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Introduction
A covering array CA(N;t,k,v) is an array of size N × k where every 

subarray of t columns contains as a row each t-tuple over Ζv={0,1,...,v-1}
at least once [1]. The parameter t is known as the strength of the covering 
array. A subarray of t columns covers a t-tuple x if the subarray contains 
x as a row. A covering array CA(N;t,k,v) is optimal if N is the minimum 
number of rows needed to cover at least once each t-tuple over Ζv in 
every subarray of t columns [2]. This minimum number of rows is the 
covering array number of t, k, v, and it is denoted by CAN(t,k,v) [3].

There are three isomorphisms in covering arrays: (a) permutation 
of rows, (b) permutation of columns, and (c) permutation of symbols 
in a column. Any combination of these three operations produces an 
isomorphic covering array; therefore, there are N!k!(v!)k covering arrays 
isomorphic to a CA(N;t,k,v) [4]. On the other hand, non-isomorphic 
covering arrays cannot be transformed among them by permutations 
of rows, columns, and symbols. A symbol permutation in a column is 
called a relabeling of the column [5].

For particular values of N, t, k, v, the set of all CA(N;t,k,v) is 
partitioned in classes C0, C1, ..., Cn-1 of isomorphic covering arrays 
[6-9]. In every isomorphism class C0, C1,...,Cn-1 we select one specific 
covering array, the canonical one, to be the representative of the class. 
For X=CA(N;t,k,v) let λ(X) be the vector of length N · k that is obtained 
by arranging the elements of X in column-major order. The array X is 
canonical if for all Y isomorphic to X the vector λ(X) is smaller than or 
equal to λ(Y ) in lexicographic order [10-12].

For example, there are three isomorphism classes in the set of all 
CA(6;2,7,2), and the following three covering arrays CA(6;2,7,2) are 
the canonical representatives of the classes:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1
1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0

     
     
     
     
     
     
     
          
     

Let A be the first of these three covering arrays. Then, λ(A)=(0,0, 
0,0,1,1,0,0,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,
0,1,0) [13]. For each of the 6!7!(2!)7 covering arrays B=CA(6;2,7,2) 

isomorphic to A, the vector λ(A) is smaller than or equal to λ(B) in 
lexicographic order.

The classification of covering arrays consists in generating one 
element of every isomorphism class [14]. If there are n isomorphism 
classes we say there are n non-isomorphic CA(N;t,k,v). Some works 
addressing the classification problem [15]. A study [16] proved that 
the covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and 
CA(256;7,16,2) are optimal. However, to the best of our knowledge, 
the number of isomorphism classes for these four covering arrays is 
unknown. By using two parallel versions of the algorithm reported 
earlier [17], we found that there is only one isomorphism class for each 
of these covering arrays. Therefore, the covering arrays CA(32;4,13,2), 
CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2) are optimal and 
unique.

An (n,M,d) binary code is a set of M vectors of length n over Ζ2, 
called codewords, whose minimum mutual distance is d, that is, any 
two distinct codewords differ in at least d entries, and there is at least 
one pair of codewords that differ in exactly d entries. If any linear 
combination of codewords is also a codeword then the code is linear, 
otherwise the code is nonlinear. A code with minimum distance d can 
correct [(d-1)/2] or fewer errors. An (n,M,d) code is optimal if M is 
the maximum number of codewords with length n having minimum 
distance d.

In this work we found that the nonlinear codes (13,32,6), (14,64,6), 
(15,128,6), (16,256,6) are equivalent respectively to the covering arrays 
CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), CA(256;7,16,2). These 
four codes are known to be optimal and unique; their optimality was 
proven in a study [1], the uniqueness of the first three codes was proven 
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Abstract
A covering array CA(N;t,k,v) is an N × k array over v symbols where every N × t subarray contains as a row each 

t-tuple over v symbols at least once. Two covering arrays are isomorphic of one can be obtained from the other by
permutations of rows, columns, and symbols in the columns. Isomorphic covering arrays form equivalence classes
in the set of all CA(N;t,k,v). The problem of classifying covering arrays consists in generating one element of each
isomorphism class; if there is only one isomorphism class, then CA(N;t,k,v) is unique. This work introduces two parallel 
versions of a previously reported algorithm to classify covering arrays. By using these algorithms we determine the
uniqueness of the covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2). We also find
that these four covering arrays are equivalent respectively to the unique error-correcting codes (13,32,6), (14,64,6),
(15,128,6), and (16,256,6), where (n,M,d) denotes a code with word length n, M code words, and minimum distance d.
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in a study [6], and the uniqueness of the last one was shown in a study 
[16]. Therefore, any CA(32;4,13,2) is a (13,32,6) code, and reciprocally 
any (13,32,6) code is a CA(32;4,13,2); and the same applies for the other 
three pairs of covering arrays and codes: CA(64;5,14,2) and (14,64,6), 
CA(128;6,15,2) and (15,128,6), and CA(256;7,16,2) and (16,256,6).

