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Introduction
In the acts of Colloquium of Brussels in 1958, Libermann [1] 

addressed the study of the automorphisms of the contact structures on 
a differentiable manifold M. She has proved that these automorphisms 
corresponds bijectively to functions on this manifold. This allows to 
transport the Lie algebra structure on the vector space F(M) of the 
functions on M: We obtain, for given functions f, g ∈ F(M), a Poisson 
bracket [f, g] that depends of the contact form ω: The study of the 
infinite dimensional Lie algebras obtained is far from be advanced. 
Thus, in 1973 Lichnerowicz [2] who hopes distinguish the contact 
structures by their Lie algebras, has given series of results that are all 
however of general character. Some works that have appeared after 
have emphasis on the similarities of these algebras. In 1979, Lutz [3] 
has proved the existence of infinitely many non-isomorphic contact 
structures on the sphere S3. In 1989, as reported by Lutz [3] himself, we 
have opened in our thesis [4] new perspectives in the other direction 
by studying the sub-algebras of finite dimension of these algebras. We 
know that if two contact structures [ω1] and [ω2] are isomorphic then 
their Lie algebras (of infinite dimension of course) A([ω1]) and A([ω2]) 
are also isomorphic.

Given an n-dimensional smooth manifold M, and a point p 2 M, 
a contact element of M with contact point p is an (n-1)-dimensional 
linear subspace of the tangent space to M at p: A contact contact 
element can be given by the zeros of a 1-form on the tangent space to M 
at p: However, if a contact element is given by the zeros of a1-form ω, 
then it will also be given by the zeros of λω where λ ≠ 0: thus {λω: λ ≠ 0}
all give the same contact element. It follows that the space of all contact 
elements of M can be identified with a quotient of the cotangent bundle 
PT*M, where PT*M=T*M/R; where, for ωi ∈2 T*p M, ω1 R ω2 if there 
exists λ ≠ 0: ω1=λω2.

A contact structure on an odd dimensional manifold M, of 
dimension 2k + 1, is a smooth distribution of contact elements, denoted 
by ξ, which is generic at each point. The genericity condition is that ξ 
is non-integrable.

Assume that we have a smooth distribution of contact elements 
ξ given locally by a differential 1-form; i.e. a smooth section of the 
cotangent bundle. The non-integrability condition can be given 
explicitly as ( ) 0kdα α∧ ≠ .

Notice that if ξ is given by the differential 1-form, then the same 
distribution is given locally by β=fα, where f is a non-zero smooth 
function. If ξ is co-orientable then is defined globally.

If is a contact form for a given contact structure, the Reeb vector 
field R can be defined as the unique element of the kernel of dα such 
that α(R)=1.

For more details, we can consult the previous studies [5-8].

The Main Result
The main result is contained in the following theorem:

Theorem 1

On the torus T3 the contact structures defined by the contact forms 
( )3 1 3 2cos d sin dn n n nω θ θ θ θ= + ∈  are non-isomorphic.

To establish this result, we need the following lemma.

Lemma 2

Let f a C∞-function on the torus T3 and Rn the Reeb field of ωn 

defined by 3 3
1 2

cosn sinnnR θ θ
θ θ
∂ ∂

= +
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.

If Rn(f)=0, then f depend only on θ3.

Proof: Rn(f)=0 means that f is constant along the integral curves of 
Rn whose equations are:
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where k1, k2 and k3 are real constants.

When tan k3 is irrational, the trajectories are dense on a torus T2; 

so by continuity f is constant on this torus. Hence, we get
1 2
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=0 
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after taking into account the form of Reeb field Rn the four equations:

2 2 2 2
1 2 1 2
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,

from those, we deduce that the functions 
1 2 1 2

, ,u u v vand∂ ∂ ∂ ∂
∂θ ∂θ ∂θ ∂θ

 

depend only on θ3.

The diffeomorphism F can now be completly characterized in the 
following way:

u(θ1,θ2,θ3)=θ1α1(θ3)+θ2β1(θ3)+γ1(θ3),

v(θ1,θ2,θ3)=θ1α2(θ3)+θ2β2(θ3)+γ2(θ3),

w(θ1,θ2,θ3)=γ3(θ3),

where the functions αi,βi,γj, i=1,2 and j=1,2,3 are defined on the torus T3:

SoF is a diffeomorphismism, if the functions αi, βi and i take only 
integer values and subject to the condition 1 2 2 1 1α β + α β = ± .

