound:

2 ( , ) 0.001410
(1 )

=
+ RJ P Q

R R

Upper bound: 
2 ( , ) 2.15222533

(1 )
=

+ RJ P Q
R R

0.001410  (P,Q) 1.456097≤ ∆ ≤

The width of the interval is 1.454687

iv  
2 2

2
2 2

4 4( , ) ( , ) ( , )
(1 ) (1 )

χ≤ ≤
+ +R R
r RJ P Q P Q J P Q
r R  

Lower bound:

24 ( , ) .002052
(1 )

=
+ R
r J P Q

r

Upper bound:
24 ( , ) 2.15222533

(1 )
=

+ R
R J P Q

R

 20.002052 (P,Q) 2.15222533χ≤ ≤

The width of the interval is 2.150173.
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