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Abstract
An optimal linear quadratic tracking controller (LQTC) which emulates smooth pursuit eye movements has been 

shown to accurately track various motion profiles in the presence of neural transmission delays. However, the initial 
orientation of the eye relative to the location of where a target first becomes salient affects the time course in which 
the desired trajectory is fully acquired. It is shown that a control strategy that incorporates a latent saccade to rapidly 
reposition the gaze to a predicted point on the trajectory path, then transitions the engagement smoothly using the 
LQTC, produces eye movements consistent with experimental observations.
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Introduction
Using the principles of optimality, it was shown that a linear 

quadratic tracking controller (LQTC) could overcome the destabilizing 
effects of neural transmission delays to track a reference trajectory for 
a simple second order model of the oculomotor plant [1]. The caveat 
was that the initial position of the eye needed to be close to the starting 
location of the trajectory in order to achieve minimal tracking error 
in a timely fashion. Eye orientations starting away from the onset of 
the movement produced reliable tracking, but at synchronization times 
well outside the experimentally observed data for smooth pursuit eye 
movements as shown in Figure 1 for two different motion profiles.

This observation came as no surprise since the LQTC was designed 
to specifically emulate smooth pursuit eye movements which are 
relatively slow and have a maximum velocity range of 70°/s to 100°/s [2-
5]. This was accomplished using the principles of optimality in which 
the minimization of performance criteria establishes a tradeoff between 
the weighted sum of control effort and the weighted sum of the error 
associated with the desired and measured state trajectories, which are 
constrained by the oculomotor dynamics. Since the design intent of the 
controller was to accurately track a moving target in the wake of large 
position state feedback delays, the time response of the LQTC can only 
perform so fast before driving the system towards instability. In other 
words, the controller was not designed for the ballistic repositioning 
of gaze but for smooth trajectory following within the physiological 
limitations of the oculomotor system.
Saccades

A smooth pursuit eye movement is preceded by what is commonly 
referred to as a catch-up saccade [2,6]. This is a fast eye movement that 
functions to rapidly reposition the eye from its current location to a 
predicted target location without concern for image formation on the retina 
[4,5,7]. As a matter of survival, evolution has equipped us with a ballistic 
targeting system that allows us to observe our environment more intently. 
There is sufficient evidence supporting the notion that saccades operate 
under open loop, time-optimal control [4,8-15]. Intuitively, this makes 
sense since the goal of a saccade is to foveate1 a target as fast as possible.

Important parameters associated with a saccade are its magnitude, 

1The retina is made of up two very different types of photoreceptor cells. Rod cells 
are light and motion sensitive but have very low spatial resolution and make up the 
majority of the retina. Cone cells, on the other hand, are color sensitive, have very 
high spatial acuity and are densely packed in a very small region of the retina ( φ≅
1.2 mm) called the fovea. The process of moving the eye such that image formation 
may occur on this region is called foveation.

latency, peak velocity and duration. Figure 2 represents the typical 
characteristics of a 10° express saccade that has a latency of 100 ms. This 
is the time required for the oculomotor system to compute the error 
between the eye’s current position and the target position [16-18]. It 
then generates the neural commands necessary to make the movement. 

Visually guided, horizontal saccades are generally evaluated using 
the Main Sequence Diagrams [4,19]. These diagrams show the general 
relationship between a saccade’s magnitude and its peak velocity, 
duration and latent period as shown in Figure 3 (Adopted from) [4].

Using the Main Sequence Diagrams, we created a control strategy 
that incorporates the timing of a physiologically realistic saccade to 
rapidly position the eye to a predicted target location on the trajectory, 
then engage and track the motion profile using the LQTC.
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Figure 1: Effects of initial eye position on the time course of target acquisition for 
the LQTC with a 150 ms position state feedback delay.
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Figure 2: Typical characteristics of an express saccade (Modified from) [4].

Methods
Dynamic formulation

Here, we make use of the second order Westheimer model of the 
oculomotor plant and define the state equations as

( ) ( ) ( )t t t= +F Gx x u                      (1)

1 1 2
2

2 2

00 1( ) ( )
( )

2( ) ( ) n
n n

x t x td u t
x t x tdt

k
ωω ζω

 
      = +      − −       

                 (2)

For a 20° target saccade, Westheimer reported the natural frequency 
and the damping ratio of the system to be 2 120 /n rad sω =  and 1/ 2ζ =
for an eye with a weight of 25 g and a radius of 11 mm [4,7]. 

