
Volume 8 • Issue 2 • 1000439J Appl Computat Math, an open access journal
ISSN: 2168-9679

Open AccessResearch Article

Journal of
Applied & Computational Mathematics

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Jimenez and Marquez, J Appl Computat Math 2019, 8:2

Keywords: Covering arrays; Classification of covering arrays;
Parallel algorithms; Error-correcting codes

Introduction
A covering array CA(N;t,k,v) is an array of size N × k where every

subarray of t columns contains as a row each t-tuple over Ζv={0,1,...,v-1}
at least once [1]. The parameter t is known as the strength of the covering
array. A subarray of t columns covers a t-tuple x if the subarray contains
x as a row. A covering array CA(N;t,k,v) is optimal if N is the minimum
number of rows needed to cover at least once each t-tuple over Ζv in
every subarray of t columns [2]. This minimum number of rows is the
covering array number of t, k, v, and it is denoted by CAN(t,k,v) [3].

There are three isomorphisms in covering arrays: (a) permutation
of rows, (b) permutation of columns, and (c) permutation of symbols
in a column. Any combination of these three operations produces an
isomorphic covering array; therefore, there are N!k!(v!)k covering arrays
isomorphic to a CA(N;t,k,v) [4]. On the other hand, non-isomorphic
covering arrays cannot be transformed among them by permutations
of rows, columns, and symbols. A symbol permutation in a column is
called a relabeling of the column [5].

For particular values of N, t, k, v, the set of all CA(N;t,k,v) is
partitioned in classes C0, C1, ..., Cn-1 of isomorphic covering arrays
[6-9]. In every isomorphism class C0, C1,...,Cn-1 we select one specific
covering array, the canonical one, to be the representative of the class.
For X=CA(N;t,k,v) let λ(X) be the vector of length N · k that is obtained
by arranging the elements of X in column-major order. The array X is
canonical if for all Y isomorphic to X the vector λ(X) is smaller than or
equal to λ(Y) in lexicographic order [10-12].

For example, there are three isomorphism classes in the set of all
CA(6;2,7,2), and the following three covering arrays CA(6;2,7,2) are
the canonical representatives of the classes:

0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1
1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0

     
     
     
     
     
     
     
          
     

Let A be the first of these three covering arrays. Then, λ(A)=(0,0,
0,0,1,1,0,0,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,
0,1,0) [13]. For each of the 6!7!(2!)7 covering arrays B=CA(6;2,7,2)

isomorphic to A, the vector λ(A) is smaller than or equal to λ(B) in
lexicographic order.

The classification of covering arrays consists in generating one
element of every isomorphism class [14]. If there are n isomorphism
classes we say there are n non-isomorphic CA(N;t,k,v). Some works
addressing the classification problem [15]. A study [16] proved that
the covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and
CA(256;7,16,2) are optimal. However, to the best of our knowledge,
the number of isomorphism classes for these four covering arrays is
unknown. By using two parallel versions of the algorithm reported
earlier [17], we found that there is only one isomorphism class for each
of these covering arrays. Therefore, the covering arrays CA(32;4,13,2),
CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2) are optimal and
unique.

An (n,M,d) binary code is a set of M vectors of length n over Ζ2,
called codewords, whose minimum mutual distance is d, that is, any
two distinct codewords differ in at least d entries, and there is at least
one pair of codewords that differ in exactly d entries. If any linear
combination of codewords is also a codeword then the code is linear,
otherwise the code is nonlinear. A code with minimum distance d can
correct [(d-1)/2] or fewer errors. An (n,M,d) code is optimal if M is
the maximum number of codewords with length n having minimum
distance d.

In this work we found that the nonlinear codes (13,32,6), (14,64,6),
(15,128,6), (16,256,6) are equivalent respectively to the covering arrays
CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), CA(256;7,16,2). These
four codes are known to be optimal and unique; their optimality was
proven in a study [1], the uniqueness of the first three codes was proven

*Corresponding author: Jimenez TJ, 2CINVESTAV-Tamaulipas, Information
Technology Laboratory, Carretera Victoria-Soto La Marina, 87130 Victoria Tamps,
Mexico, Tel: 52(834)1070220; E-mail: jtj@cinvestav.mx

Received February 20, 2019; Accepted March 20, 2019; Published March 28,
2019

Citation: Jimenez TJ, Marquez II (2019) Uniqueness of Four Covering Arrays
Equivalent to Error-Correcting Codes. J Appl Computat Math 8: 439.