The rest of the document is organized as follows: Section 2 presents 
the parallel algorithms to classify covering arrays; Section 3 describes 
the computational experimentation to determine the uniqueness 
of CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), CA(256;7,16,2); 
Section 4 shows the equivalence of these covering arrays with the codes 
(13,32,6), (14,64,6), (15,128,6), (16,256,6); and Section 5 contains the 
conclusions of the work.

Parallel Classification Algorithms
This section describes the sequential classification algorithm 

introduced in a study [9], and develops to parallel versions of it.

Previous sequential algorithm

The sequential algorithm of a study [9] classifies CA(N;t+1,k+1,v) by 
testing all possible juxtapositions of v covering arrays A0=CA(N0;t,k,v), 

A1=CA(N1;t,k,v),..., Av-1=CA(Nv-1;t,k,v) where 
1

0

v

i
i

N N
−

=

= ∑ . When a

juxtaposition forms a CA(N;t+1,k,v), a column formed by Ni elements 
equal to i for 0 ≤ i ≤ v-1 is added to the CA to obtain a CA(N;t+1,k+1,v) 
as illustrated in the following diagram:
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Since the algorithm explores all possible ways of constructing 
CA(N;t+1,k+1,v), the constructed covering arrays cover all 
isomorphism classes. None of the constructed CA(N;t+1,k+1,v) is 
canonical, and there may be isomorphic arrays in the results. To obtain 
only the canonical representatives of the isomorphism classes, the 
constructed covering arrays are canonized and duplicates are removed.

The algorithm begins by determining the multisets Sj={N0,N1,...,Nv-1} 

of v elements such that Ni ≥ CAN(t,k,v) and 
1

0

v

i
i

N N
−

=

= ∑ ; these multisets 

give the allowed number of rows for the covering arrays A0,A1,...,Av-1 to 
be juxtaposed. For each Sj={N0,N1,...,Nv-1}, the algorithm constructs v 
sets D0,D1,...,Dv-1, where for 0 ≤ i ≤ v-1 the set Di contains the non-
isomorphic covering arrays CA(Ni;t,k,v) having Ni rows. For example, 
for the instance CA(29;3,5,3) the algorithm checks all juxtapositions of 
three covering arrays with strength two, four columns, and number of 
rows given by S0={9,9,11}, or by S1={9,10,10}. For the multiset S0={9,9,11} 
the sets D0 and D1 will contain the non-isomorphic CA(9;2,4,3), and the 
set D2 will contain the non-isomorphic CA(11;2,4,3).

The sets D0,D1,...,Dv-1 are used to form a set Pj=D0 × D1 × ··· × Dv-1= 
{(A0,A1,...,Av-1): Ai∈Di for 0 ≤ i ≤ v-1)} which contains all ways of 
combining the non-isomorphic covering arrays with number of rows 
given by Sj. Finally, for each tuple T=(A0,A1,...,Av-1) ∈ Pj there are 
generated all arrays J=[A0;A′1,…,A′ v-1] where A0 is placed unchanged 
and for1 ≤ i ≤ v-1 the array A′i is derived from the non-isomorphic 
Ai=CA(Ni;t,k,v) by a combination of a column permutation and a 
symbol permutation in each of the k columns. Here [A0, A′1,…., 
A′v-1] denotes the vertical juxtaposition of the arrays A0, A′1,...,A′v-1. 

If J is a CA(N;t+1,k,v), then a column E=(0 1 ··· v-1)T formed by Ni 
elements equal to i for 0 ≤ i ≤ v-1 is added to J to form a covering array 
(JE)=CA(N;t+1,k+1,v).