We return now to the eqns. (1) and (2); we obtain:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1 2 3

2 1 3 2 1 3

sin 2 sin 2

cos 2 cos 2 0

w w

w w

α −β + θ − α + β − θ

+ α −β − θ − α + β + θ =

Thus if w=±2θ3; F is not invertible. In the contrary case, the 
quantities ( ) ( ) ( )3 3 3sin 2 ,sin 2 ,cos 2w w w+ θ − θ − θ  are linearly independent, 
soαi=βi=0. i=0:

In all cases this diffeomorphism do not exist and the contact 
structures [ω1] and [ω2] are not isomorphic.

Consequently, there are infinitely many non-
isomorphic contact structures [ωn] on the torus T3 given by 

( )3 1 3 2cos d sin dn n n nω θ θ θ θ= + ∈ .

This completes the proof of the theorem.

Conclusion
The technics used in this work to find nonisomporphic contact 

structures can be extended to the sphere S3 in a first step and may be to 
other manifolds suitably choosen. It is also interesting to find the group 
of diffeomorphisms that leaves the contact structure invariante.
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for θ1; θ2 arbitrary and θ3 in a dense subset of the circle. It follows that f 
is constant with respect to θ1 and θ2:

This completes the proof of the lemma.

Proof of the theorem: It suffices to prove that the structures [ω1] 
and [ω2] are non-isomorphic.

From a study [1] we recall that the Poisson brackets associated to 
[ω1] and [ω2] are given respectively by:
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Suppose that [ω1] and [ω2] are isomorphic that is F*ω1=λω2, where 
λ is a function on T3 without zeros and F be this diffeomorphism 
defined from T3 into T3 by:

F(θ1, θ2, θ3)=(u(θ1, θ2, θ3), v(θ1, θ2, θ3),w(θ1, θ2, θ3)):

We obtain the two equations:

3
1 1

cos sin cos2u vw w∂ ∂
+ = λ θ

∂θ ∂θ
			                 (1)

3
2 2

cos sin sin 2u vw w∂ ∂
+ = λ θ

∂θ ∂θ 			                  (2)

Let Φ(θ1,θ2, θ3)=cos θ3,Ψ (θ1,θ2,θ3)=cos θ1 and Ω (θ1,θ2, θ3)=-sin θ1: 
Thus we have [Φ, Ψ]1=Ω, [Ψ, Ω]1=Φ and [Ω, Φ]1=-Ψ.

Then Φ, Ψ and Ω generate a three dimensiononal sub-algebra of 
A [ω1] isomorphic to SL2() and consequently,we deduce that the 
functions ,F F and FΦ Ψ Ω  

 generate a three dimensional sub-
algebra of A [ω2] isomorphic to SL2():

Thus, we have by analogy

 [ ] [ ] [ ]2 2 2
cos ,cos sin , cos , sin cos , sin ,cosw u u u u w u u= − − = − = cosu− .

From this equation, it follows:

3 3
1 2

cos2 sin 2 cosu u w∂ ∂
θ + θ = −

∂θ ∂θ
 			                  (3)

If Φ(θ1,θ2, θ3)=sin θ3, Ψ(θ1,θ2, θ3)=cos θ2 and Ω(θ1,θ2, θ3)=-sin θ2.

We obtain similarly:

3 3
1 2

cos2 sin 2 sinv v w∂ ∂
θ + θ = −

∂θ ∂θ
			                 (4)

We take now Φ(θ1,θ2, θ3)=1 and Ψ (θ1,θ2, θ3)=-cos θ3,

We get,

( ) ( )
3 3

1 2

cos cos
cos2 sin 2 0

w w∂ ∂
θ + θ =

∂θ ∂θ
 		                 (5)

From eqn. (5) and lemma 2, it follows that the function cosw and 
consequently the function w depend only on θ3:

Differentiating eqns. (3) and (4) with respect to θ1 and θ2, we get 
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