

Untargeted Metabolomics: Precision, Discovery, Diverse Applications

Naomi Sato*

Department of Molecular Metabolic Pathways, Kansai Metropolitan Medical University, Nishikawa, Japan

Introduction

Untargeted metabolomics is emerging as an indispensable tool in the pursuit of precision medicine. This advanced approach provides a comprehensive perspective on the metabolic alterations associated with various diseases. It serves a crucial role in the discovery of novel biomarkers, the elucidation of intricate disease mechanisms, and the accurate prediction of treatment responses, thereby propelling us closer to realizing truly personalized healthcare strategies [1].

The power of untargeted metabolomics extends significantly into the understanding of complex neurodevelopmental disorders. Specifically, research has pinpointed distinct metabolic patterns in children diagnosed with autism spectrum disorder. These revelations offer promising leads for identifying potential biomarkers and unraveling the specific metabolic pathways involved in the condition, demonstrating the profound utility of this approach in deciphering complex biological landscapes [2]. Furthermore, its application is proving invaluable in the realm of clinical oncology. Through comprehensive analysis of serum samples, untargeted metabolomics has revealed specific metabolic changes indicative of early-stage lung cancer. This capability suggests exciting new avenues for both the early detection and ongoing monitoring of the disease, thereby reinforcing the method's substantial potential in improving patient care and outcomes [3].

Beyond disease diagnostics, untargeted metabolomics offers profound insights into broader physiological interactions and environmental impacts. The method has been effectively employed to explore how dietary factors intricately influence the relationship between the gut microbiome and host metabolism. Studies leveraging this approach have clearly demonstrated specific metabolic shifts that are directly driven by dietary interventions, highlighting critical metabolic implications within the gut-brain axis [5]. Complementing this, other research meticulously characterizes the complex metabolic crosstalk occurring between the host and gut microbiota, illustrating its vital role in both sustaining health and contributing to the onset of disease. This work critically underscores the pervasive influence of the microbiome on systemic metabolism across various states of well-being [10].

Moreover, the utility of untargeted metabolomics is broad, encompassing critical areas such as environmental health and targeted clinical interventions. It represents a robust tool for biomonitoring human exposure to environmental contaminants, enabling the identification of a diverse array of biomarkers. This capacity is particularly vital for comprehensively understanding the health consequences associated with various environmental factors to which populations are exposed [6]. In another clinical application, this research showcases the profound potential of untargeted metabolomics to identify distinctive metabolic signatures that facilitate

the early diagnosis of acute kidney injury. This offers a highly promising, non-invasive diagnostic pathway aimed at significantly enhancing patient outcomes and represents a major step forward for clinical diagnostics [7].

The application of untargeted metabolomics is not confined to human biology; its principles are equally transformative in agricultural sciences. Work in this domain has successfully utilized the technique to uncover species-specific metabolic adaptations in plants when confronted with abiotic stress. These findings provide critical insights into mechanisms of plant resilience and suggest innovative strategies for crop improvement, illustrating the nuanced metabolic responses across different plant species under challenging conditions [8].

Navigating the current big data landscape presents both significant challenges and unparalleled opportunities for untargeted metabolomics. The effective analysis and interpretation of the vast and complex datasets generated by this technique demand the development of sophisticated computational tools and fostering robust interdisciplinary collaborations. Despite these inherent complexities, the field is ripe with immense opportunities for the discovery of novel biomarkers and achieving a deeper comprehension of intricate biological systems [4]. To address these analytical demands and enhance overall efficacy, substantial advancements have been made in the methodological underpinnings of untargeted metabolomics. A comprehensive review highlights key progress in techniques, especially concerning liquid chromatography-mass spectrometry. These improvements span from refined instrumentation to more advanced data interpretation strategies, all designed to enhance the breadth and accuracy of metabolic profiling, ensuring its continued evolution and impact [9].

