

Tumor Grading: Precision, Prognosis, Personalized Cancer Care

Hiroshi Takamura*

Department of Molecular Diagnostic Pathology, Kansai Metropolitan Medical University, Nishikawa, Japan

Introduction

This piece highlights how Artificial Intelligence (AI) is transforming tumor grading, particularly in gastrointestinal cancers. It dives into how AI-driven image analysis can provide more objective and reproducible grading, moving beyond traditional subjective assessments. What this really means is better predictive models for patient prognosis and treatment response, ultimately enhancing diagnostic accuracy and informing personalized medicine strategies [1].

Let's break down the current state of Gleason score and Grade Groups for prostate cancer. This article emphasizes their critical role in prognosis, showing how these systems, though evolving, remain cornerstones for guiding treatment decisions. It underscores the importance of precise pathological assessment to classify disease aggression, ensuring patients receive the most appropriate care tailored to their risk profile [2].

Here's the thing about histologic grade in breast cancer even with all our molecular advances, it still holds significant prognostic value. This paper discusses how traditional grading methods, particularly the Nottingham histological grade, integrate with molecular profiling to provide a more comprehensive picture of disease aggressiveness. It suggests that combining these approaches is key to effective personalized treatment strategies [3].

The 2021 WHO classification of Central Nervous System (CNS) tumors marked a significant shift, especially for gliomas. This update integrates molecular diagnostics much more heavily into grading, moving beyond purely histological features. What this really means is a more nuanced and accurate classification system, enabling better stratification of patients and guiding more precise therapeutic interventions based on specific molecular alterations [4].

Tumor budding in colorectal cancer is becoming an increasingly important prognostic factor. This review highlights how assessing the presence and extent of these small clusters of tumor cells at the invasive front provides crucial information about the tumor's aggressive potential. It's an independent predictor of metastasis and recurrence, so incorporating it into routine pathology reports can significantly refine risk stratification [5].

When it comes to pancreatic ductal adenocarcinoma, grading systems are crucial but can be complex. This systematic review explores various histological grading systems and their prognostic implications. It points out the challenges in achieving consistent grading and emphasizes the need for standardized approaches to better predict patient outcomes and guide therapeutic decisions in this aggressive cancer type [6].

The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma is highly significant for prognosis. This meta-analysis confirms its robust ability to stratify patients based on tumor aggressiveness. What this means for clinicians is a reliable tool to predict disease progression and guide treatment strategies, highlighting its continued importance in kidney cancer management [7].

For oral squamous cell carcinoma, histological grading remains a key component in assessing tumor behavior. This review provides an updated look at how different grading systems, while having limitations, help predict invasion and metastasis. It emphasizes the ongoing effort to refine these systems, potentially incorporating more objective markers, to improve prognostic accuracy and tailor therapy more effectively [8].

Here's an important update on neuroendocrine neoplasms (NENs) classification and grading. This article clarifies the distinctions between well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs), highlighting the critical role of Ki-67 proliferation index and mitotic count. Understanding these nuances is essential for accurate diagnosis, prognosis, and therapeutic decisions in this diverse group of cancers [9].

Let's talk about Hepatocellular Carcinoma (HCC) and its grading systems. This comparative analysis examines various histological grading methods and their ability to predict patient outcomes. It emphasizes that while different systems exist, consistency and clear guidelines are vital to accurately assess tumor aggressiveness, which directly impacts treatment planning and patient stratification for this challenging liver cancer [10].

