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Abstract

Chronic inflammatory state is linked to the emergence of hepatocellular carcinoma, one of the most common and
aggressive cancers worldwide. The complex microenvironment of tumor changes dynamically and consequently
affects the pathological process. Understanding the immunological milieu of tumor in hepatocellular carcinoma can
have crucial repercussions on how we see liver cancer and help plan for future cancer treatments. Taking part in this
dynamic microenvironment, macrophages play a vital role in tumor growth and proliferation, cancer survival,
metastasis and angiogenesis. In this review, we discuss the place and the current understanding of tumor-
associated macrophages and their role in the process of hepatocarcinogenesis. In addition, we present directions for
research targeting macrophage plasticity for future anti-tumor therapeutic approaches.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most aggressive

cancers worldwide. It is held responsible for up to 1 million deaths
globally per annum [1]. For men, it is the fifth most frequently
diagnosed cancer worldwide and the second most deadly, whereas for
adult women it is the seventh most frequently diagnosed cancer and
only the sixth most fatal [2]. HCC occurs mainly after hepatic stress or
injury that induce fibrosis and/or cirrhosis. Stresses on the liver can
come from many different sources; the virus hepatitis B [3] and
hepatitis C [4] are major causes of HCC development. Also, chronic
alcohol consumption can worsen the outcome dramatically [5] by
causing liver cirrhosis. Additional diseases are linked to HCC
development, like biliary diseases including primary biliary cirrhosis
[6], metabolic disorders like obesity [7] and genetic conditions such as
hereditary hemochromatosis [8].

HCC is an inflammation-related cancer, as a chronic inflammatory
state is necessary for cancer appearance. This review highlights the
place of inflammation in hepatocellular carcinoma. We inspect the
molecular cross talk in the tumor microenvironment between the
hepatocellular carcinoma and the immunological cells, mainly tumor-
association macrophages and it implication in hepatocarcinogenesis.

Emergence of inflammatory responses as a new hallmark of
cancer

For many years, scientists have tried to understand the pathological
characteristics of cancer. Determining and understanding specific
events that take place in order for a tumor to arise and survive is
fundamental. Certain crucial events have been identified to be
essential in order for the cancer to grow. These events have been

portrayed as the “hallmarks of cancer” and in the year 2000, Douglas
Hanahan and Robert A Weinburg produced a list of six separate
biological manifestations that lead to cancer growth [9]. Every cancer
must, according to the two researchers, resist cell death, sustain
proliferative signaling, evade growth suppressors, activate invasion
and metastasis, enable replicative immortality and finally induce
angiogenesis [9].

More recent studies start to shed light on additionally hallmarks
of cancer and more particularly, the role of inflammation in cancer
and the tumor’s ability to bypass immune suppression. This suggestion
was taken into account after the study of different cancer types in the
1980s. The pathologists found high levels of immune cells coming
from both the innate and adaptive branches [10]. This lead to the
hypothesis that tumor masses induce types of inflammatory reactions
and that studying the immune cells in and around the tumor mass
could help understand the specific role and function of this event.
Thanks to more recent cell marking techniques and advances in
research, scientists determined that there is a large range of various
immune responses in different types of cancer [11]. These different
types of responses vary in immune cell type and density [12], but can
in most cases be used as a prognostic value generally determining poor
outcome.

Upon studying these immune responses, scientists were intrigued
by the paradoxical inflammatory response which increases tumor
progression instead of controlling cancer cell proliferation [13].
Indeed, the inflammatory cells secrete factors that sustain cancer
growth in many ways. They secrete cytotoxic reactive oxygen species
(ROS) that increase mutational frequency in cancer cells, thus
augmenting cancerous outcome [14], growth factors, angiogenesis
boosting factors, anti-apoptotic factors and metastatic factors [15].

