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Abstract
Physics-based image formation models enable computationally obtaining meaningful information by processing other forms of information which can be acquired 
through measurements. In practical situations however, the inner functionalities of the system which create the impulse response function are usually unknown, and 
due to noise, measurements are unreliable. Before Deep Neural Networks (DNNs) taking over, Compressed Sensing (CS) techniques were primarily being used to 
address this lack of information by imposing assumptions into the problem. But this switch to DNNs came with the price of mass data acquisition for training to leap 
over the never-ending problem of algorithmic fidelity in CS methods. Recently, deep image prior and untrained or semi-trained networks, while leveraging the power 
of DNNs and algorithms, have become successful to be considered as potential answers to the desire of finding a cost-efficient yet powerful solution. In this paper, 
we briefly have a look at the recent breakthroughs conducted over this concept to solve various imaging problems.
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Introduction

Deep Neural Networks (DNN) has led to state-of-the-art results 
in signal processing and inverse problems with a superior accuracy. 
Furthermore, their high capability in handling nonlinearity have 
induced a common compliance in simply choosing data oriented 
supervised DNN models over conventional algorithmic approaches [1-
4]. But this shift in paradigm comes with the expenses of preparing 
massive datasets. This requirement becomes increasingly serious 
when the expenses rise dramatically for domains such as biological 
or astronomical imaging. Furthermore, trained DNNs suffer from 
generality issue, and they are only suitable for specific tasks that they 
were trained for. Optimized feature spaces are built upon a set of 
features which were given in the training dataset and the performance 
of DNN models may drop dramatically on totally different test samples.

After the introduction of Deep Image Priors (DIP), untrained 
networks have gained interest for signal reconstruction and inverse 
problems [5]. It was shown that the feature extraction property of 
Convolution Neural Networks (CNN), if trained on a single image of 
interest, can effectively produce an organic image prior. This image prior 
enables the network to accurately reproduce the image with a reduced 
set of features which filters out high spatially varying structures such as 
noise. This idea was initially demonstrated on various linear problems 
such as denoising, restoration, inpainting, and super-resolution.

Meanwhile, DNN priors found their way into nonlinear inverse 
problems and Compressed Sensing (CS) as well [6,7]. A DNN is 
versatile enough to allow integration of mathematical extensions, like 
signal formation algorithm, to the cost function. The resulting model is 
capable of inversely reconstructing the desired information from a set 
of input measurements through an optimization process. Furthermore, 
the learned regularization in CNNs has shown a promising performance 
in solving undetermined problems. The inherent generality and 

controllability of untrained networks in addition with their precision, 
effectively fills the gap between the mathematical approaches relying 
on inaccurate hand-crafted priors and supervised DNNs requiring 
extensive amount of training information.

Literature Review 

Untrained networks in imaging problems

Quantitative Phase Microscopy (QPM) refers to a category 
of algorithmic imaging approaches which enables numerical 
reconstruction of phase information of microscopic samples by a 
set of intensity measurements and allows imaging of label-free 
transparent phase specimen e.g. unstained cells and tissues [8]. 
The underdetermined and nonlinear nature of phase reconstruction 
problems mandates an inverse procedure based on the physics of 
the image formation process which is generally challenging to solve 
without obtaining multiple diversified measurements or having a 
precise knowledge about the system [9].

As demonstrated in, an encoder-decoder DNN accompanied with 
the free-space optical propagation algorithm can reconstruct the phase 
image of transparent micro-samples using the intensity distribution of 
their coherent diffraction pattern measured on a sensor array [10]. 
The physics-based model designed on top of the untrained network 
produces an optimized learned prior which enables recovering the 
phase information without any training or prespecified constraint. Even 
though in the off-axis holographic microscopy method used in this work, 
the forward problem is well-defined, and the measured information is 
enough to directly retrieve the phase and amplitude terms, the high 
quality of the outcomes clearly shows the performance gained by the 
sample-specific deep image priors [11]. 

However, for many applications, the problem is highly 
underdetermined due to poorly known system under-sampled 
measurements. Errors originating from noise, aberrations, or 
misalignments may also cause this issue. One great advantage of 
the physics-based optimization formulation is enabling incorporation 
of multiple physical models to retrieve different sorts of data 
simultaneously. This allows even solving a problem without properly 
knowing the crucial system parameters and finding them during the 
optimization [12,13].