Copyright: © 2019 Jimenez TJ, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Uniqueness of Four Covering Arrays Equivalent to Error-Correcting Codes
Jimenez TJ* and Marquez II
Cinvestav-Tamaulipas, Information Technology Laboratory, Carretera Victoria-Soto La Marina, 87130 Victoria Tamps, Mexico

Abstract
A covering array CA(N;t,k,v) is an N × k array over v symbols where every N × t subarray contains as a row each

t-tuple over v symbols at least once. Two covering arrays are isomorphic of one can be obtained from the other by
permutations of rows, columns, and symbols in the columns. Isomorphic covering arrays form equivalence classes
in the set of all CA(N;t,k,v). The problem of classifying covering arrays consists in generating one element of each
isomorphism class; if there is only one isomorphism class, then CA(N;t,k,v) is unique. This work introduces two parallel
versions of a previously reported algorithm to classify covering arrays. By using these algorithms we determine the
uniqueness of the covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2). We also find
that these four covering arrays are equivalent respectively to the unique error-correcting codes (13,32,6), (14,64,6),
(15,128,6), and (16,256,6), where (n,M,d) denotes a code with word length n, M code words, and minimum distance d.

Citation: Jimenez TJ, Marquez II (2019) Uniqueness of Four Covering Arrays Equivalent to Error-Correcting Codes. J Appl Computat Math 8: 439.

Page 2 of 5

Volume 8 • Issue 2 • 1000439J Appl Computat Math, an open access journal
ISSN: 2168-9679

in a study [6], and the uniqueness of the last one was shown in a study
[16]. Therefore, any CA(32;4,13,2) is a (13,32,6) code, and reciprocally
any (13,32,6) code is a CA(32;4,13,2); and the same applies for the other
three pairs of covering arrays and codes: CA(64;5,14,2) and (14,64,6),
CA(128;6,15,2) and (15,128,6), and CA(256;7,16,2) and (16,256,6).

The rest of the document is organized as follows: Section 2 presents
the parallel algorithms to classify covering arrays; Section 3 describes
the computational experimentation to determine the uniqueness
of CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), CA(256;7,16,2);
Section 4 shows the equivalence of these covering arrays with the codes
(13,32,6), (14,64,6), (15,128,6), (16,256,6); and Section 5 contains the
conclusions of the work.

Parallel Classification Algorithms
This section describes the sequential classification algorithm

introduced in a study [9], and develops to parallel versions of it.

Previous sequential algorithm

The sequential algorithm of a study [9] classifies CA(N;t+1,k+1,v) by
testing all possible juxtapositions of v covering arrays A0=CA(N0;t,k,v),

A1=CA(N1;t,k,v),..., Av-1=CA(Nv-1;t,k,v) where
1

0

v

i
i

N N
−

=

= ∑ . When a

juxtaposition forms a CA(N;t+1,k,v), a column formed by Ni elements
equal to i for 0 ≤ i ≤ v-1 is added to the CA to obtain a CA(N;t+1,k+1,v)
as illustrated in the following diagram:

()

0

1

1

0
1

; 1, 1,

1v

A
A

CA N t k v

A v−

 
 
 + + =  
  − 

 

Since the algorithm explores all possible ways of constructing
CA(N;t+1,k+1,v), the constructed covering arrays cover all
isomorphism classes. None of the constructed CA(N;t+1,k+1,v) is
canonical, and there may be isomorphic arrays in the results. To obtain
only the canonical representatives of the isomorphism classes, the
constructed covering arrays are canonized and duplicates are removed.

The algorithm begins by determining the multisets Sj={N0,N1,...,Nv-1}

of v elements such that Ni ≥ CAN(t,k,v) and
1

0

v

i
i

N N
−

=

= ∑ ; these multisets

give the allowed number of rows for the covering arrays A0,A1,...,Av-1 to
be juxtaposed. For each Sj={N0,N1,...,Nv-1}, the algorithm constructs v
sets D0,D1,...,Dv-1, where for 0 ≤ i ≤ v-1 the set Di contains the non-
isomorphic covering arrays CA(Ni;t,k,v) having Ni rows. For example,
for the instance CA(29;3,5,3) the algorithm checks all juxtapositions of
three covering arrays with strength two, four columns, and number of
rows given by S0={9,9,11}, or by S1={9,10,10}. For the multiset S0={9,9,11}
the sets D0 and D1 will contain the non-isomorphic CA(9;2,4,3), and the
set D2 will contain the non-isomorphic CA(11;2,4,3).

The sets D0,D1,...,Dv-1 are used to form a set Pj=D0 × D1 × ··· × Dv-1=
{(A0,A1,...,Av-1): Ai∈Di for 0 ≤ i ≤ v-1)} which contains all ways of
combining the non-isomorphic covering arrays with number of rows
given by Sj. Finally, for each tuple T=(A0,A1,...,Av-1) ∈ Pj there are
generated all arrays J=[A0;A′1,…,A′ v-1] where A0 is placed unchanged
and for1 ≤ i ≤ v-1 the array A′i is derived from the non-isomorphic
Ai=CA(Ni;t,k,v) by a combination of a column permutation and a
symbol permutation in each of the k columns. Here [A0, A′1,….,
A′v-1] denotes the vertical juxtaposition of the arrays A0, A′1,...,A′v-1.