In this way, from the non-isomorphic covering arrays in T there 
are generated all possible juxtapositions of v covering arrays that are 
isomorphic to the v covering arrays in T. Since this is done for each T in 
Pj, and for each Pj, we have that all possible juxtapositions of v covering 
arrays of strength t and k columns are explored to see which of them 
form covering arrays of strength t+1.

Algorithms 1 and 2 taken from a study [9] implement the steps 
that were described in the previous paragraph. The add column() 
function constructs the k!(v!)k arrays A′i that can be derived from Ai 
by permutations of columns and symbols in the following way: on 
every call, the columns of Ai not currently copied to a column of A′i are 
copied one a time to column r of A′i, but each column is copied v! times, 
one for each symbol permutation. The add column() function fills the 
column 0 of the blocks A′1,...,A′v-1, then the function fills the column 
1 of the same blocks,and so on; in this way, the array J is constructed 
one column at a time. However, if the current partial array J with r<k 
columns is not a covering array of strength t+1, then the remaining 
columns of the arrays A′′1,...,A′v-1 are not filled, and so not all k!(v!)k 
arrays A′i isomorphic to Ai are generated.

First parallel version

The first parallel approach is to parallelize the for-each loop located 
at line 7 of Algorithm 1. For each multiset {N0,N1,...,Nv-1} the body of 

this loop is executed 
1

0

| D |
v

i
i

−

=
∏ times, where |Di| is the number of non-

isomorphic CA(Ni;t,k,v). If the number of multisets Sj={N0,N1,...,Nv-1}, 
or the number of non-isomorphic CA(Ni;t,k,v) in the sets Di is large, 
then the body of the for-each loop is executed many times. The tuples 
T=(A0,A1,...,Av-1)∈Pj can be processed independently of each other; so a 
first parallel approach is to divide the processing of the tuples T among 
all available processors.

4 APPL. COMPUT. MATH., V.XX, N.XX, 20XX

Algorithm 1: juxtapose algorithm(N, k′, t′, v) [9]

1 k ← k′ − 1; t ← t′ − 1; R ← ∅;
2 S ← all multisets {N0, N1, . . . , Nv−1} such that Ni ≥ CAN(t, k, v) and N =

∑v−1
i=0 Ni;

3 foreach S ∈ S do
4 for i = 0, . . . , v − 1 do
5 Di ← all non-isomorphic CA(Ni; t, k, v);

6 P = D0 ×D1 × · · · ×Dv−1 = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)};
7 foreach T = (A0, A1, . . . , Av−1) ∈ P do
8 J ← array(N, k);

9 copy A0 to the first N0 rows and k columns of J ;

10 add column(1, 0);

11 canonize the covering arrays CA(N ; t+ 1, k + 1, v) in R and remove duplicates;

Algorithm 2: add column(i, r) [9]

1 foreach column j of Ai not currently assigned to a column of block A′
i of J do

2 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
3 copy column j of Ai to column r of A′

i and permute its symbols using ε;

4 if i = v − 1 then
5 if r < t or is covering array(J, r) = true then
6 if r = k − 1 then
7 if (JE) �∈ R then R ← R ∪ {(JE)};
8 else add column(1, r + 1);

9 else add column(i+ 1, r);

This parallel version is implemented in MPI using the master-slaves model. The master
process executes the operations shown in Algorithm 1, and sends the tuples T to the slaves,
which execute the operations of Algorithm 2. A tuple T is sent to a slave as soon as the slave
finishes the processing of a previous tuple; so the partitioning of the tuples T among the slaves
is not static. The CA(N ; t+1, k+1, v) constructed by the slaves are sent to the master process,
which stores the received covering arrays in the set R.

When all tuples T have been processed, the master sends the covering arrays CA(N ; t+1, k+
1, v) to the slaves to be canonized. Slaves canonize the covering arrays CA(N ; t+1, k+1, v) and
return them back to the master process; finally, the master eliminates duplicate covering arrays.
A very useful strategy for saving time at the canonization stage is to delete all the arrays, except
one, which are equal after a row sorting.

2.3. Second parallel version. The second parallelization approach is intended for cases where
the number of tuples T = (A0, A1, . . ., Av−1) ∈ Pj is small, but the covering arrays in the tuples
T are of considerable size. There may be cases where the number of tuples T is just one, but
the time required to process the tuple is long. In these scenarios we want to parallelize the work
of the add column() function.