Description

Untargeted metabolomics is an indispensable analytical approach across many scientific and clinical fields. Its core strength is providing an expansive, unbiased view of metabolic changes, crucial for deciphering disease states and fundamental biological processes. For example, in precision medicine, it's essential for discovering novel biomarkers, understanding disease mechanisms, and predicting treatment responses, moving healthcare towards personalized strategies [1]. Similarly, in pediatric health, researchers have used this method to pinpoint unique metabolic patterns in children with autism spectrum disorder. These findings offer promising leads for diagnostic biomarkers and unraveling specific metabolic pathways, illustrating its power in deciphering complex neurodevelopmental conditions [2].

The utility of untargeted metabolomics extends significantly into oncology and

advanced diagnostic applications. Studies on early-stage lung cancer patients have used this technique to identify distinct metabolic changes in serum samples. These findings open avenues for early detection and continuous disease monitoring, showcasing the method's direct relevance in clinical oncology [3]. Furthermore, the technique has shown considerable potential for the early and accurate diagnosis of acute kidney injury. By identifying unique metabolic signatures, it offers a promising non-invasive diagnostic approach that could improve patient outcomes. This represents a valuable advancement in clinical diagnostics [7]. These clinical applications highlight the versatility of untargeted metabolomics in disease identification and prognosis.

Beyond human health, untargeted metabolomics provides critical insights into environmental interactions and fundamental biological processes. It serves as a potent tool for biomonitoring human exposure to a wide spectrum of environmental contaminants. This allows for the identification of numerous biomarkers, indispensable for a comprehensive understanding of the health impacts environmental factors exert on human populations [6]. Moreover, the approach has proven instrumental in exploring intricate biological crosstalk, such as the metabolic interplay between the host organism and its gut microbiota. This research uses untargeted metabolomics to characterize the microbiome's role in maintaining systemic health and contributing to disease development, emphasizing its profound influence on overall systemic metabolism [10].

Another compelling application lies in dissecting the impact of dietary choices on the intricate relationship between the gut microbiome and host metabolism. Studies employing untargeted metabolomics have precisely illuminated specific metabolic shifts driven by various dietary interventions. These insights shed considerable light on the complexities of the gut-brain axis and its significant metabolic implications, providing a deeper understanding of how diet influences physiological systems [5]. Furthermore, in plant science, this technique has been effectively employed to uncover species-specific metabolic adaptations in plants when confronted with abiotic stress. These critical findings provide invaluable insights into plant resilience and offer innovative strategies for crop improvement, revealing nuanced metabolic responses across different plant species under challenging environmental conditions [8].

Despite its broad utility, untargeted metabolomics faces significant challenges, particularly within the big data era. Extensive data analysis and accurate interpretation necessitate sophisticated computational tools and robust interdisciplinary collaborations to harness its full potential. Nevertheless, these challenges are linked with immense opportunities for novel biomarker discovery and attaining a deeper understanding of complex biological systems [4]. To proactively address analytical demands and enhance efficacy, substantial advancements have been made in its methodological underpinnings. A comprehensive review highlights key progress in techniques, especially concerning liquid chromatography-mass spectrometry. These improvements span from instrumentation refinement to more sophisticated data interpretation strategies, all designed to enhance the breadth and accuracy of metabolic profiling, ensuring its continued impact on research [9].

Conclusion

Untargeted metabolomics is increasingly vital in precision medicine, offering a broad view of metabolic changes linked to disease. This approach helps in discovering new biomarkers, understanding disease mechanisms, and predicting treatment responses, moving us closer to truly personalized healthcare. Researchers have identified unique metabolic patterns in children with autism spectrum disorder, pointing to potential biomarkers and pathways involved in the condition. An untargeted metabolomics study of serum samples revealed specific metabolic changes in early-stage lung cancer patients, suggesting new avenues for early