Not only do cancer cells program the surrounding inflammatory
cells to release factors that promote and sustain tumor growth, they

Lewis et al., J Mol Genet Med 2014, 8:3 
DOI: 10.4172/1747-0862.1000132

Review Article Open Access

J Mol Genet Med
ISSN:1747-0862 JMGM, an open access journal

Volume 8 • Issue 3 • 100032

Journal of Molecular and Genetic
MedicineJo

ur
na

l o
f M

ole
cular and Genetic M

edicine

ISSN: 1747-0862



also evade eradication by the immune system. This hypothesis
originated after studies found that immuno-compromised patients
were also often diagnosed with cancer [16]. These observations
elucidated that the immune system can also eradicate cancer
formation; in fact, most cancers are destroyed by the immune system
by a tissue protective response and immune surveillance [14]. The
subsequent hypothesis was that cancer proliferation occurs generally
after “immunoediting” which decreases the immunogenic capabilities
of a patient. Studies on mice proved that cancers could alter immune
surveillance in order to proliferate [17].

As an example of an inflammation-related cancer, HCC alter their
surrounding immunological territory in order to accumulate and
prosper. The growth and survival of these tumor cells is closely
correlated with microenvironmental alterations in and around the
tumor mass.

Tumor microenvironment and tumor-associated
macrophages in hepatocellular carcinoma

Tumor cells in HCC are in a cross talk with their surrounding
microenvironment, of complex cellular and chemical composition,
which helps nurture neoplastic maintenance and survival. Thus, the
HCC microenvironment is deeply involved in modulating all the
processes of hepatocarcinogenesis. In and around tumor cells we can
find growth factors and cytokines, extracellular matrix proteins,
proteinases and a multitude of different cells [18]. Among the cells
present are stromal cells, carcinoma-associated fibroblasts, hepatic
stellate cells endothelial cells and, more importantly for our review,
immune cells [18]. The immune cells consist of regulatory
(CD4+CD25+) and cytotoxic T(CD8+) cells, Kupffer cells and tumor-
associated macrophages (TAMs). All these partners generate immune
responses involved in the progression of HCC. Regulatory T cells,
Kupffer cells (resident liver macrophages) and other TAMs impair
cytotoxic T cell activities and their anticancer functions. Accordingly,
several studies reported associations of decreased intratumoral
densities of NK cells, low cytotoxic T, high TAM density and high
regulatory T cell numbers with better pathological features and worse
prognosis in HCC patients [19-22]. Recent studies have proven the
importance of TAMs in HCC proliferation and survival
[14,15,18,21,23,24]. TAMs belong to the macrophage lineage that are
found in close proximity or within certain tumor masses [25]. They
are generated from circulating monocytes in the bloodstream,
precursors of macrophage differentiation, and are recruited to the
tumor mass thanks to specific tumor-derived signals. Clinical studies
have shown that the presence of large quantities of TAMs has been
correlated with poor prognosis [23,24,26]. We are gaining more
insights about the functions of TAMs; they can possess either pro-
cancer or anti-cancer roles, depending on a wide range of molecular
growth factors, cytokines and chemokines, expressed in the tumor
microenvironment [27]. They reply to these stimuli by undergoing two
separate differentiation programs. Commonly, the terms used to
define the two opposing profiles are Classically Activated
Macrophages (CAMs) or M1 macrophages, and Alternatively
Activated Macrophages (AAMs) or M2 macrophages [28]. These two
macrophages represent the extremes of a continuum of macrophage
activation, as numerous sub-types exist [29]. The two phenotypes
differ based on their gene-expression profiles and cellular functions
[30]. Both of these macrophage sub-types induce T helper immune
responses, M1 macrophages induce T helper 1 cytotoxic immune
response through the expression of many pro-inflammatory signals,

whereas M2 macrophages trigger a T helper 2 immune response and
secrete a number of anti-inflammatory signals, thus creating a pro-
cancer microenvironment by increasing angiogenesis, tissue
remodeling and tissue repair (Figure 1) [31,32].

Figure 1: Monocyte recruitment, differentiation into macrophages
and their functional involvement. The figure summarizes: (1)
Secreted factors that recruit monocytes to tumor
microenvironment, (2) Factors that increase M1 macrophage
polarization, (3) Factors that increase M2 macrophage polarization
and (4) specific functions of each type of macrophages.

Studies show that in and around the HCC microenvironment,
TAMs are mainly polarized towards the M2 macrophage phenotype
that helps promote tumor growth and survival [24]. Understanding
which factors polarize the tumor-associated macrophages in one or the
other direction is critical in order to better understand the molecular
interactions that class these immune cells into the M1 cytotoxic or M2
pro-tumor sub-types.