Description

Artificial Intelligence (AI) is transforming tumor grading, particularly in gastrointestinal cancers. It dives into how AI-driven image analysis can provide more objective and reproducible grading, moving beyond traditional subjective assessments. This effectively means better predictive models for patient prognosis and treatment response, ultimately enhancing diagnostic accuracy and informing personalized medicine strategies [1]. To start, considering the current state of Gleason score and Grade Groups for prostate cancer, this article emphasizes their critical role in prognosis, showing how these systems, though evolving, remain cornerstones for guiding treatment decisions. It underscores the importance of precise pathological assessment to classify disease aggression, ensuring patients receive the most appropriate care tailored to their risk profile [2]. Speaking of which, histologic grade in breast cancer, even with all our molecular advances, still holds significant prognostic value. This paper discusses how traditional grading methods,

particularly the Nottingham histological grade, integrate with molecular profiling to provide a more comprehensive picture of disease aggressiveness. It suggests that combining these approaches is key to effective personalized treatment strategies [3].

The 2021 WHO classification of Central Nervous System (CNS) tumors marked a significant shift, especially for gliomas. This update integrates molecular diagnostics much more heavily into grading, moving beyond purely histological features. This update truly means a more nuanced and accurate classification system, enabling better stratification of patients and guiding more precise therapeutic interventions based on specific molecular alterations [4]. Tumor budding in colorectal cancer, for example, is becoming an increasingly important prognostic factor. This review highlights how assessing the presence and extent of these small clusters of tumor cells at the invasive front provides crucial information about the tumor's aggressive potential. It's an independent predictor of metastasis and recurrence, so incorporating it into routine pathology reports can significantly refine risk stratification [5].

Regarding pancreatic ductal adenocarcinoma, grading systems are crucial yet complex. This systematic review explores various histological grading systems and their prognostic implications. It points out the challenges in achieving consistent grading and emphasizes the need for standardized approaches to better predict patient outcomes and guide therapeutic decisions in this aggressive cancer type [6]. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma is highly significant for prognosis. This meta-analysis confirms its robust ability to stratify patients based on tumor aggressiveness. For clinicians, this translates into a reliable tool to predict disease progression and guide treatment strategies, underscoring its continued importance in kidney cancer management [7].

In oral squamous cell carcinoma, histological grading remains a key component in assessing tumor behavior. This review provides an updated look at how different grading systems, while having limitations, help predict invasion and metastasis. It emphasizes the ongoing effort to refine these systems, potentially incorporating more objective markers, to improve prognostic accuracy and tailor therapy more effectively [8]. An important update concerns neuroendocrine neoplasms (NENs) classification and grading. This article clarifies the distinctions between well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs), highlighting the critical role of Ki-67 proliferation index and mitotic count. Understanding these nuances is essential for accurate diagnosis, prognosis, and therapeutic decisions in this diverse group of cancers [9].

Considering Hepatocellular Carcinoma (HCC) and its grading systems, this comparative analysis examines various histological methods and their ability to predict patient outcomes. It emphasizes that while different systems exist, consistency and clear guidelines are vital to accurately assess tumor aggressiveness, which directly impacts treatment planning and patient stratification for this challenging liver cancer [10].

Conclusion

This collection illuminates the crucial role of tumor grading in enhancing cancer diagnosis, predicting patient prognosis, and tailoring personalized treatment approaches across a spectrum of malignancies. Artificial Intelligence (AI) is at the forefront of this evolution, particularly in gastrointestinal cancers, where AI-driven image analysis offers more objective and reproducible grading, leading to superior predictive models for patient outcomes and refined treatment responses. For prostate cancer, the foundational Gleason score and Grade Groups remain indis-