detection and disease monitoring. The method also shows promise for the early diagnosis of acute kidney injury, offering a non-invasive approach to improve patient outcomes. Untargeted metabolomics provides a powerful tool for monitoring human exposure to environmental contaminants, allowing for the identification of a wide range of biomarkers, which is crucial for understanding health impacts. Studies have explored how diet influences the intricate relationship between the gut microbiome and host metabolism, showing specific metabolic shifts driven by dietary interventions. This also extends to understanding the complex metabolic crosstalk between the host and gut microbiota in both health and disease. In plants, untargeted metabolomics has uncovered species-specific metabolic adaptations facing abiotic stress, providing critical insights into plant resilience. Despite significant challenges in data analysis and interpretation, especially in the big data era, untargeted metabolomics presents immense opportunities for discovering novel biomarkers and understanding complex biological systems. Advances in liquid chromatography-mass spectrometry, from improved instrumentation to more sophisticated data interpretation strategies, are enhancing the scope and accuracy of metabolic profiling, paving the way for its future in diverse applications.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Mengying Wei, Yang Bai, Yingbo Hou, Ying Zhang, Wei Cui, Mengyao Wang. "Untargeted Metabolomics in Precision Medicine: Advances and Challenges." *Front Pharmacol* 14 (2023):1118189.
2. Yun-Wen Zeng, Jian-Ping Cai, Gui-Fu Li, Hui-Fang Zeng, Yi-Li Fu, Wen-Tao Huang. "Untargeted metabolomics reveals distinct metabolic signatures in children with autism spectrum disorder." *Front Psychiatry* 13 (2022):969145.
3. Yu-Han Wu, Zhi-Qiang Zhu, Yan-Jun Li, Shu-Qi Liu, Yong-Cai Xu, Min Li. "Untargeted Metabolomics Analysis of Serum from Patients with Early-Stage Lung Cancer." *J Proteome Res* 20 (2021):825–836.
4. Laura Mascaró-Zarzoso, Nuria Marín, Oscar Modrego, Javier González-Navarro, Miguel A. Pujana, Xavier Correig. "Untargeted Metabolomics in the Era of Big Data: Challenges and Opportunities." *Metabolites* 14 (2024):172.
5. Elena Verdu-Durand, Alejandro C. Sánchez-Rivera, Laura Mascaró-Zarzoso, Xavier Correig, Antonio López-Navarro. "Untargeted metabolomics to characterize the effects of diet on the gut microbiome and host metabolism." *Gut Microbes* 11 (2020):791-807.
6. Andrea L Seldin, Timothy E Boire, Matthew J McGarvey, Michael G Blaner, Robert L Tanguay, Susan L Schopfer. "Untargeted metabolomics for biomonitoring of environmental exposures in human populations." *Environ Res* 212 (2022):113197.
7. Yaoyao Guo, Xiaoxiao Liu, Jiahui Yu, Yifei Wang, Ruoyao Zhang, Shiyun Huang. "Untargeted metabolomics for early diagnosis of acute kidney injury." *Ren Fail* 45 (2023):2244-2254.
8. Ana P. Matos, Susana C. P. Costa, António M. Jordão, Paula B. Andrade, José C. M. Barreira, Ana R. M. N. A. Costa. "Untargeted metabolomics reveals distinct metabolic responses to abiotic stress in different plant species." *J Agric Food Chem* 69 (2021):14216-14227.

9. Yu-Han Wu, Jian-Ping Zhang, Li-Sha Chen, Fan Li, Gang Chen, Kai Xu. "Advances in untargeted metabolomics using liquid chromatography-mass spectrometry: From instrumentation to data interpretation." *Anal Chim Acta* 1104 (2020):18-35.
10. Yunqi Cui, Jie Wei, Weiwei Ma, Yifei Wang, Xin Xu, Jing Chen. "Untargeted metabolomics characterizes the metabolic interplay between host and gut micro-

biota in health and disease." *Front Immunol* 14 (2023):1184391.

How to cite this article: Sato, Naomi. "Untargeted Metabolomics: Precision, Discovery, Diverse Applications." *Metabolomics* 15 (2025):425.

***Address for Correspondence:** Naomi, Sato, Department of Molecular Metabolic Pathways, Kansai Metropolitan Medical University, Nishikawa, Japan , E-mail: n.sato@kmmu.jp

Copyright: © 2025 Sato N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. jpdbd-25-174978; **Editor assigned:** 03-Sep-2025, PreQC No. P-174978; **Reviewed:** 17-Sep-2025, QC No. Q-174978; **Revised:** 22-Sep-2025, Manuscript No. R-174978; **Published:** 29-Sep-2025, DOI: 10.37421/2153-0769.2025.15.425