If J is a CA(N;t+1,k,v), then a column E=(0 1 ··· v-1)T formed by Ni
elements equal to i for 0 ≤ i ≤ v-1 is added to J to form a covering array
(JE)=CA(N;t+1,k+1,v).

In this way, from the non-isomorphic covering arrays in T there
are generated all possible juxtapositions of v covering arrays that are
isomorphic to the v covering arrays in T. Since this is done for each T in
Pj, and for each Pj, we have that all possible juxtapositions of v covering
arrays of strength t and k columns are explored to see which of them
form covering arrays of strength t+1.

Algorithms 1 and 2 taken from a study [9] implement the steps
that were described in the previous paragraph. The add column()
function constructs the k!(v!)k arrays A′i that can be derived from Ai
by permutations of columns and symbols in the following way: on
every call, the columns of Ai not currently copied to a column of A′i are
copied one a time to column r of A′i, but each column is copied v! times,
one for each symbol permutation. The add column() function fills the
column 0 of the blocks A′1,...,A′v-1, then the function fills the column
1 of the same blocks,and so on; in this way, the array J is constructed
one column at a time. However, if the current partial array J with r<k
columns is not a covering array of strength t+1, then the remaining
columns of the arrays A′′1,...,A′v-1 are not filled, and so not all k!(v!)k
arrays A′i isomorphic to Ai are generated.

First parallel version

The first parallel approach is to parallelize the for-each loop located
at line 7 of Algorithm 1. For each multiset {N0,N1,...,Nv-1} the body of

this loop is executed
1

0

| D |
v

i
i

−

=
∏ times, where |Di| is the number of non-

isomorphic CA(Ni;t,k,v). If the number of multisets Sj={N0,N1,...,Nv-1},
or the number of non-isomorphic CA(Ni;t,k,v) in the sets Di is large,
then the body of the for-each loop is executed many times. The tuples
T=(A0,A1,...,Av-1)∈Pj can be processed independently of each other; so a
first parallel approach is to divide the processing of the tuples T among
all available processors.

4 APPL. COMPUT. MATH., V.XX, N.XX, 20XX

Algorithm 1: juxtapose algorithm(N, k′, t′, v) [9]

1 k ← k′ − 1; t ← t′ − 1; R ← ∅;
2 S ← all multisets {N0, N1, . . . , Nv−1} such that Ni ≥ CAN(t, k, v) and N =

∑v−1
i=0 Ni;

3 foreach S ∈ S do
4 for i = 0, . . . , v − 1 do
5 Di ← all non-isomorphic CA(Ni; t, k, v);

6 P = D0 ×D1 × · · · ×Dv−1 = {(A0, A1, . . . , Av−1) : Ai ∈ Di for 0 ≤ i ≤ v − 1)};
7 foreach T = (A0, A1, . . . , Av−1) ∈ P do
8 J ← array(N, k);

9 copy A0 to the first N0 rows and k columns of J ;

10 add column(1, 0);

11 canonize the covering arrays CA(N ; t+ 1, k + 1, v) in R and remove duplicates;

Algorithm 2: add column(i, r) [9]

1 foreach column j of Ai not currently assigned to a column of block A′
i of J do

2 foreach permutation ε of the symbols {0, 1, . . . , v − 1} do
3 copy column j of Ai to column r of A′

i and permute its symbols using ε;

4 if i = v − 1 then
5 if r < t or is covering array(J, r) = true then
6 if r = k − 1 then
7 if (JE) �∈ R then R ← R ∪ {(JE)};
8 else add column(1, r + 1);

9 else add column(i+ 1, r);

This parallel version is implemented in MPI using the master-slaves model. The master
process executes the operations shown in Algorithm 1, and sends the tuples T to the slaves,
which execute the operations of Algorithm 2. A tuple T is sent to a slave as soon as the slave
finishes the processing of a previous tuple; so the partitioning of the tuples T among the slaves
is not static. The CA(N ; t+1, k+1, v) constructed by the slaves are sent to the master process,
which stores the received covering arrays in the set R.

When all tuples T have been processed, the master sends the covering arrays CA(N ; t+1, k+
1, v) to the slaves to be canonized. Slaves canonize the covering arrays CA(N ; t+1, k+1, v) and
return them back to the master process; finally, the master eliminates duplicate covering arrays.
A very useful strategy for saving time at the canonization stage is to delete all the arrays, except
one, which are equal after a row sorting.

2.3. Second parallel version. The second parallelization approach is intended for cases where
the number of tuples T = (A0, A1, . . ., Av−1) ∈ Pj is small, but the covering arrays in the tuples
T are of considerable size. There may be cases where the number of tuples T is just one, but
the time required to process the tuple is long. In these scenarios we want to parallelize the work
of the add column() function.

