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Introduction

There are many members of the UHRF family including UHRF1, UHRF2, 
UHRF3 and UHRF4 having different functions. In this review, we mainly study 
the activity of UHRF1. It is a multi-domain protein associated with epigenetic 
mechanisms of cell regulation and proliferation. UHRF1 stands for Ubiquitin-
like PHD Ring finger 1 having a location in the chromosomal region 19p13.3 
[1]. It plays a key role in transferring methylation from mother to daughter DNA 
strands [2-5]. mUHRF1 was discovered against murine thymic lymphoma 
by engineering antibodies. hUHRF1 has activity of E3 ligases for histones 
H3. Expression of UHRF1 increases in breast cancer, cervical lesions, 
rhabdomyosarcoma, pancreatic adenocarcinoma, prostate cancer and lung 
cancer [6]. Increased expression of UHRF1 in human pulmonary fibroblasts 
causes increased topoisomerase IIα expression and hence increased cell 
proliferation. Similarly, depletion of UHRF1 causes DNA damage response, 
G2/M phase arrest and apoptosis formation [7-9]. UHRF1 by interacting with 
DNMT1 and HDAC1 induces heterochromatin structure.

Discussion

Structure of UHRF1

It possesses a UBL (Ubiquitin-like domain), TTD (Cryptic Tandem Tudor 
Domain), PHD (Plant Homeodomain), SRA (Set and Ring Associated) and 
RING (Really Interesting New Gene) domain [10] as shown in (Figure 1).

UBL domain contains α/β ubiquitin folds with surface Lysine residues i.e. 
35% similar to ubiquitin, consisting of 76 amino acids and has an important 
role in cell cycle progression, protein degradation and gene transcription [11]. 
PH Domain recognizes di and tri-methylation of histone h3 lysine 9 (H3K9), 
associated with heterochromatin formation, transcriptional processes and also 
with downregulation of UHRF1 both in human and mouse causes disrupt H3K9 
distribution. PHD promotes gene activation and inactivation by interacting with 
tri-methylated H3K4. Various studies have shown that PHD has the ability 
to read the histone code as well [12]. The SRA domain contains 150-170 
amino acids directly involved in DNA methylation to the target sequences by 
recognizing hemimethylated Cytosine of new daughter DNA strand [13] binds 
with DNMT1 and involved in heterochromatic formation along with PH domain. 
It sets a bridge between DNA methylation and histone code by allowing 
UHRF1 to bind with HDAC1, methylated DNA and DNMT1. RING is 76 amino 
acid long polypeptide domain, attached with Lysine on cellular protein by its 
C-terminal. Ubiquitination is mediated by E1/E2/E3 enzymes; especially E3 

catalyzes the binding of the C-terminal with Lysine on targeted protein. There 
are two main classes of E3 ligases, HECT and Ring class having Ring finger 
domain [14]. UHRF family has auto-ubiquitinating activity [8] like many ligases 
which contain Ring finger domain. UHRF1 ubiquitinates histone H3 and these 
are substrates for the UHRF family.

Mechanism of UHRF1 in heterochromatin formation

• First UHRF1 binds to PCNA and recognizes hemimethylated DNA 
through its SRA domain DNA replication occurs and histones are 
reassembled immediately on the DNA strand shown in step 1 figure 
2 [1,4,5].

Figure 1. Construction of UHRF1: UBL (Ubiquitin-Like Domain), TTD (Cryptic Tandem 
Tudor Domain), PHD (Plant Homeodomain), SRA (Set and Ring Associated) and RING 
(Really Interesting New Gene) domains interact with DNMT1, HDAC1, H3K9 and 
Histone H3 proteins that lead to epigenetics code of inheritance.
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Figure 2. Mechanism of UHRF1 in heterochromatin formation. UHRF1 binds to PCNA 
and recognizes hemimethylated DNA through its SRA domain. UHRF1 recruits the G9a, 
DNMT1 and HDAC1 which methylates the h3k9 and binds with PHD domain, both DNA 
strands and transfer the methylation status from mother to daughter DNA strand and 
deacetylates the histone proteins respectively which leads to heterochromatin formation.
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• Secondly UHRF1 recruits the G9a which methylates the h3k9 (Histone 
h3 Lysine 9) and methylated h3k9 binds with the PHD domain of the 
UHRF1 Step 2 in figure 7 then it recruits the DNMT1which methylates 
both DNA strands and transfers the methylation status from mother to 
daughter DNA strand.

• Finally UHRF1 recruits the histone deacetylase 1 (HDAC1) which 
deacetylates the histone proteins and helps in heterochromatin 
formation and transcriptional suppression [15] Step 3 in (Figure 2).

UHRF1 and epigenetic codes

UHRF members directly influence the histone code by their enzymatic 
activity (E3 Ligase) via RING, maintaining the epigenetic code (DNA 
Methylation and Histone Code) and genomic integrity. It might be a tumor 
suppressor gene [16].