Converting to SI units of kg-N-m and solving for the stiffness (k = 
0.998), the stability matrix, F, and the control-effect matrix, G, can be 
represented numerically such that

1 1

2 2

( ) ( )0 1 0
( )

( ) ( )14,400 169.7 14,424.2
x t x td u t
x t x tdt
      

= +      − −      
                 (3)

For this study, instead of limiting the control strategy to only 
track smooth pursuit eye movements using the LQTC, we added the 
capability of rapidly positioning the eye to a predicted target location 
on the trajectory as a priori. This will be accomplished using the open-
loop step response of the Westheimer model as shown for various 
magnitudes in Figure 4.

Timing saccade to smooth transitions

The specific timing characteristics of the saccade are taken directly 
from the Main Sequence Diagrams. A straight line approximation for 
the spread of data shown in Figure 3C reveals that saccade latency 
is relatively constant across all magnitudes and is approximately 175 
ms. This will be the value used in our simulations. Saccade duration is 
linearly proportional to it its magnitude as shown in Figure 3B. From 
the data, the straight line approximation is calculated to be

.02468  0.001739d target ot θ θ= + −                    (4)

The saccade duration is an important factor for predicting the time 
in which the target trajectory will be acquired and helps us decide the 
time course for switching control strategies.

Linear quadratic tracking control (LQTC)

Once the eye has been rapidly positioned to the estimated target 
location of the motion profile, the control strategy must switch from 
targeting to tracking. In this sense, the optimal control formulation is 
piecewise continuous. The goal of the tracking portion of the movement 
is to maintain the system state x(t) as close as possible to the desired 
state (or reference trajectory) xd(t) while using minimal control effort 
in the time interval, { }0 , ft t t∈  [20,21]. The optimal control problem 
for the smooth pursuit portion of the movement is therefore posed the 
following way:

Find the optimal control u*(t), for the state-space system given in (2) that 
tracks a desired trajectory, xd (t) and minimizes the performance criteria
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Figure 3: Main Sequence Diagrams for Horizontal Saccades. A) Peak velocity 
vs. Saccade Magnitude, B) Saccade Duration vs Saccade Magnitude, and C) 
Latent Period vs Saccade Magnitude. (Adopted from [4]).
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subject to the dynamic equality constraint

( ) ( ) ( ), , 0t t t t− =   f x u x                     (6)

where the final time tf is fixed, the final state, ( )ftx , is free to vary and 
the state and control are not bounded. The terminal state weighting 
matrix, P, and the state weighting matrix Q are real, symmetric, positive 
semi-definite matrices and the control weighting matrix, R, is a real, 
symmetric, positive definite matrix.

The Hamiltonian for the tracking problem is defined as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ , , , ] [ , , ] [ , , ]t t t t t t t t t t tΤ= + x u x u f x uλ λ  (7)

where the Lagrangian is

( ) ( ) ( ) ( ) ( ), , [ ( ) ( )] ( )
T T

d dt t t t t t t t t= − − +      x u x x Q x x u R u  (8)

and the augmented state is

( ) ( ) ( ) ( ) ( ) ( ) ( ), , ( ) [ ]T T Tt t t t t t tx t t
⋅

= = +  f x u Fx Guλ λ λ                 (9)

The necessary conditions for optimality are

 i. State Equations

( ) ( ) ( )t t t
⋅∂

= = +
∂

x Fx Gu
λ

                    (10)

ii. Co-State Equations

( ) ( ) ( ) ( ) ( ) ( ) ( )T
d

H t t t t t t t
x

λ
⋅∂

= − = + −
∂

Q Fx Q xλ                   (11)

iii. Optimality Condition

( ) ( ) ( )t t tΤ∂
= + = 0

∂
Ru G

u
 λ                    (12)

The optimal control law as a function of the co-state variable is 
therefore,

( ) ( ) ( )t t tΤ−1= −u GΡ λ                   (13)

Substituting the optimal control law (13) into the state equations 
(10) and combining with the co-state equations (11), yields the 
Hamiltonian system