As mentioned before, the arrays J that are generated from a tuple T = (A0, A1, . . ., Av−1)
are those arrays J = [A0;A

′
1; · · · ;A′

v−1] where A0 is fixed and for 1 ≤ i ≤ v − 1 the array A′
i is

derived from Ai by permutations of columns and symbols. Then, for the array A1 we need to
generate all k! · (v!)k permutations of columns and symbols in the worst case, although many of

This parallel version is implemented in MPI using the master-slaves
model. The master process executes the operations shown in Algorithm
1, and sends the tuples T to the slaves, which execute the operations of
Algorithm 2. A tuple T is sent to a slave as soon as the slave finishes
the processing of a previous tuple; so the partitioning of the tuples T
among the slaves is not static. The CA(N;t+1,k+1,v) constructed by the

Citation: Jimenez TJ, Marquez II (2019) Uniqueness of Four Covering Arrays Equivalent to Error-Correcting Codes. J Appl Computat Math 8: 439.

Page 3 of 5

Volume 8 • Issue 2 • 1000439J Appl Computat Math, an open access journal
ISSN: 2168-9679

slaves are sent to the master process, which stores the received covering
arrays in the set R.

When all tuples T have been processed, the master sends the
covering arrays CA(N;t+1,k+1,v) to the slaves to be canonized. Slaves
canonize the covering arrays CA(N;t+1,k+1,v) and return them back
to the master process; finally, the master eliminates duplicate covering
arrays. A very useful strategy for saving time at the canonization stage is
to delete all the arrays, except one, which are equal after a row sorting.

Second parallel version

The second parallelization approach is intended for cases where the
number of tuples T=(A0,A1,..., Av-1)∈Pj is small, but the covering arrays
in the tuples T are of considerable size. There may be cases where the
number of tuples T is just one, but the time required to process the
tuple is long. In these scenarios we want to parallelize the work of the
add column () function.

As mentioned before, the arrays J that are generated from a tuple
T=(A0, A1,..., Av-1) are those arrays J=[A0;A′1,…, A′v-1] where A0 is fixed
and for 1 ≤ i ≤ v-1 the array A′i i is derived from Ai by permutations
of columns and symbols. Then, for the array A1 we need to generate
all k!·(v!)k permutations of columns and symbols in the worst case,
although many of them are skipped when the algorithm finds that they
do not have possibilities of being a CA of strength t+1.

The strategy we follow is to assign, or to make fixed, the first
FIXED<k columns of the first block A′1 of the array J; this block is
used to contain covering arrays isomorphic to A1. Let P(n,r) be the
number of permutations of size r from n objects. We can partition the
k! column permutations of A1 in P(k,FIXED) chunks, where the chunks
correspond to the P(k,FIXED) possible ways to assign the first FIXED
columns of A′1 with FIXED columns of A1. In addition, each of these
chunks is relabeled using the (v!)FIXED possible combinations of the v!
symbol relabelings for each of the FIXED columns. Thus, the number
of partitions for a given value of FIXED is P(k,FIXED)·(v!)FIXED.

In the add column() function, that is executed by the slave processes,
the first FIXED columns of the block A′1 are not modified. The other
columns of the block are filled in the normal way, that is, any non-
fixed column gets in order the columns of A1 not currently assigned
to a column of A′1, but each column of A1 is copied v! times, one with
a distinct relabeling. As in the first parallel version, the constructed
CA(N;t+1,k+1,v) are sent to the master process. At the end, the
covering arrays CA(N;t+1,k+1,v) are canonized and duplicated arrays
are removed.

Computational Results
Now we extend the computational search done in a study [9]

to determine the number of isomorphism classes in the set of all
CA(32;4,13,2). In the next Theorem 3.0.1 we prove that there is only
one non-isomorphic CA(32;4,13,2).

Theorem 3.0.1: CA(32;4,13,2) is unique.

Proof: CA(32;4,13,2) is constructed by juxtaposing CA(N0;3,12,2)
and CA(N1;3,12,2) where N0+N1=32, and by adding to the
juxtaposition a column formed by N0 zeros and N1 ones. Given that
CAN (3,12,2)=15 [3], the multisets to consider are {N0=15,N1=17} and
{N0=16,N1=16}. The NonIsoCA algorithm of a study [8] gives 2 non-
isomorphic CA(15;3,12,2), 44,291 non-isomorphic CA(16;3,12,2), and
1,091,971,630 non-isomorphic CA(17;3,12,2). So, the number of tuples
T=(A0,A1) to process in Algorithm 1 is (2) (1,091,971,630)+44,2912.