UHRF1 interacts with the methyl-CpG region in DNA strand, methylated 
H3K9, DNMT1, HDAC1, PCNA and G9a, links with DNA methylation and 
histone methylation, deacetylation and ubiquitination with heterochromatin 
formation as shown in figure 3 [2,4,5,7,10,15,17]. DNA methylation and 
histone modification both act together, changing the gene expression and 
heterochromatin structure [4,18,19] (Figure 3).

Up regulation of UHRF1

UHRF1 is significantly over-expressed in various cancers and tumor cells 
[8,20]. Upregulation of UHRF1 is associated with high levels of p73, SIRT1, 
Caspase 3, DNMT1 and HDAC1 level and ultimately leads to cancer as shown 
in figure 4. UHRF1 when associated with DNMT1 maintains the methylation 
status of daughter DNA and maintains the epigenetic inheritance [2,21]. UHRF1 
interacts with HDAC1 and transfers them to the methylated tumor suppressor 
genes [20]. It also maintains histone deacetylation and histone methylation [22] 
and plays many roles in cancer proving it beneficial for therapeutic targeting 
[1,23] (Figure 4).

Downregulation of UHRF1

Down regulation of UHRF1 causes DNA damage by breaking DNA strands 
[24,25], cell cycle arrest in the G2/M stage by inhibiting Cyclin-Dependent 
Kinases 1 (cdk-1), a regulator of cell cycle progression in G2 phase during 
mitosis and apoptosis by activating Caspase 8 [9] as shown in figure 5. chk 1 
and chk 2 are activated by phosphorylation in DNA damage response. Loss of 
chk 2 occurs in UHRF1-depleted cells and inhibits the phosphorylation of chk 
1, it leads to cell death by cell cycle arrest. Apoptosis results from depletion of 
UHRF1 are p53 independent and this pathway regulates Caspase 8 functions 
which causes activation of Caspase 3 and ultimately apoptosis [26]. Various 
studies have shown that depletion of UHRF1 prevents cell cycle progression 
so it is useful to prevent the growth of tumor cells in cancer treatment [27] 
and UHRF1 depleted cells become more sensitive to DNA damaging agents 
[16,28] (Figure 5). Role of UHRF1 in cancers

UHRF1 is down regulated by p53 via the up-regulation of p21 and 
deactivation of E2F1, an up-regulator of UHRF1 [7,16,20]. As p53 is deficient 
in 50% of cancers [29], So UHRF1 is up regulated in many cancers by the 
following mechanism. In p53 deficient cancers, the cyclin D/cdks (Cyclin-
Dependent Kinases) complex become activated, causing phosphorylation of 
PRB and phosphorylated PRB activates the E2F1 which binds with UHRF1 
and up regulates its level which leads to cancer as shown in figure 6. UHRF1 is 
up regulated by rapid cell cycle progression as well [20,7,8,30,31]. In the rapid 
cell cycle, UHRF1 binds with newly synthesized DNA with PCNA, DNMT1 and 
HDAC1 and hastily transfers the CH3 group from mother to daughter progeny. 
It activates the G1/S phase and the cyclin B/cdk1 complex becomes activated 
in the G2/M phase and p21 inactivates this cdk1. [32] (Figure 6).

UHRF1 as a diagnostic and prognostic marker

Up-regulation of UHRF1 has been associated with various cancers e.g, 
including breast cancer, lungs cancer, bladder, prostate, cervical and pancre-
atic cancers [8,20,30,31,33,34]. Up-regulation of UHRF1 is associated with 
the downregulation of p53 as it has already been discussed in the previous 
paragraph and it is also essential for cell cycle progression so UHRF1 down-

 

UHRF1

Histone
ubiquitination

Histone
methylaton

Histone
deacetylation

DNA 
Methyla�on

Heterochomatin
formation

Figure 3. UHRF1 links with DNA methylation, histone methylation, deacetylation and 
ubiquitination, changes the gene expression and heterochromatin formation.
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Figure 4. Upstream regulation of UHRF1: Upregulation of UHRF1 is associated with 
high levels of p73, SIRT1, Caspase 3, DNMT1 and HDAC1 level and ultimately leads 
to cancer.
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Figure 5. Depletion of UHRF1: Down-regulation of UHRF1 causes DNA damage by 
breaking DNA strands, cell cycle arrest in the G2/M stage by inhibiting CDK-1 and 
apoptosis by activating Caspase 8. 
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regulation is associated with cell growth suppression. It has been used as a 
diagnostic or prognostic marker by quantitative analysis of UHRF1 in urine and 
tissue samples of different cancer patients. UHRF1 and other proteins’ expres-
sion can be detected by immune histochemistry [7].

UHRF1 as a potential therapeutic target

All UHRF1 members have ubiquitin ligase E3 activity, targeting E3 ligases 
proved beneficial as it is an ideal drug target in anticancer therapy. Expression 
of E3 ligases along with UHRF1 increases in cancer cells so when they are 
inhibited, growth arrest and apoptosis occur [35,36]. So, targeting UHRF1 is 
selective anticancer therapy.