As mentioned before, the arrays J that are generated from a tuple T = (A0, A1, . . ., Av−1)
are those arrays J = [A0;A

′
1; · · · ;A′

v−1] where A0 is fixed and for 1 ≤ i ≤ v − 1 the array A′
i is

derived from Ai by permutations of columns and symbols. Then, for the array A1 we need to
generate all k! · (v!)k permutations of columns and symbols in the worst case, although many of

This parallel version is implemented in MPI using the master-slaves 
model. The master process executes the operations shown in Algorithm 
1, and sends the tuples T to the slaves, which execute the operations of 
Algorithm 2. A tuple T is sent to a slave as soon as the slave finishes 
the processing of a previous tuple; so the partitioning of the tuples T 
among the slaves is not static. The CA(N;t+1,k+1,v) constructed by the 
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slaves are sent to the master process, which stores the received covering 
arrays in the set R.

When all tuples T have been processed, the master sends the 
covering arrays CA(N;t+1,k+1,v) to the slaves to be canonized. Slaves 
canonize the covering arrays CA(N;t+1,k+1,v) and return them back 
to the master process; finally, the master eliminates duplicate covering 
arrays. A very useful strategy for saving time at the canonization stage is 
to delete all the arrays, except one, which are equal after a row sorting.

Second parallel version

The second parallelization approach is intended for cases where the 
number of tuples T=(A0,A1,..., Av-1)∈Pj is small, but the covering arrays 
in the tuples T are of considerable size. There may be cases where the 
number of tuples T is just one, but the time required to process the 
tuple is long. In these scenarios we want to parallelize the work of the 
add column () function.

As mentioned before, the arrays J that are generated from a tuple 
T=(A0, A1,..., Av-1) are those arrays J=[A0;A′1,…, A′v-1] where A0 is fixed 
and for 1 ≤ i ≤ v-1 the array A′i i is derived from Ai by permutations 
of columns and symbols. Then, for the array A1 we need to generate 
all k!·(v!)k permutations of columns and symbols in the worst case, 
although many of them are skipped when the algorithm finds that they 
do not have possibilities of being a CA of strength t+1.

The strategy we follow is to assign, or to make fixed, the first 
FIXED<k columns of the first block A′1 of the array J; this block is 
used to contain covering arrays isomorphic to A1. Let P(n,r) be the 
number of permutations of size r from n objects. We can partition the 
k! column permutations of A1 in P(k,FIXED) chunks, where the chunks 
correspond to the P(k,FIXED) possible ways to assign the first FIXED 
columns of A′1 with FIXED columns of A1. In addition, each of these 
chunks is relabeled using the (v!)FIXED possible combinations of the v! 
symbol relabelings for each of the FIXED columns. Thus, the number 
of partitions for a given value of FIXED is P(k,FIXED)·(v!)FIXED.

In the add column() function, that is executed by the slave processes, 
the first FIXED columns of the block A′1 are not modified. The other 
columns of the block are filled in the normal way, that is, any non-
fixed column gets in order the columns of A1 not currently assigned 
to a column of A′1, but each column of A1 is copied v! times, one with 
a distinct relabeling. As in the first parallel version, the constructed 
CA(N;t+1,k+1,v) are sent to the master process. At the end, the 
covering arrays CA(N;t+1,k+1,v) are canonized and duplicated arrays 
are removed.

Computational Results
Now we extend the computational search done in a study [9] 

to determine the number of isomorphism classes in the set of all 
CA(32;4,13,2). In the next Theorem 3.0.1 we prove that there is only 
one non-isomorphic CA(32;4,13,2).

Theorem 3.0.1: CA(32;4,13,2) is unique.

Proof: CA(32;4,13,2) is constructed by juxtaposing CA(N0;3,12,2) 
and CA(N1;3,12,2) where N0+N1=32, and by adding to the 
juxtaposition a column formed by N0 zeros and N1 ones. Given that 
CAN (3,12,2)=15 [3], the multisets to consider are {N0=15,N1=17} and 
{N0=16,N1=16}. The NonIsoCA algorithm of a study [8] gives 2 non-
isomorphic CA(15;3,12,2), 44,291 non-isomorphic CA(16;3,12,2), and 
1,091,971,630 non-isomorphic CA(17;3,12,2). So, the number of tuples 
T=(A0,A1) to process in Algorithm 1 is (2) (1,091,971,630)+44,2912. 

