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Plasma insulin must traverse the vascular endothelium to 
reach its major sites of action on myocytes and adipocytes. In 
study simultaneously measuring plasma and lymphatic insulin 
concentrations in normal, conscious dogs during euglycemic insulin 
clamps it was found that the steady-state plasma insulin concentration 
was consistently higher than lymph with a rough ratio of 3:2 during 
the basal period. In addition, while plasma insulin concentration rose 
quickly to reach the steady-state during the insulin clamp, the lymph 
insulin concentration rose very slowly indicating a barrier function of 
the vascular endothelium. Most importantly, this study showed that the 
dynamics of glucose disposal correlated very strikingly with the insulin 
concentration in lymph but not plasma, suggesting that trans-capillary 
insulin transport is a rate limiting step for peripheral insulin action 
[1]. Consistent with this, direct injection of insulin into canine skeletal 
muscle in vivo was recently noted to significantly hasten the onset of 
muscle glucose utilization compared with intravenously delivered 
insulin [2]. Multiple other studies also support such an important role 
of vascular endothelium during insulin clamp by measurement of the 
insulin concentration within skeletal muscle interstitium in humans 
and animals using either lymphatic sampling or microdialysis methods 
[3-7]. Results obtained using either method indicate that even after 
several hours of steady state hyperinsulinemia, muscle interstitial 
insulin concentration is only 40-50% of that in plasma and the time 
course for insulin-mediated glucose disposal during the euglycemic 
clamp correlates strongly with interstitial but not plasma insulin 
concentrations. Based on these findings, it has been estimated that slow 
trans-endothelial insulin transport may account for 30-40% of insulin 
resistance seen with human obesity or type-2 diabetes [3,8,9].

Current evidence indicates that insulin Trans Endothelial Transport 
(TET) is mediated by transporting caveolae that contain or associate 
with multiple structural and signaling molecules including caveolin-1, 
Insulin Receptor (IR), IGF-1R, dynamin 2, actin filaments and eNOS 
[10-18]. Early studies demonstrated that vascular Endothelial Cells 
(ECs) express IRs and that insulin TET is saturable and mediated 
by IRs [10,19,20]. Subsequent in vivo studies also reported that at 
physiological insulin concentrations insulin TET into human skeletal 
muscle interstitium is saturable [21,22]. However, several in vivo 
studies were unable to observe the saturation when supraphysiological 
insulin doses were applied during an insulin clamp [23,24]. In 2006, we 
employed a different approach using confocal microscopy and serial 
muscle biopsies and found that intravenously infused Fluorescein 
Isothiocyanate (FITC)-labeled insulin rapidly localized within the 
vascular ECs of skeletal muscle but not in the intercellular clefts 
in vivo [18]. Given that vascular ECs also possess IGF-1 receptors 
and IGF-1Rs are ~10x more abundant than IRs with a much lower 
affinity for insulin’s binding we found that both IGF-1 peptide and a 
neutralizing antibody against IGF-1R significantly inhibited insulin 
uptake and TET when a pharmacologic insulin concentration (50nM) 
was used [18,25,26]. This has provided an alternative explanation for 
the seemingly conflicting data regarding the saturability of insulin 
transport into muscle, i.e. that at physiological insulin concentrations 
insulin TET is mediated predominantly by IRs but at supraphysiologic 
insulin concentrations both IR and IGF-1R (and IR/IGF-1R hybrid 
receptors) contribute to insulin TET [27,28]. Caveolin-1,a 21-kDa 
integral membrane protein required for caveolae formation is required 