Tumor-associated macrophage recruitment, polarization
and functions

Most tumors are eradicated through a physiological cytotoxic T
cell immune response which is promoted by tumor-associated
macrophages. Unfortunately, some tumors evade this natural immune
destruction by changing the tumor-associated macrophage phenotype
in order to help promote tumor proliferation. The study of this
phenomenon is crucial for understanding, first and foremost, which
factors polarize tumor-associated macrophages to help maintain and
promote tumor growth. Tumor-associated macrophages derive from
free flowing monocytes in the blood and can be found in and around
tumor masses [25]. They are the main type of inflammatory cells in
tumor masses and play an essential role in tumor progression [24].
TAMs are recruited to the tumor by multiple signaling molecules.
Among these molecules we can find Chemokine (C-C motif) Ligand 2
(CCL2)/Monocyte Chemotactic Protein 1 (MCP1) [33], molecules that
are highly expressed in tumor cells and tumor surrounding stromal
cells [34]. Also, TAMs are recruited by other tumor-derived signals
such as Macrophage Colony Stimulating Factor (M-CSF) or
Granulocyte Macrophage Colony Stimulating Factor (GM-CSF),
Vascular Endothelial Growth Factor (VEGF), CCL3/MIP1a, CCL4,
CCL5, CCL8, angiopoeitin-2 and Platelet Derived Growth Factor
(PDGF) [23,35]. Additionally, the overexpression of membrane bound

Citation: Lewis M, Merched AJ (2014) Tumor-Associated Macrophages, Inflammation and Pathogenesis of Hepatocellular Carcinoma. J Mol
Genet Med 8: 132. doi:10.4172/1747-0862.1000132

Page 2 of 5

J Mol Genet Med
ISSN:1747-0862 JMGM, an open access journal

Volume 8 • Issue 3 • 100032



protein glypican-3 on HCC cellular membrane increases the
recruitment of TAMs (Figure 1) [36].

TAMs subsequently undergo polarization depending on signals
present in and around the tumor type. In HCC, the majority of the
TAMs are of the M2 phenotype as this phenotype enables cancer
proliferation and survival [24]. The tumor cells and tumor-derived
cells therefore secrete certain factors, cytokines and chemokines that
activate macrophage polarization towards the alternatively activated
macrophage M2 state. Among the factors that recruit TAMs to the
specific microenvironment, some equally possess a polarizing
function. For instance, GM-CSF is a recruitment factor that equally
polarizes monocytes towards the M1 macrophage phenotype in vitro,
whereas M-CSF polarizes monocytes towards the M2 macrophage
phenotype in vitro [37]. Other factors tend solely towards macrophage
polarization. M1 macrophage polarization is induced by Toll Like
Receptor (TLR) stimulation, bacterial infection and Interferon (IFN)-γ
stimulation. M2 macrophages are induced by various other signals,
such as cytokines, Interleukin (IL)-4/13 and IL-10, glucocorticoids
[32], anti-inflammatory molecules TGF-β, prostaglandin-E2 apoptotic
cells and immune complexes (Figure 1)[29]. IFN-γ orients
macrophage polarization toward M1 through activation of signal
transducer and activator of transcription (STAT) 1 pathway. In
contrast, IL-4/13 and IL-10 activate the M2 phenotype through STAT6
and STAT3 respectively. SIFN-γ[38]. In order to counteract the pro-
inflammatory M1 – Th1 immune response, cancer cells try to change
the immune microenvironment by expressing factors that promote
M2 macrophage polarization. HCC cells express high levels of IL-10,
which, in turn, increases the expression and secretion of IL-4/13
(Figure 2) [34].

Figure 2: Plasticity of macrophages in tumor microenvironment
and pathogenesis of HCC. Hepatocellular carcinoma cells secrete
high levels of IL-10 (open circles), which induces increased
production and secretion of IL-4 and IL-13 (closed circles). These
interleukins increases M2 pro-cancer macrophage polarization, and
inhibit the production and secretion of IFN-γ and TNF (closed
triangle), which tend towards an anti-tumor environment and M1
macrophage polarization.