Because this number of tuples T is large, we use the first parallel
version of the algorithm. None juxtaposition of A0=CA(15;3,12,2)
and A1=CA(17;3,12,2) produced a CA(32;4,13,2). In addition, all
CA(32;4,13,2) that were produced by juxtaposing two CA(15;3,12,2)
belongs to the same isomorphism class. Then, there is only one non-
isomorphic CA(32;4,13,2).

In this way, CA(32;4,13,2) is both optimal and unique. Figure 1
shows the canonical representative of the unique isomorphism class
of all CA(32;4,13,2). The following Theorem 3.0.2 establishes the
uniqueness of the covering arrays CA(64;5,14,2), CA(128;6,15,2), and
CA(256;7,16,2).

Theorem 3.0.2: CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2)
are unique.

Proof: The juxtapositions of the unique CA(32;4,13,2) with
itself generate only one non-isomorphic CA(64; 5,14,2). Similarly,
from the juxtapositions of the unique CA(64;5,14,2) with itself we
obtain only one CA(128;6,15,2). Finally, the juxtapositions of the
unique CA(128;6,15,2) with itself produce only one non-isomorphic
CA(256;7,16,2).

Therefore, the covering arrays CA(64;5,14,2), CA(128;6,15,2),
and CA(256;7,16,2) are optimal and unique. In the three cases of
Theorem 3.0.2 we used the second version of the parallel algorithm

with value FIXED=3; so the number of partitions was
()

3! .2
3 !

k
k −

. The

classification of these covering arrays was possible tanks to the fact that
there is only one tuple T=(A0,A1) to be processed in each case. Also
the strategy of eliminating the CA(N;t+1,k+1,v) that are equal after
a row sorting helps a lot in the classification of these three covering
arrays. For example, the canonization of a CA(256;7,16,2) takes more
than 24 hours, but all CA(256;7,16,2) that were constructed by the slave
processes were identical after a row sorting; so it was not necessary to
canonize the constructed CA(256;7,16,2) since there was only one.

To the best of our knowledge, the four covering arrays that were
classified in this section are the larger ones that has been classified by a
computational method. In particular CA(256;7,16,2) is very large to be
processed by an algorithm based on constructing covering arrays cell
by cell. The algorithm parallelized in this work has the advantage of
constructing the covering arrays subcolumn by subcolumn, where the

6 APPL. COMPUT. MATH., V.XX, N.XX, 20XX




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1
0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1
0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1




Figure 1. Canonical representative of the unique isomorphism class of
CA(32; 4, 13, 2) (shown transposed).

the canonization of a CA(256; 7, 16, 2) takes more than 24 hours, but all CA(256; 7, 16, 2) that
were constructed by the slave processes were identical after a row sorting; so it was not necessary
to canonize the constructed CA(256; 7, 16, 2) since there was only one.

To the best of our knowledge, the four covering arrays that were classified in this section are the
larger ones that has been classified by a computational method. In particular CA(256; 7, 16, 2)
is very large to be processed by an algorithm based on constructing covering arrays cell by cell.
The algorithm parallelized in this work has the advantage of constructing the covering arrays
subcolumn by subcolumn, where the subcolumns used are not arbitrary but columns of covering
arrays with one unit less of strength.

4. Equivalence with error-correcting codes

An orthogonal array OAλ(N ; t, k, v) is an N × k array where every subarray of t columns
covers exactly λ times each t-tuple over Zv. Usually the value of λ is not specified because it can
be derived from the other parameters. The nonlinear codes (13, 32, 6), (14, 64, 6), (15, 128, 6), and
(16, 256, 6) are known to be equivalent to the orthogonal arrays OA8(32; 2, 13, 2), OA8(64; 3, 14, 2),
OA8(128; 4, 15, 2), and OA8(256; 5, 17, 2) respectively. In fact, the equivalence between codes
and orthogonal arrays is well-known: to a (k,M, d) code with dual distance d⊥ corresponds an
OA(N ; d⊥ − 1, k, 2); see chapters 4 and 5 of [7]. However, in this work we found that the above
mentioned codes are also equivalent to the covering arrays CA(32; 4, 13, 2), CA(64; 5, 14, 2),
CA(128; 6, 15, 2), and CA(256; 7, 16, 2). These covering arrays have a larger strength than their
equivalent orthogonal arrays.

The covering array CA(32; 4, 13, 2) has the same size as the (13, 32, 6) code resulting from
extending the (12, 32, 5) code constructed by Nadler [12]. So, we verify if the rows of the covering
array have minimum distance 6, and the answer was positive; both objects have 384 pairs of rows
or codewords with distance 6, 48 pairs with distance 8, and 64 pairs with distance 10. In addition,
we validated by computer that the extended Nadler code is a covering array of strength four.
Because the extended Nadler code is optimal [1] and unique [6], any CA(32; 4, 13, 2) is equivalent
to the extended Nadler code, and reciprocally any extended Nadler code is a CA(32; 4, 13, 2).
The isomorphisms of codes are the same as those of covering arrays: permutation of codewords,
permutation of coordinates (columns), and permutations of symbols in a coordinate.