In a successful demonstration of this self-calibrating model 
concept, a deep decoder network could reconstruct a phase image 

Untrained Deep Networks in Computational Imaging and 
Sensing: A Short Review



J Phys Math, Volume 12:5, 2021Niknam F

Page 2 of 3

using multiple defocus intensity measurements without knowing their 
axial displacement values (Figure 1) [14,15]. The self-calibration 
part is made of an aberration estimation model consisting of Zernike 
polynomials which are densely connected to a layer of neurons. 
This model aims to estimate the wave front aberrations at the pupil 
plane caused by defocus for each measurement. Hence, through the 
optimization steps, a hypothetical phase image will be reconstructed 
that corresponds to the observable field on the sensor plane based on 
the estimated coherent pupil functions of the system.

Another existing challenge for computational imaging modalities is 
fast imaging with compressive measurements. Particularly, in coherent 
imaging approaches, the phase map or phase-amplitude complex-
valued mixed image is difficult or impossible to retrieve by a single 
magnitude-only measurement which clearly limits the throughput. 
Traditionally, one need to obtain multiple phase shifted images or 
employ off-axis geometry to resolve this issue [9,16]. Alternatively, the 
object field can be inversely recovered using coherent propagation 
principles while being constrained by strict sample-dependent 
assumptions such as sparsity [17].

One obvious example is digital holographic imaging which normally 
requires multiple measurements, each with a well-characterized tweak 
in a system parameter, to robustly recover the whole phase/amplitude 
image in an in-line scheme. However, the same information could be 
retrieved using an off-axis scheme by a spatial phase-shift imposed 
by a precisely known angle between the two interfering beams of 
object and reference. The ultimate objective in such a problem is to 
compressively reconstruct the whole complex-valued object field with 
a single shot which not only removes all these complications, but also 
enables real-time image acquisition by a simple setup. But such a 
severe under-sampling makes the problem extremely ill-posed that 
cannot be solved without inflicting tight restrictions on the solutions by 
regularization.

Discussion

In a recent demonstration, holograms captured from cell specimen 
by a lensless in-line holographic microscope were unprecedentedly 
reconstructed using an untrained deep decoder network by a single 
hologram [18]. The accuracy of the results was quite comparable with 
of those obtained by traditional multi-image-based phase recovery 
techniques using 6 to 8 holograms. This was simply achieved by 
enforcing some general regularization on the network such as l2 or 
the so-called weight decay and periodic network randomization. Such 
accomplishments for under-sampled measurements by untrained 
networks were also achieved for lensless 2D imaging, single-shot 
video acquisition, and hyperspectral imaging as well [19].

Although untrained networks have shown impressive results in 
computational imaging and CS problems and, by far, outperformed 
traditional methods, they are slow, computationally expensive, and 
their quality of outcomes greatly depends on the network architecture. 
In another attempt for under-sampled signal reconstruction, some 
enhancements in deep decoder network’s architecture and its 
optimization procedure led to significant improvements in fast MRI 
imaging, both in speed and fidelity respect to the prior implementations 
of untrained networks for similar applications and surpassed the 
traditional sparsity-based CS techniques in quality [20]. The newly 
suggested Conv-Decoder can reconstruct under-sampled MRI images 
closely resembled with the state-of-the-art end-to-end supervised DNN 
models and thanks to the proposed guided initialization, it can provide 
the same results 10x faster.

Conclusion

The considerable success of learned priors in a wide range of 
computational imaging and sensing applications without making any 
dramatic change in the primary idea implies that untrained networks 
will probably perform effectively on other inverse problems as well. 
Replacing the predefined priors and parameters with the learned ones 
can create a generalized model structure against various conditions 
for which the only variable would be the physical model. A DNN 
incorporated with a physical model is general enough to be used 
relatively untouched for any application. Moreover, the demonstrated 
ability of UDNs in solving underdetermined ill-posed problems that 
were once impossible to solve with a proper quality indicates it would 
find a greater audience for various applications in the future. Although 
optimization speed and memory intensiveness of UDNs are still 
open problems, they will have less importance in the future with the 
continuous annual growth in GPUs and TPUs power, or the possible 
emergence of publicly available quantum computers and quantum-
computer-compatible neural networks frameworks.
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