for receptor-mediated albumin uptake by vascular ECs [29-31]. We have 
previously reported that antibodies against IR and caveolin-1 mutually 
co-immunoprecipitate one another from ECs and others have reported 
that IR binds to caveolin-1 scaffolding domain through its caveolin-1 
binding domain [18,32,33]. Moreover, a recent electron microscopic 
immunocytochemical study has convincingly shown that IRs are present 
throughout in the plasma membrane but are particularly concentrated 
at the neck of caveolae in 3T3-L1 adipocytes [34]. IGF-1Rs appear to 
have similar lipid raft/caveolae localization in the plasma membrane 
[35]. We have reported that knockdown of caveolin-1 expression in 
bAECs using specific caveolin-1 siRNA reduces caveolin-1 mRNA 
and protein expression by ~70%, and reduces FITC-insulin uptake by 
67%, whereas over-expression of caveolin-1 increases insulin uptake. In 
addition, knockdown of caveolin-1 significantly reduces both insulin 
receptor protein level and insulin-stimulated Akt1 phosphorylation 
[13]. Dynamin-2 is a large GTPase that regulates caveolae-mediated 
endocytosis of cholera toxin and albumin by promoting the separation 
of caveolae from the plasma membrane via GTP hydrolysis. We have 
reported that dynamin-2 is also required for caveolae-mediated insulin 
uptake. Either inhibition of dynamin-2 function (with Dynasore) 
or siRNA knockdown of dynamin-2 inhibits vascular EC insulin 
uptake [12]. Insulin has been reported to induce rapid cortical actin 
filament remodeling in a variety of cell types including vascular ECs. 
This remodeling has been found to correlate to an increased transport 
of nutrients such as amino acids and glucose and caveolae-mediated 
macromolecules endocytosis [36-40]. We have recently reported that 
insulin-induced cortical actin filament remodeling in ECs is required 
for caveolae-mediated insulin’s uptake and TET in a PI3-kinase and 
plasma membrane lipid rafts dependent fashion [14]. We have also 
reported that insulin act on vascular ECs to facilitate its own uptake and 
TET through multiple intracellular signaling pathways including PI-3 
kinase-Akt, MAP kinase and Src pathways [14,15]. Very recently, we 
have reported that eNOS and its activity play a critical role in regulation 
of insulin uptake and TET as inhibition of eNOS activity completely 
eliminates EC insulin uptake [16]. Taken together, our studies indicate 
that there is the vesicular transcytotic machinery in vascular ECs that 
governs insulin uptake and movement through vascular ECs.

This endothelial barrier function is particularly true for skeletal 
muscle, a major site of fuel use, where its continuous vascular 
endothelium has well-developed junctional structures and abundant 
caveolae that provides a relatively tight diffusional barrier. This is in 
stark contrast to the discontinuous endothelium with gaps between 
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vascular ECs in liver. Muscle’s tight endothelium has constituted the 
structural basis for a strong argument that the transit of insulin from 
the vascular lumen to the interstitial compartment within skeletal 
muscle is rate limiting for insulin’s metabolic action [27]. In an early 
study comparing the kinetics of insulin action on peripheral glucose 
disposal during the insulin clamp between lean and obese subjects, it 
was found that although hepatic glucose output was suppressed rapidly 
(t½~ 20 min) and did not differ between normal and insulin resistant 
subjects, the t½ for stimulation of whole body glucose disposal was 
quicker (~44 min) in lean adults than obese insulin resistant subjects 
(~74 min, p<0.001) indicating a delay in insulin delivery into the muscle 
interstitium. Indeed, this rate-limiting step for peripheral insulin action 
is delayed in insulin-resistant obese subjects [3,9,41,42].

In summary, current evidence clearly indicates that insulin TET 
is a transcellular process that is governed by endothelial molecular 
transcytotic machinery involving insulin receptor binding, activation 
of EC insulin signaling and membrane trafficking via caveolae. This 
process plays a critical role in regulation of insulin delivery into 
and action in the peripheral tissues under both physiological and 
pathophysiological conditions. Under pathophysiological conditions 
such as insulin resistance, obesity and type 2 diabetes, this process 
is significantly delayed or impaired. Better understanding complex 
regulatory processes and molecular mechanisms of insulin TET under 
a variety of disease conditions may suggest new therapeutic strategies 
and offer opportunities to find new intervention sites so that it will 
improve the treatment for insulin resistance, obesity and type 2 diabetes.
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