1 0( ) ( )( ) ( ) ( ) ( )
( ) ( )( )( ) ( )( )

T

T
d

t tt t t t
Q t ttt tt

−
⋅

⋅

   −     = +      − −      

x xF G R G
xQ Fë λ

                           (14)

Note that this a two-point boundary value problem in which we 

will need to integrate the co-state variables backwards in time. The 
terminal boundary conditions are

[ ( ), ] [ ( ), ( ), ( )] [ ( ), ] ( ) ( ) 0
f f

T
f f

t t t t

x t t t t t t t t t x u
t x

φ δ φ δ δ
= =

∂ ∂   + + − =   ∂ ∂   
x u x λ λ (15)

Because the final time is fixed and ( )ftx is free to vary, the following 
terminal constraint must then be satisfied

( ) [ ( )]T
f ft t

x
φ∂

=
∂

xλ                      (16)

The partial derivative of the terminal cost with respect to the state 
is therefore

( ) ( )[ ( ) ( )]f f f d ft t t t= −P x xλ                    (17)

Assuming (17) holds for the entire interval, such that

( ) ( ) ( ) ( ) ( )dt t t t t= −P x P xλ                   (18)

taking the time derivative

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d dt t t t t t t t t
⋅ ⋅ ⋅ ⋅ ⋅

= + − −P x P x P x P xλ                 (19)

and substituting back into (14) yields matrix differential equations 
of the Riccati form

( ) ( ) ( ) ( ) ( ) ( )1

1( ) ( ) [ ( ) ( ) ( ) ( ) ] ( )

T T

T T
d d

t t t t t t

t t t t t t t

⋅
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−

−
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P x P F P P GR G P Q x

                (20)

Here we introduce the tracking variable and its derivative as

( ) ( ) ( )dt t t= −S P x                    (21)

( ) ( ) ( ) ( ) ( )ddt t t t t
⋅ ⋅ ⋅

= − −S P x P x                     (22)

Substituting (21) and (22) into (20) results in

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1T Tt t t t t t t t t t t t
⋅

− + + − +  
P F P P F P G R G P Q x 

1{ ( ) [ ( ) ( ) ( ) ( ) ( )] ( ) ( ) ( )} 0T T
dt t t t t t t t t

⋅
−+ + − − =S F P G R G S Q x (23)

The optimal state and desired trajectory cannot be zero throughout 
the entire interval, therefore (23) can be partitioned into two separate 
equations and integrated independently.

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T Tt t t t t t t t t t t−
⋅

+ + − + =P F P P F P G R G P Q                 (24)
1( ) [ ( ) ( ) ( ) ( ) ( )] ( ) ( ) ( ) 0T T

dt t t t t t t t t−
⋅

+ − − =S F P G R G S Q x                 (25)

Rewriting the terminal condition for the tracking variable from 
(17) is simply

( ) ( ) ( )f f d ft t t= −S P x                    (26)

The optimal control law (13) is now written in terms of the Riccati 
variables and tracking variables, which can be further simplified into a 
feedback gain matrix, K(t), and a command signal, ( )tv ,

( ) ( ) ( ) ( ) ( ) ( )1 1T Tt t t t t t− −= − −*u R G P x R G S                    (27)

 ( ) ( ) ( )t t t+ K x v

Qualification

The main premise for the tracking controller is for producing 
the optimal control law that would faithfully represent the input to 
the system given a desired trajectory to track. To qualify the model, 
we will track the output trajectory of a 20° saccade produced by the 
Westheimer model in response to a step input of 20 with zero neural 
transmission delay.
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As shown in Figure 5 the LQTC follows the target trajectory with 
no error and reproduces the control used to force the Westheimer 
output response. This was achieved by experimenting with the state-
weighting matrix values of Q. It should be noted that the model quickly 
goes unstable with state feedback delay of 150 ms. This result is not 
surprising however, since saccades operate in an open-loop fashion and 
are not affected by neural transmission delays. 