These interleukins, as seen above, favor M2 macrophage
polarization. The balance between activation of STAT3/STAT6 versus
STAT1, which are controlled by IFN-γ and interleukin concentrations,
finely regulate macrophage expression and polarization [38]. The
over-expression of the three interleukins (IL-4/13 and IL-10) activates

M2 polarization leading to Th2 immune response and inhibits the
cytotoxic Th1 immune response. Particularly, IL-10 has an important
role in M2 polarization; not only does it activate more M2 promoting
cytokines (IL-4 and IL-13), but also it inhibits certain Th1 and
cytotoxic promoting factors such as IFNγ and IFN-α [39] and TNF-α
(Figure 2)[40]. Such events occur as a consequence of cancer
progression, immuno-bypassing and result in poor prognostic values.

The phenotypes of M1 and M2 macrophages can be characterized
by their gene expression and transcriptional activities. M1
macrophages activate efficient immune effector cells with cytotoxic
activities through T Helper 1 immune response. They are capable of
eradicating tumor and microorganism cells, presenting high amounts
of antigen and produce high amounts of T-cell stimulatory cytokines
[30]. M2 macrophages, on the other hand, have a contrasting
phenotype. Their phenotype can be characterized by the poor
capability to present antigens, therefore inhibiting T cell recognition
along with immunity against the pathological HCC cells. Also, the
alternatively activated profile can be identified by the low expression
of differentiation-associated macrophage antigens, such as
carboxypeptidase M and CD51, but also tumor necrosis factor (TNF)
and IL-12 [24]. Macrophages carrying low expressions of these factors
favor tumor progression and proliferation as TNF promotes cancer
regression and IL-12 promotes a cytotoxic, pro-inflammatory T
Helper 1 immune response. In addition, M2 cells overexpress certain
pro-survival factors such as Arginase I [41]. High levels of the enzyme
Arginase I act as an adaptor mechanism to avoid the buildup of toxic
nitric oxide (NO) in the tumor environment. It does so by bypassing
NO production and producing polyamine and citrulline instead [41].
In addition, M2 macrophages express high levels of IL-10 and TGF- β
in order to maintain the M2 polarization state [23]. Finally, M2
macrophages express chemokines CCL17, CCL22 and CCL24 to
promote T Helper 2 immune response, favoring angiogenesis, tissue
remodeling and tissue repair [32].

Future directions on targeting TAMs in HCC
Recent studies demonstrate the importance of TAMs in many

cancer types, showing that they account for multiple functions in
tumor progression, metastasis, angiogenesis and immune evasion.
Understanding the immunological microenvironment of
hepatocellular carcinoma can provide valuable prognostic impact and
also help plan for future immunity-based cancer treatments. TAMs are
deeply involved in cancer survival and proliferation. Thus, targeting
these macrophages [42] can prove to be an important therapeutic
strategy for HCC. Most drugs, up to now, aim to block signaling
pathways to inhibit pro-tumor factors in stromal cells. Increasing our
knowledge on how macrophage polarization occurs in HCC and
understanding the predominance of M2 macrophage polarization can
help us to engineer drugs that counter-act the pro-cancer signals of
tumor and tumor-associated stromal cells. Different signaling
pathways can be targeted in order to produce an effective cocktail of
anti-cancer drugs that boost the natural M1 macrophage immune
response.

More concrete immunotherapeutic interventions targeting these
cells may see the light in the near future as indicated by the very recent
and fast track FDA-approved pembrolizumab (Keytruda) from Merck
for the treatment of melanoma. This drug inhibits the interaction
between programmed cell death receptor-1 (PD-1) and its ligands PD-
L1 and PD-L2. Since tumor cells express these immunosuppressive
ligands, inhibition of the interaction between PD-1 and PD-L1
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increases the ability of the body’s immune system to fight melanoma.
Drugs targeting PD-1 pathway [43] such as monoclonal antibodies
pembrolizumab and nivolumab may overcome immune resistance in
HCC because of their immunostimulating activities on both T cells
and macrophages.

Moreover, TAM infiltration should be evaluated by
immunohistochemistry in tumor mass from biopsies as a part of a
global in situ immune cell infiltrate in HCC or an “immunoscore”
[44]. If validated in routine clinical settings, classifying the TAM
density could serve to predict the recurrence of the tumor, equally
providing prognostic information and guidance into selecting a
specific immunotherapeutic drug for each patient. Finally, adjuvant
immunotherapy targeting TAMs and other immune cells in remaining
tumor masses following surgical intervention could also provide new
horizons for immunotherapy and improve the outcome of patients in
the future.
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