DNA methylation pattern in UHRF1

The most important domain involved in DNA methylation is the UHRF1-SRA 
domain. UHRF1 binds with hemimethylated DNA with the SRA domain which is 
involved in the proper setting of DNMT1 on the DNA strand [4,6]. DNMT1 and 
UHRF1 are two proteins that have affinity and selectivity for hemimethylated 
DNA on their own and both are essential for performing their functions [37]. It is 
supposed that UHRF1 moves along DNA strands, recognizes hemimethylated 
CpG region [3-5] and it dictates DNMT1 through an unknown mechanism to 
catalyze methylation at the target site. Another model states that when DNMT1 
starts acting, UHRF 1 gets separated from the CpG region, allowing DNMT1 
to work properly. It is widely researched how DNA hypermethylation makes 
the gene transcriptionally silent. DNA methylation behaves as a signal for the 
recruitment of CpG Methyl Binding Domain (MBD) [38] which further recruits 
the Histone Deacetylase (HDAC) and form many genes silencing complexes 
as shown in (Figure 7).

Factor influencing DNA methylation

Many factors have a direct impact on the extent of DNA methylation 
pattern.

Aging: As the tissue becomes aged, there is more possibility that the 
genome will become hypomethylated and certain CpG islands become 
hypermethylated. But it is not known whether this change makes the person 
more susceptible to cancer or not [39].

Diet: DNA methylation requires methyl group which comes from folate 
and methionine components of the diet. As mammals lack the ability to 
produce folate and methionine themselves, they are totally dependent on 
diet for carrying out DNA methylation. A diet containing a low amount of these 
substances causes decrease DNA methylation and increases the tendency of 
cancer [40-43].

Environment: DNA methylation is also affected by agents such as Arsenic 
and Cadmium. Ras gene hypomethylation is caused by Arsenic and total DNA 
hypomethylation is caused by Cadmium which does so by inactivating DNMT1 
[44-49].

UHRF1 is a drug able to target cancer therapy

There are 3 ways by which UHRF1 acts as drug able target in cancer 
therapy; 

• Inhibition of UHRF1 expression inhibits the cells from entering into 
the S phase and thus it causes growth arrest. Over-expression of 
UHRF1 overcomes cell contact inhibition in human lung fibroblasts. 
Down regulation of UHRF1 activates the DNA damage response and 
causes cell arrest and apoptosis [50-54].

• UHRF1 members are ubiquitin E3 ligases and inhibiting the 
proteosomes pathway is one of the strategies in anticancer drug 
development. 

• E3 ligases are over-expressed in many cancers and inhibition of E3 
ligases causes the growth inhibition of cells and apoptosis in cancer cells. 
So, E3 ligases can also be targeted to avoid unwanted effects [55-62].

It would be interesting to find a direct inhibitor of UHRF1, it would be helpful 
because it directly inhibits the cancer cells’ growth and causes apoptosis. 
Therefore, research on the direct inhibition of SRA and RING domain with its 
E3 ligase activity is under consideration [63-68].

Conclusion

UHRF1 is an attractive potential therapeutic target

It has been shown that with chemical stimulation of double-stranded breaks 
in DNA by an anticancer agent (Adriamycin) in HCT116 cells (colon cancer) 
there is a decrease in UHRF1 expression at the transcriptional level and 
protein. This fall, required for the cells moving towards apoptosis, is controlled 
by the way p53/p21WAF1/CIP1. By cons, when p53 is defective, there is no 
decline in the expression of UHRF1. Consequently, one might consider that the 
lack of decrease in the expression and/or over-expression of UHRF1 in cancer 
cells results from an alteration of the p53 tumor suppressor gene.

When interferes with the ubiquitin ligase activity of UHRF1 (by 
overexpression of RING domain mutant sound) increases the sensitivity of 
cancer cells to chemotherapeutic agents. In addition, it was reported that 
inhibition of the expression of UHRF1 causes a reduction of Ribonucleotide 
Reductase, an enzyme essential for the Synthesis of Deoxy Nucleotides. The 
concomitant decrease in the expression of both proteins leads to increased 
cell sensitivity to hydroxyurea (HydréaTM), which can be particularly effective 
in the treatment of leukemia. It was suggested that the anti-transcriptional 
targeting of UHRF1 might be interesting in the case of cancers resistant to 
hydroxyurea without resorting to the increase in therapeutic doses.

All these studies seem to converge on the fact that UHRF1 is an attractive 
target to develop new anti-cancer molecules.
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Figure 7. DNA methylation pattern in UHRF1: UHRF1 moves along DNA strands, 
recognizes hemimethylated CpG region and dictates DNMT1 to catalyze methylation at 
the target site. DNA methylation behaves as a signal for the recruitment of CpG region 
MBD which further recruits HDAC1 and form many genes silencing complexes.
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