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Introduction
The emergence of multi-cellular organs and their organization 

into complex body plans is a major cornerstone concerning origin 
of life on Earth. This requires that the fundamental unit of life, 
namely the cell, must communicate, coordinate and organize. Cell 
communication mediated by signal transduction pathways is essential 
for the development and functioning of any organism. About 20 
different signal transduction pathways are required to generate 
the high diversity of cell types, patterns and tissues characteristic of 
metazoans [1]. A major juxtacrine signaling system that allows cells to 
directly talk to each other to program almost every cell type in the body 
is characterized by the Notch pathway.

The observation of Notched-wings in the fruit fly Drosophila 
melanogaster in the year 1914 by John Dexter, and subsequent attribution 
of this phenotype to Notch gene in 1917 by Thomas Morgan [2] led to 
the discovery of the exquisitely complex Notch pathway that represents 
one of the major communication channels between neighboring cells 
[3,4]. Notch signaling is heavily dependent on contextual cues such 
as physical interactions with the tissue microenvironment and cross-
talk with other signaling pathways, without requiring any secondary 
messenger system.

A genome-wide comparative study has revealed 22 main 
components of the evolutionarily ancient Notch pathway [5]. While 
many of the Notch pathway components are shared with non-
metazoan eukaryotes, nine of the components encoding canonical 
Notch receptors and ligands are metazoan-specific. This indicates that 
the Notch pathway has evolved through the co-option of ancient pre-
metazoan proteins, and their integration with novel metazoan-specific 
molecules. This pathway has remained highly conserved throughout 
evolution. Although some components of the Notch pathway were 
present in fungi, amoeba, and plants as well as in the earliest excavata, 
a functional Notch pathway emerged in the last common ancestor of 
present-day metazoans, the Urmetazoa [5]. 

There are inter-species differences between the precise numbers of 
Notch paralogues, for example, mammals have four Notch receptors 
(Notch 1-4), Caenorhabditis elegans has two (LIN-12 and GLP-1) 
and Drosophila melanogaster has one (Notch), but the basic signaling 
framework is common throughout [6,7]. Notch has two families of 
ligands encoded by the two paralogous genes Delta and Jagged. Delta 
was ancestrally present in Metazoa, whereas a complete Jagged is absent 
in Placozoa and Porifera. Both the Notch receptor and its ligands, Delta 
and Jagged (Serrate in Drosophila) are transmembrane proteins with 
large extracellular domains that consist primarily of Epidermal Growth 
Factor (EGF)-like repeats. There are five mammalian Notch ligands 
Delta-like 1, 3 and 4 (DLL1/3/4) and Jagged 1 and 2 (JAG1/2) [7]. The 
Delta ligands trans-activate Notch in neighboring cells and cis-inhibit 
Notch in its own cells [8,9].

Notch signaling is unique from other conserved signaling pathways 
in its mechanism of signal transduction. It relies on the ability of a ligand 

to bring about receptor proteolysis, resulting in the release of an active 
Notch fragment. A second unusual feature is that intra-membrane 
proteolysis is involved in its receptor activation. After its proteolytic 
release from an intra-membranous tether, the Notch Intracellular 
Domain (NICD) translocates to the nucleus. There, it associates 
with a DNA-binding protein to assemble a transcription complex 
that activates downstream target genes. This forms the core signal 
transduction pathway in most “canonical” Notch signaling processes 
[4]. Since each Notch receptor molecule undergoes proteolysis to 
generate a signal and thus can only signal once, the availability of either 
Notch ligand or receptor at the cell surface is key to controlling Notch 
activation. 

The “noncanonical” Notch signaling involves three possible 
scenarios: (1) transduction of activation signals following Notch 
ligation and nuclear translocation of NICD independent of hetero 
dimerization with the DNA-binding transcription factor CSL (named 
after CBF1 for human, Suppressor of hairless Su(H) for Drosophila, 
and LAG-1 for C. elegans; also known as RBP-J in mouse); (2) 
activation of Notch target genes independent of γ-secretase-mediated 
NICD cleavage and CBF1; and (3) CBF1-dependent activation without 
ADAM family metalloprotease-mediated Notch receptor cleavage 
and γ-secretase-mediated NICD cleavage. Such noncanonical Notch 
pathways most likely represent a point of cross-talk between other 
classical intracellular signaling pathways, including Hedgehog, Jak/
STAT, RTK, TGF, Wnt, PI3, mTor, Akt, JNK, MEK/ERK, and NFκB 
[4,10-12]. 

The Notch signaling with promiscuous receptor-ligand binding is 
highly dose- and context-dependent. It regulates numerous critical cell 
fate specification events during the ontogeny of the nervous system, 
hematopoietic system, eye, and skin via the developmental processes of 
lateral inhibition and boundary induction [4,7]. In addition, it also plays 
diverse roles in regulating malignant hematopoiesis, maintenance and 
expansion of lineage-restricted hematopoietic progenitors, lymphocyte 
differentiation, and peripheral immune responses. Evidence is 
also accumulating to indicate that the deregulation of Notch plays 
important role in the development of both normal and cancer stem 
cells [13]. Moreover, Notch – like all oncoproteins – can contribute 
to the process of tumorigenesis as long as it partners with another 
onco-signaling. For example, crosstalk between Notch and TGFβ is 
important for the Epithelial-Mesenchymal Transition (EMT) as Notch 
signaling is required to sustain TGFβ-induced Notch target gene hey1 
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both tumour-promoting and -suppressive roles within the same tissue 
[15].

Besides the established roles of the Notch system described above, 
our recent discovery of its significance for antitumor effector functions 
and memory [16] reveals important gaps in current knowledge. Since 
the Notch system lies at a juncture of an interactive cell signaling 
network, activation or inhibition of selective Notch markers may serve 
as unique predictors of immune reconstitution, re-established tumor 
immunosurveillance and direct anticancer effects following cancer 
immunotherapy. Our work revealed that tumor and its derivative pro-
angiogenic factors such as the Vascular Endothelial Growth Factor 
(VEGF) [17,18] down-regulates the expression of Delta-like Notch 
ligands in the hematopoietic compartment of mice as well as humans, 
and the resulting decrease in ligand-induced Notch activation leads to 
defects in T cells [16]. Paradoxically, we also recently discovered that 
stimulation of DLL1-mediated Notch signaling by over-expression of 
DLL1 in the hematopoietic compartment or by systemic administration 
of a prototypic therapeutic reagent, clustered multivalent DLL1, 
was sufficient to correct tumor-induced defects in T lymphocyte 
differentiation, and enhance T cell anti-tumor immunity to produce 
significant tumor inhibition in mouse lung cancer models [16]. Thus, 
modulation of DLL1/Notch signaling has the exquisite potential to 
enhance antitumor T cell immunity by overcoming tumor-associated 
immunosuppression. 

contexts are valuable not only from a basic biology standpoint but also 
from therapeutic medicine viewpoint.
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