Because this number of tuples T is large, we use the first parallel 
version of the algorithm. None juxtaposition of A0=CA(15;3,12,2) 
and A1=CA(17;3,12,2) produced a CA(32;4,13,2). In addition, all 
CA(32;4,13,2) that were produced by juxtaposing two CA(15;3,12,2) 
belongs to the same isomorphism class. Then, there is only one non-
isomorphic CA(32;4,13,2).

In this way, CA(32;4,13,2) is both optimal and unique. Figure 1 
shows the canonical representative of the unique isomorphism class 
of all CA(32;4,13,2). The following Theorem 3.0.2 establishes the 
uniqueness of the covering arrays CA(64;5,14,2), CA(128;6,15,2), and 
CA(256;7,16,2).

Theorem 3.0.2: CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2) 
are unique.

Proof: The juxtapositions of the unique CA(32;4,13,2) with 
itself generate only one non-isomorphic CA(64; 5,14,2). Similarly, 
from the juxtapositions of the unique CA(64;5,14,2) with itself we 
obtain only one CA(128;6,15,2). Finally, the juxtapositions of the 
unique CA(128;6,15,2) with itself produce only one non-isomorphic 
CA(256;7,16,2).

Therefore, the covering arrays CA(64;5,14,2), CA(128;6,15,2), 
and CA(256;7,16,2) are optimal and unique. In the three cases of 
Theorem 3.0.2 we used the second version of the parallel algorithm 

with value FIXED=3; so the number of partitions was
( )

3! .2
3 !

k
k −

. The

classification of these covering arrays was possible tanks to the fact that 
there is only one tuple T=(A0,A1) to be processed in each case. Also 
the strategy of eliminating the CA(N;t+1,k+1,v) that are equal after 
a row sorting helps a lot in the classification of these three covering 
arrays. For example, the canonization of a CA(256;7,16,2) takes more 
than 24 hours, but all CA(256;7,16,2) that were constructed by the slave 
processes were identical after a row sorting; so it was not necessary to 
canonize the constructed CA(256;7,16,2) since there was only one.

To the best of our knowledge, the four covering arrays that were 
classified in this section are the larger ones that has been classified by a 
computational method. In particular CA(256;7,16,2) is very large to be 
processed by an algorithm based on constructing covering arrays cell 
by cell. The algorithm parallelized in this work has the advantage of 
constructing the covering arrays subcolumn by subcolumn, where the 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1
0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1
0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1




Figure 1. Canonical representative of the unique isomorphism class of
CA(32; 4, 13, 2) (shown transposed).

the canonization of a CA(256; 7, 16, 2) takes more than 24 hours, but all CA(256; 7, 16, 2) that
were constructed by the slave processes were identical after a row sorting; so it was not necessary
to canonize the constructed CA(256; 7, 16, 2) since there was only one.

To the best of our knowledge, the four covering arrays that were classified in this section are the
larger ones that has been classified by a computational method. In particular CA(256; 7, 16, 2)
is very large to be processed by an algorithm based on constructing covering arrays cell by cell.
The algorithm parallelized in this work has the advantage of constructing the covering arrays
subcolumn by subcolumn, where the subcolumns used are not arbitrary but columns of covering
arrays with one unit less of strength.

4. Equivalence with error-correcting codes

An orthogonal array OAλ(N ; t, k, v) is an N × k array where every subarray of t columns
covers exactly λ times each t-tuple over Zv. Usually the value of λ is not specified because it can
be derived from the other parameters. The nonlinear codes (13, 32, 6), (14, 64, 6), (15, 128, 6), and
(16, 256, 6) are known to be equivalent to the orthogonal arrays OA8(32; 2, 13, 2), OA8(64; 3, 14, 2),
OA8(128; 4, 15, 2), and OA8(256; 5, 17, 2) respectively. In fact, the equivalence between codes
and orthogonal arrays is well-known: to a (k,M, d) code with dual distance d⊥ corresponds an
OA(N ; d⊥ − 1, k, 2); see chapters 4 and 5 of [7]. However, in this work we found that the above
mentioned codes are also equivalent to the covering arrays CA(32; 4, 13, 2), CA(64; 5, 14, 2),
CA(128; 6, 15, 2), and CA(256; 7, 16, 2). These covering arrays have a larger strength than their
equivalent orthogonal arrays.