Similarly, we found that the rows of CA(64; 5, 14, 2), CA(128; 6, 15, 2), and CA(256; 7, 16, 2)
have minimum distance 6; so they are equivalent respectively to the (14, 64, 6), (15, 128, 6), and
(16, 256, 6) codes. These three codes are optimal [1] and unique; the uniqueness of the first two is

Figure 1: Canonical representative of the unique isomorphism class of CA (32;
4; 13; 2) (shown transposed).

Citation: Jimenez TJ, Marquez II (2019) Uniqueness of Four Covering Arrays Equivalent to Error-Correcting Codes. J Appl Computat Math 8: 439.

Page 4 of 5

Volume 8 • Issue 2 • 1000439J Appl Computat Math, an open access journal
ISSN: 2168-9679

subcolumns used are not arbitrary but columns of covering arrays with
one unit less of strength.

Equivalence with Error-Correcting Codes
An orthogonal array OAλ(N;t,k,v) is an N × k array where every

subarray of t columns covers exactly λ times each t-tuple over Ζv.
Usually the value of λ is not specified because it can be derived
from the other parameters. The nonlinear codes (13,32,6), (14,64,6),
(15,128,6), and (16,256,6) are known to be equivalent to the orthogonal
arrays OA8(32;2,13,2), OA8(64;3,14,2), OA8(128;4,15,2), and
OA8(256;5,17,2) respectively. In fact, the equivalence between codes
and orthogonal arrays is well-known: to a (k,M,d) code with dual
distance d⊥ corresponds an OA(N;d⊥-1,k,2); see chapters 4 and 5 of a
study [7]. However, in this work we found that the above mentioned
codes are also equivalent to the covering arrays CA(32;4,13,2),
CA(64;5,14,2), CA(128;6,15,2), and CA(256;7,16,2). These covering
arrays have a larger strength than their equivalent orthogonal arrays.

The covering array CA(32;4,13,2) has the same size as the (13,32,6)
code resulting from extending the (12,32,5) code constructed by Nadler
[12]. So, we verify if the rows of the covering array have minimum
distance 6, and the answer was positive; both objects have 384 pairs
of rows or codewords with distance 6, 48 pairs with distance 8, and 64
pairs with distance 10. In addition, we validated by computer that the
extended Nadler code is a covering array of strength four. Because the
extended Nadler code is optimal [1] and unique [6], any CA(32;4,13,2)
is equivalent to the extended Nadler code, and reciprocally any
extended Nadler code is a CA(32;4,13,2). The isomorphisms of codes
are the same as those of covering arrays: permutation of codewords,
permutation of coordinates (columns), and permutations of symbols
in a coordinate.

Similarly, we found that the rows of CA(64;5,14,2), CA(128;6,15,2),
and CA(256;7,16,2) have minimum distance 6; so they are equivalent
respectively to the (14,64,6), (15,128,6), and (16,256,6) codes. These
three codes are optimal [1] and unique; the uniqueness of the first two
is proved in a study [6], and the uniqueness of (16,256,6) is proved in
a study [16]. Thus, there is a correspondence between (14,64,6) and
CA(64;5,14,2), between (15,128,6) and CA(128;6,15,2), and between
(16,256,6) and CA(256;7,16,2).

The code (16,256,6) is the well-known code resulting from extending
the (15,256,5) code discovered by Nordstrom and Robinson [13], and
independently by Semakov and Zinoviev [15]. For the (16,256,6)

code several constructions exist, among which are the construction of
Semakov and Zinoviev [15] from permutation matrices; constructions
from the binary Golay code [5,14]; the construction of Liu, et al. [11]
from two linear (8,16,4) codes; and the construction of Forney, et al. [4]
as the binary image of the octacode.

Now we construct a particular (16,256,6) code, which is the canonical
representative of all covering arrays CA(256;7,16,2), by juxtaposing
eight extended Nadler codes, or covering arrays CA(32;4,13,2). The
juxtaposition of the eight CA(32;4,13,2) forms an array of size 256 ×
13; the other 3 columns required to have an array of size 256 × 16 are
formed by eight blocks, where for 0 ≤ i ≤ 7 the i-th block contains 32 times
the 3-tuple that is the binary representation of i, as shown in Figure 2a.
The eight CA(32;4,13,2) are constructed as follows: for each tuple (a,b,c)
of Figure 2b add the corresponding vector of length 13 to the rows of the
canonical CA(32;4,13,2) of Figure 1, and place the resulting array in the
block of Figure 2a associated to the block with 32 occurrences of the tuple
(a,b,c). After placing the eight copies of CA(32;4,13,2), sort the rows of the
entire array of size 256 × 16. The result is the canonical representative of
the unique isomorphism class of all CA(256;7,16,2). From the canonical
CA(256;7,16,2), the canonical CA(128;6,15,2) is obtained by taking the
first 128 rows and deleting the first column. Similarly, the canonical
CA(64;5,14,2) is obtained from the canonical CA(256;7,16,2) by taking
the first 64 rows and deleting the first 2 columns.