pensable for guiding therapeutic decisions, underscoring the necessity of precise pathological assessments to classify disease aggression. Similarly, in breast cancer, the traditional histologic grade, such as the Nottingham histological grade, continues to hold significant prognostic value, effectively integrating with molecular profiling to provide a comprehensive view of tumor aggressiveness. Recent updates, like the 2021 WHO classification for Central Nervous System (CNS) tumors, notably gliomas, reflect a significant integration of molecular diagnostics into grading, moving beyond purely histological characteristics. This shift facilitates a more nuanced and accurate classification, allowing for better patient stratification and precise therapeutic interventions. Tumor budding in colorectal cancer is also increasingly recognized as a vital independent prognostic factor for metastasis and recurrence, offering critical insights for risk stratification when incorporated into routine pathology reports. Across aggressive cancers like pancreatic ductal adenocarcinoma, the complexity and variability of histological grading systems highlight a pressing need for standardization to ensure consistent prediction of patient outcomes and effective therapeutic guidance. Meanwhile, the International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma has proven to be a robust and reliable tool for stratifying patients by tumor aggressiveness, guiding treatment strategies in kidney cancer. Efforts continue to refine histological grading in oral squamous cell carcinoma by incorporating objective markers to improve prognostic accuracy. The classification and grading of neuroendocrine neoplasms (NENs), distinguishing between well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs), depend on key factors like the Ki-67 proliferation index and mitotic count. Lastly, for Hepatocellular Carcinoma (HCC), comparative analyses of grading systems emphasize the importance of clear, consistent guidelines for assessing tumor aggressiveness, which directly informs treatment planning and patient stratification.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Xiaohan Wang, Xiaodong Liu, Jianbo Xu. "Artificial intelligence for tumor grading and prediction of prognosis in gastrointestinal cancers." *Front Oncol* 13 (2023):1118944.
2. Tao Chen, Jing Dai, Can Luo. "Current Understanding of the Prognostic Value of Gleason Score and Grade Groups in Prostate Cancer." *Cancers (Basel)* 13 (2021):6054.
3. Melanie Geyer, Kerstin Zickgraf, Patrick Sinn. "Prognostic Value of Histologic Grade in Breast Cancer in the Era of Personalized Medicine." *J Pers Med* 10 (2020):149.
4. David N Louis, Andreas von Deimling, Tarik T El-Ayouti. "WHO Classification of CNS Tumours: The 2021 (5th Edition) Update of Glioma Classification." *Neuro Oncol* 23 (2021):1845-1859.
5. Reema M Almukhtar, Jennifer E J Tan, Daniel J Croagh. "Tumor Budding in Colorectal Cancer: Current Perspectives and Clinical Implications." *Cancers (Basel)* 12 (2020):2591.
6. Janka Palko, Peter Rehakova, Lenka Polakovicova. "Histologic grading systems for pancreatic ductal adenocarcinoma: a systematic review." *Virchows Arch* 479 (2021):1109-1117.

7. Min Pan, Shiqi Ye, Jing Yu. "Prognostic Significance of the ISUP Grade in Renal Cell Carcinoma: A Systematic Review and Meta-Analysis." *J Clin Med* 12 (2023):24.
8. Abdul Mumin, Hiba Jawed, Muhammad Danish. "Histological Grading in Oral Squamous Cell Carcinoma: An Updated Review." *J Clin Med* 9 (2020):1689.
9. Matteo Cives, Eric Strosberg, Amy Strosberg. "Update on the Classification and Grading of Neuroendocrine Neoplasms." *J Clin Med* 8 (2019):164.
10. Markos Pericleous, Theodoros Liakou, Nikolaos Papanikolaou. "Histologic grading of hepatocellular carcinoma (HCC): a comparative analysis of different systems and their prognostic value." *Virchows Arch* 477 (2020):173-181.

How to cite this article: Takamura, Hiroshi. "Tumor Grading: Precision, Prognosis, Personalized Cancer Care." *J Surg Path Diag* 07 (2025):24.

***Address for Correspondence:** Hiroshi, Takamura, Department of Molecular Diagnostic Pathology, Kansai Metropolitan Medical University, Nishikawa, Japan, E-mail: h.takamura@kmmu.jp

Copyright: © 2025 Takamura H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Aug-2025, Manuscript No. jsdpd-25-174856; **Editor assigned:** 04-Aug-2025, PreQC No. P-174856; **Reviewed:** 18-Aug-2025, QC No. Q-174856; **Revised:** 22-Aug-2025, Manuscript No. R-174856; **Published:** 29-Aug-2025, DOI: 10.37421/2684-4575.2025.6.024