The covering array CA(32; 4, 13, 2) has the same size as the (13, 32, 6) code resulting from
extending the (12, 32, 5) code constructed by Nadler [12]. So, we verify if the rows of the covering
array have minimum distance 6, and the answer was positive; both objects have 384 pairs of rows
or codewords with distance 6, 48 pairs with distance 8, and 64 pairs with distance 10. In addition,
we validated by computer that the extended Nadler code is a covering array of strength four.
Because the extended Nadler code is optimal [1] and unique [6], any CA(32; 4, 13, 2) is equivalent
to the extended Nadler code, and reciprocally any extended Nadler code is a CA(32; 4, 13, 2).
The isomorphisms of codes are the same as those of covering arrays: permutation of codewords,
permutation of coordinates (columns), and permutations of symbols in a coordinate.

Similarly, we found that the rows of CA(64; 5, 14, 2), CA(128; 6, 15, 2), and CA(256; 7, 16, 2)
have minimum distance 6; so they are equivalent respectively to the (14, 64, 6), (15, 128, 6), and
(16, 256, 6) codes. These three codes are optimal [1] and unique; the uniqueness of the first two is

Figure 1: Canonical representative of the unique isomorphism class of CA (32; 
4; 13; 2) (shown transposed).
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subcolumns used are not arbitrary but columns of covering arrays with 
one unit less of strength.

Equivalence with Error-Correcting Codes
An orthogonal array OAλ(N;t,k,v) is an N × k array where every 

subarray of t columns covers exactly λ times each t-tuple over Ζv. 
Usually the value of λ is not specified because it can be derived 
from the other parameters. The nonlinear codes (13,32,6), (14,64,6), 
(15,128,6), and (16,256,6) are known to be equivalent to the orthogonal 
arrays OA8(32;2,13,2), OA8(64;3,14,2), OA8(128;4,15,2), and 
OA8(256;5,17,2) respectively. In fact, the equivalence between codes 
and orthogonal arrays is well-known: to a (k,M,d) code with dual 
distance d⊥ corresponds an OA(N;d⊥-1,k,2); see chapters 4 and 5 of a 
study [7]. However, in this work we found that the above mentioned 
codes are also equivalent to the covering arrays CA(32;4,13,2), 
CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2). These covering 
arrays have a larger strength than their equivalent orthogonal arrays.

The covering array CA(32;4,13,2) has the same size as the (13,32,6) 
code resulting from extending the (12,32,5) code constructed by Nadler 
[12]. So, we verify if the rows of the covering array have minimum 
distance 6, and the answer was positive; both objects have 384 pairs 
of rows or codewords with distance 6, 48 pairs with distance 8, and 64 
pairs with distance 10. In addition, we validated by computer that the 
extended Nadler code is a covering array of strength four. Because the 
extended Nadler code is optimal [1] and unique [6], any CA(32;4,13,2) 
is equivalent to the extended Nadler code, and reciprocally any 
extended Nadler code is a CA(32;4,13,2). The isomorphisms of codes 
are the same as those of covering arrays: permutation of codewords, 
permutation of coordinates (columns), and permutations of symbols 
in a coordinate.

Similarly, we found that the rows of CA(64;5,14,2), CA(128;6,15,2), 
and CA(256;7,16,2) have minimum distance 6; so they are equivalent 
respectively to the (14,64,6), (15,128,6), and (16,256,6) codes. These 
three codes are optimal [1] and unique; the uniqueness of the first two 
is proved in a study [6], and the uniqueness of (16,256,6) is proved in 
a study [16]. Thus, there is a correspondence between (14,64,6) and 
CA(64;5,14,2), between (15,128,6) and CA(128;6,15,2), and between 
(16,256,6) and CA(256;7,16,2).

The code (16,256,6) is the well-known code resulting from extending 
the (15,256,5) code discovered by Nordstrom and Robinson [13], and 
independently by Semakov and Zinoviev [15]. For the (16,256,6) 

code several constructions exist, among which are the construction of 
Semakov and Zinoviev [15] from permutation matrices; constructions 
from the binary Golay code [5,14]; the construction of Liu, et al. [11] 
from two linear (8,16,4) codes; and the construction of Forney, et al. [4] 
as the binary image of the octacode.