As said before, to obtain the correspondence between the
(16,256,6) code and the covering array CA(256;7,16,2) we computed
the minimum distance among the rows of CA(256;7,16,2) and obtained
d=6; and given the uniqueness of the (16,256,6) code we concluded that
both objects are the same. On the other hand, from the structure of the
(16,256,6) code show in Figure 2a we can obtain that the (16,256,6)
code is a covering array of strength seven. At the beginning of the
section we mentioned that the (16,256,6) code is an OA8(256;5,16,2);
then, in any subarray of five columns the binary tuples of length 5 are
covered eight times, and so in any subarray of three columns the binary
tuples of length 3 are covered 32 times. Let S be a subarray of three
columns of the (16,256,6) code. Sort the rows of the code so that the
rows of the subarray S are sorted in non-decreasing order. The other
13 columns of the sorted array can be partitioned into 8 blocks of size
32 × 13. Each of these eight blocks must have minimum distance 6,
because the other 3 columns contain the same 3-tuple. However, there
is only one array of size 32 × 13 with minimum distance 6, and it is the
covering array CA(32;4,13,2).

(a)
(0, 0, 0) CA(32; 4 , 13, 2)
(0, 0, 1) CA(32; 4 , 13, 2)
(0, 1, 0) CA(32; 4 , 13, 2)
(0, 1, 1) CA(32; 4 , 13, 2)
(1, 0, 0) CA(32; 4 , 13, 2)
(1, 0, 1) CA(32; 4 , 13, 2)
(1, 1, 0) CA(32; 4 , 13, 2)
(1, 1, 1) CA(32; 4 , 13, 2)

(b)
Tuple Vector

(0, 0, 0) (0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1) (0 , 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0)
(0, 1, 0) (0 , 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1)
(0, 1, 1) (0 , 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1)
(1, 0, 0) (0 , 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1)
(1, 0, 1) (0 , 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1)
(1, 1, 0) (0 , 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0)
(1, 1, 1) (0 , 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0)

Figure 2: Construction of the (16; 256; 6) code from 8 copies of the extended Nadler code. (a) The partitioning of the (16; 256; 6) code. (b) The vectors added
to the extended Nadler code of Figure 1 to obtain the 8 copies required in (a).

Citation: Jimenez TJ, Marquez II (2019) Uniqueness of Four Covering Arrays Equivalent to Error-Correcting Codes. J Appl Computat Math 8: 439.

Page 5 of 5

Volume 8 • Issue 2 • 1000439J Appl Computat Math, an open access journal
ISSN: 2168-9679

Conclusion
In this work we determined the uniqueness of the optimal

covering arrays CA(32;4,13,2), CA(64;5,14,2), CA(128;6,15,2), and
CA(256;7,16,2). These results were obtained by using two parallel
versions of a previously reported algorithm based on juxtaposing
v covering arrays of strength t and k columns to construct covering
arrays of strength t+1 and k+1 columns. To the best of our knowledge,
these four covering arrays are the larger ones that has been classified by
a computational method.

We also found that the above four covering arrays are equivalent
respectively to the optimal and unique error-correcting codes (13,32,6),
(14,64,6), (15,128,6), and (16,256,6). Because of the uniqueness of
both type of objects there is a correspondence between the following
four pairs: CA(32;4,13,2) and (13,32,6), CA(64;5,14,2) and (14,64,6),
CA(128;6,15,2) and (15,128,6), CA(256;7,16,2) and (16,256,6). The
optimality of both kind of objects is interesting because in covering
arrays the optimality is related to the minimum number of rows,
and in codes the optimality has to do with the maximum number of
codewords.

References

1. Best M, Brouwer A, MacWilliams F, Odlyzko A, Sloane N (1978) Bounds for
binary codes of length less than 25. IEEE Transactions on Information Theory
24: 81-93.

2. Choi S, Kim HK, Oh DY (2012) Structures and lower bounds for binary covering
arrays. Discrete Mathematics 312: 2958-2968.

3.	 Colbourn CJ, Keri G, Soriano PPR, Schlage-Puchta JC (2010) Covering and
radius-covering arrays: Constructions and classification. Discrete Applied
Mathematics 158: 1158-1180.

4.	 Forney Jr GD, Sloane NJA, Trott MD (1993) The Nordstrom-Robinson code is

the binary image of the octacode. In: Proceedings DIMACS/IEEE Workshop on
Coding and Quantization, pp: 19-26.