Saccade to smooth pursuit control

Figure 5 shows the implementation of the saccade branch to the 
LQTC. Based on an internal representation of the system’s boundary 
conditions and operating parameters (i.e. it has an intimate knowledge 
of its latency), higher level motor centers estimate the time and 
magnitude of target acquisition. It compares this value to an estimate 
of the eye’s current position and determines whether to elicit a saccade 
or to smoothly track the motion profile. If the choice is to move fast, 
feedback is inhibited for the duration of the movement which is 
computed using (4). The time of interception, or the time in which the 
eye has successfully moved from targeting to tracking, is defined as

Acq lat dt t t= +                      (28)

Where

tlat is the latent period prior to the saccade and determined to be 175 
ms from Figure 3C td is the duration of the saccade which is calculated 
using (4).

Application development

A real-time application was developed using Wolfram Mathematica 
to simulate the response of a saccade to smooth pursuit transition. The 
user may select from various waveforms with the ability to choose 

from different magnitudes, initial eye positions and frequencies. State, 
control and terminal-state weighting matrices can be inputted directly 
to evaluate the LQTC performance for the smooth pursuit portion 
of the movement. The user may increase the position feedback delay 
gradually to effectively test the stability based on the chosen parameters. 
Four different plots are available as a visual aid to the designer. The 
state plot gives the response in terms of eye position and velocity. The 
phase option shows the phase portrait of the states and the Lyapunov 
stability of the system. The control selection shows a plot of the optimal 
control computed for the system. Finally, the MDRE option allows the 
designer to see both time courses of the numerically integrated Riccati 
and Tracking variables.

Results
The following plots reflect the smooth transition between a saccade 

and a smooth pursuit eye movement, for various motion profiles, with 
a pure position feedback delay of 150 ms. The state weighting, control 
weighting and terminal state weighting matrices used for the LQTC are 
as follows.

( )15 5 1 0
; 1;

5 60 0 0fr t   
= = =   
   

Q P                  (29)

Overall, these weighting values provided the best all-around 
tracking performance for the continuous waveforms tested across 
frequencies up to 1 Hz.

Ramp targeting and tracking

Pursuit Trajectory = 5 + 20t ; Initial Eye Position = -5°

Here we will take a closer look at the saccade portion of the 
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movement and see how it correlates to the main sequence diagrams. 
Referring to Figures 6-8, starting at an initial position of -5° we see that 
the saccade latency is 175 ms which is consistent with Figure 3C. The 
saccade magnitude computed for the movement was 14.458° and had 
duration of 48.16 ms. Evaluating the straight line approximation of 
Figure 3B, we can see that the duration for a 15° saccade is just under 50 
ms. The peak velocity of the simulated saccade was 544.2°/s and differs 
from the approximate value of 625°/s taken from Figure 3A.

The optimal control computed using the LQTC after the saccade is 
compared for the case of no delay and a neural transmission delay of 
150 ms as shown in Figure 9. 

For the interesting case of a trajectory passing through the line of 
site, the following ramp function was defined.

Pursuit Trajectory = 5 - 20t; Initial Eye Position = -3°

Cosine targeting and tracking

Pursuit Trajectory = 20 Cos(π t); Initial Eye Position = 3°

Sum of Sines

( ) 20 [   ];   5
2

PursuitTrajetory Sin t Sin t Initial Eye Positionπ π = − + = ° 
 

Product of Sines

( ) 15 [   ];   3
2

PursuitTrajetory Sin t Sin t Initial Eye Positionπ π = = ° 
 

Discussion
The LQTC is an effective optimal control strategy that compensates 
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for neural transmission delays of 150ms and produces minimal error 
tracking [1]. Using a unimodal control approach in which the LQTC 
functions to both target and pursue a reference trajectory, accurate tracking 
is achieved but not within a reasonable time course when the position of 
the eye is initially offset from the trajectory as shown in Figure 1.

However, the results clearly show that implementing a saccade to 
target a motion profile prior to tracking it greatly improves the time 
in which the LQTC can synchronize its position and velocity profiles 
to that of the pursuit trajectory (Figures 8,10,11,13,16 and 19). The 
simulation results of this dual mode control strategy directly correspond 
to the experimental data [2,3,22]. 

The addition of the saccade to the existing LQTC construct (Figure 
6) was intuitively piecewise continuous since the performance criteria for 
each movement type is different. Saccades function to reposition the eye to 
a target in the least time possible in the absence of feedback while smooth 
pursuits, which are subject to the destabilizing effects of neural transmission 
feedback delays, strive to minimize the error between the desired and state 
trajectories while trading control energy expenditure to do it.