Now we construct a particular (16,256,6) code, which is the canonical 
representative of all covering arrays CA(256;7,16,2), by juxtaposing 
eight extended Nadler codes, or covering arrays CA(32;4,13,2). The 
juxtaposition of the eight CA(32;4,13,2) forms an array of size 256 × 
13; the other 3 columns required to have an array of size 256 × 16 are 
formed by eight blocks, where for 0 ≤ i ≤ 7 the i-th block contains 32 times 
the 3-tuple that is the binary representation of i, as shown in Figure 2a. 
The eight CA(32;4,13,2) are constructed as follows: for each tuple (a,b,c) 
of Figure 2b add the corresponding vector of length 13 to the rows of the 
canonical CA(32;4,13,2) of Figure 1, and place the resulting array in the 
block of Figure 2a associated to the block with 32 occurrences of the tuple 
(a,b,c). After placing the eight copies of CA(32;4,13,2), sort the rows of the 
entire array of size 256 × 16. The result is the canonical representative of 
the unique isomorphism class of all CA(256;7,16,2). From the canonical 
CA(256;7,16,2), the canonical CA(128;6,15,2) is obtained by taking the 
first 128 rows and deleting the first column. Similarly, the canonical 
CA(64;5,14,2) is obtained from the canonical CA(256;7,16,2) by taking 
the first 64 rows and deleting the first 2 columns.

As said before, to obtain the correspondence between the 
(16,256,6) code and the covering array CA(256;7,16,2) we computed 
the minimum distance among the rows of CA(256;7,16,2) and obtained 
d=6; and given the uniqueness of the (16,256,6) code we concluded that 
both objects are the same. On the other hand, from the structure of the 
(16,256,6) code show in Figure 2a we can obtain that the (16,256,6) 
code is a covering array of strength seven. At the beginning of the 
section we mentioned that the (16,256,6) code is an OA8(256;5,16,2); 
then, in any subarray of five columns the binary tuples of length 5 are 
covered eight times, and so in any subarray of three columns the binary 
tuples of length 3 are covered 32 times. Let S be a subarray of three 
columns of the (16,256,6) code. Sort the rows of the code so that the 
rows of the subarray S are sorted in non-decreasing order. The other 
13 columns of the sorted array can be partitioned into 8 blocks of size 
32 × 13. Each of these eight blocks must have minimum distance 6, 
because the other 3 columns contain the same 3-tuple. However, there 
is only one array of size 32 × 13 with minimum distance 6, and it is the 
covering array CA(32;4,13,2).

(a)
(0, 0, 0) CA(32; 4 , 13, 2)
(0, 0, 1) CA(32; 4 , 13, 2)
(0, 1, 0) CA(32; 4 , 13, 2)
(0, 1, 1) CA(32; 4 , 13, 2)
(1, 0, 0) CA(32; 4 , 13, 2)
(1, 0, 1) CA(32; 4 , 13, 2)
(1, 1, 0) CA(32; 4 , 13, 2)
(1, 1, 1) CA(32; 4 , 13, 2)

(b)
Tuple Vector

(0, 0, 0) (0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1) (0 , 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0)
(0, 1, 0) (0 , 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1)
(0, 1, 1) (0 , 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1)
(1, 0, 0) (0 , 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1)
(1, 0, 1) (0 , 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1)
(1, 1, 0) (0 , 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0)
(1, 1, 1) (0 , 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0)

Figure 2: Construction of the (16; 256; 6) code from 8 copies of the extended Nadler code. (a) The partitioning of the (16; 256; 6) code. (b) The vectors added 
to the extended Nadler code of Figure 1 to obtain the 8 copies required in (a).
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Conclusion
In this work we determined the uniqueness of the optimal 

covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and 
CA(256;7,16,2). These results were obtained by using two parallel 
versions of a previously reported algorithm based on juxtaposing 
v covering arrays of strength t and k columns to construct covering 
arrays of strength t+1 and k+1 columns. To the best of our knowledge, 
these four covering arrays are the larger ones that has been classified by 
a computational method.

We also found that the above four covering arrays are equivalent 
respectively to the optimal and unique error-correcting codes (13,32,6), 
(14,64,6), (15,128,6), and (16,256,6). Because of the uniqueness of 
both type of objects there is a correspondence between the following 
four pairs: CA(32;4,13,2) and (13,32,6), CA(64;5,14,2) and (14,64,6), 
CA(128;6,15,2) and (15,128,6), CA(256;7,16,2) and (16,256,6). The 
optimality of both kind of objects is interesting because in covering 
arrays the optimality is related to the minimum number of rows, 
and in codes the optimality has to do with the maximum number of 
codewords.
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