5.	 Goethals JM (1971) On the Golay perfect binary code, Journal of Combinatorial
Theory. Series A, 11: 178-186.

6.	 Goethals JM (1977) The extended Nadler code is unique (corresp.). IEEE
Transactions on Information Theory, 23: 132-135.

7.	 Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal Arrays: Theory and
Applications. Springer-Verlag, New York, pp: 416.

8.	 Izquierdo-Marquez I, Torres-Jimenez J (2018) New optimal covering arrays
using an orderly algorithm. Discrete Mathematics, Algorithms and Applications
10: 1850011.

9.	 Izquierdo-Marquez I, Torres-Jimenez J (2019) New covering array numbers.
Applied Mathematics and Computation.

10.	Kokkala JI (2017) Computational methods for classification of codes.

11.	Liu C, Ong B, Ruth G (1973) A construction scheme for linear and non-linear
codes. Discrete Mathematics 4: 171-184.

12.	Nadler M (1962) A 32-point n=12, d=5 code. IRE Transactions on Information
Theory 8: 58-58.

13.	Nordstrom AW, Robinson JP (1967) An optimum nonlinear code. Information
and Control 11: 613-616.

14.	Semakov NV, Zinoviev VA (1969) Balanced codes and tactical configurations.
Problems of Information Transmission 5: 22-28.

15.	Semakov NV, Zinoviev VA (1969) Complete and quasi-complete balanced
codes. Problems of Information Transmission 5: 14-18.

16.	Snover SL (1973) The uniqueness of the Nordstrom-Robinson and the Golay
binary codes.

17.	Torres-Jimenez J, Izquierdo-Marquez I (2016) Construction of non-isomorphic
covering arrays. Discrete Mathematics, Algorithms and Applications 8:
1650033.

https://pdfs.semanticscholar.org/87ee/ac9ec831f1e1a098a15788aaa49b260e1efc.pdf
https://pdfs.semanticscholar.org/87ee/ac9ec831f1e1a098a15788aaa49b260e1efc.pdf
https://pdfs.semanticscholar.org/87ee/ac9ec831f1e1a098a15788aaa49b260e1efc.pdf
https://core.ac.uk/download/pdf/82005605.pdf
https://core.ac.uk/download/pdf/82005605.pdf
https://asu.pure.elsevier.com/en/publications/covering-and-radius-covering-arrays-constructions-and-classificat
https://asu.pure.elsevier.com/en/publications/covering-and-radius-covering-arrays-constructions-and-classificat
https://asu.pure.elsevier.com/en/publications/covering-and-radius-covering-arrays-constructions-and-classificat
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.4263
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.4263
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.4263
https://www.sciencedirect.com/science/article/pii/0097316571900434
https://www.sciencedirect.com/science/article/pii/0097316571900434
https://www.researchgate.net/publication/3082842_The_extended_Nadler_code_is_unique_Corresp
https://www.researchgate.net/publication/3082842_The_extended_Nadler_code_is_unique_Corresp
https://www.springer.com/in/book/9780387987668
https://www.springer.com/in/book/9780387987668
https://www.worldscientific.com/doi/abs/10.1142/S1793830918500118
https://www.worldscientific.com/doi/abs/10.1142/S1793830918500118
https://www.worldscientific.com/doi/abs/10.1142/S1793830918500118
https://www.semanticscholar.org/paper/New-covering-array-numbers-Izquierdo-Torres-Jim%C3%A9nez/7b3ea937b5fa3526471943783619c1d0b580edfd
https://www.semanticscholar.org/paper/New-covering-array-numbers-Izquierdo-Torres-Jim%C3%A9nez/7b3ea937b5fa3526471943783619c1d0b580edfd
https://aaltodoc.aalto.fi/handle/123456789/28045
https://core.ac.uk/download/pdf/82210831.pdf
https://core.ac.uk/download/pdf/82210831.pdf
https://www.researchgate.net/publication/3489266_A_32-point_n12_d5_code_Corresp
https://www.researchgate.net/publication/3489266_A_32-point_n12_d5_code_Corresp
https://core.ac.uk/download/pdf/82797787.pdf
https://core.ac.uk/download/pdf/82797787.pdf
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1808&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1808&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1794&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1794&option_lang=eng
https://elibrary.ru/item.asp?id=7093609
https://elibrary.ru/item.asp?id=7093609
https://www.worldscientific.com/doi/abs/10.1142/S1793830916500336
https://www.worldscientific.com/doi/abs/10.1142/S1793830916500336
https://www.worldscientific.com/doi/abs/10.1142/S1793830916500336

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Parallel Classification Algorithms
	Previous sequential algorithm
	First parallel version
	Second parallel version

	Computational Results
	Equivalence with Error-Correcting Codes
	Conclusion
	Figure 1
	Figure 2
	References