Saccade simulations

Fast eye movements work in an open loop mode in which feedback 
is absent. This is supported by the fact that our visual perception and 
proprioceptive feedback is temporarily disabled for the duration of the 
saccade [4,5]. The mode of operation is that of targeting. The following 
table summarizes the results for the saccade portion of the movement 
simulation for each pursuit trajectories (Figures 9,12,14,15,17 and 20) 
and compares the results with the experimental values of the main 
sequence diagrams (Figure 3).
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Tracking Time Response.
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Figure 9: Ramp targeting, saccade zoomed, illustrating the latency, initial eye 
position, final position and time of target acquirement. The simulated values 
directly correlate to the Main Sequence Diagrams.

The duration of the simulated saccade movement has excellent 
correspondence to the main sequence diagrams. However, peek 
velocity is smaller in all cases with exception to the crossing profile of 
the negatively pursuing ramp function. As noted previously, based on 
an internal representation of the system, the latency is known to the 
controller and hard coded to be 175ms (Figure 3C).

One reason for the difference in values for peek velocity may be 
attributed to the simple second order model used to describe the 
dynamics of the plant. A better model that incorporates an antagonist 
muscle pair with separately maintained neural innervation, such as those 
reported by Enderle, et al. [12,23], may help with further investigation 
regarding the smooth transition between the targeting of a saccade 
and tracking of a smooth pursuit eye movement. Since muscle acts as a 

neuromuscular-actuator with non-zero output mechanical impedance 
and because antagonist muscle pairs are co-activated, incorporating 
the model may provide effects similar to feedback action without being 
vulnerable to the destabilizing effects of neural transmission delays 
[20-22]. 

Smooth pursuit simulations

The implementation of the LQTC clearly shows the ability to 
effectively handle realistic neural transmission delays of 150 ms and 
track various motion profiles with zero latency. The results are directly 
supported with experimental observations [24]. 

Optimal control: Referring back to the optimal control law (27), 
the command signal, ( )tv , depends on system parameters and future 
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values of the reference trajectory, xd (t). Having this knowledge as a 
priori, we can anticipate where we intend to go based on the current 
state of the system. This statement is directly supported by observing 
the optimal controls computed for the A) zero delay case, and the B) 
150 ms delay case of Figures 10,15,18 and 21. For both cases, the LQTC 
effectively tracks the pursuit trajectory. The major difference is the 
optimal control required to do it. The optimal control computed for the 
zero delay case is an exact replica of the desired trajectory. In contrast, 
the optimal control for the delayed case leads the input to account for 
the neural transmission delay because it has prior knowledge of not 
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Figure 10: LQTC Optimal Control A) No Delay, B) 150ms Delay.

 
Figure 11: Ramp targeting and tracking, special case of the trajectory crossing the line of site.

 

Figure 12: Ramp targeting, crossing the line of site, saccade to smooth 
transition, zoomed.

only the trajectory to be tracked but also the current state of the system. 
In essence, the LQTC uses an internal representation of the system state 
and makes adjustments to improve behavioral performance [25-27].

Weighting effects

The effectiveness of the LQTC is driven by the performance 
criteria specified in (5) which establishes tradeoffs between state and 
control. The state-weighting matrix, Q, specifies the relative importance 
between each state while the control-weighting matrix, R, establishes 
the permissible energy expenditure (a scalar value in this study). Here 
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we will evaluate the effects of the weights on the targeting and tracking 
portions of the movement. Since the goal is to accurately track a desired 
trajectory while accommodating a 150 ms feedback delay, we will first 
evaluate the effects of weighting on the smooth pursuit portion of the 
movement.

Smooth pursuit: Consider the response of the LQTC with different 
state-weighting factors for an oscillatory input at different frequencies 
as shown in Figure 22. The relative tradeoff between position and veloc-
ity performance for different frequencies is a direct result of the weight-

 
Figure 13: Cosine targeting and tracking.

Figure 14: Cosine targeting, saccade to smooth transition, zoomed.

Figure15: Optimal Control for Cosine A) No Delay, B) Delay of 150ms.

Figure 16: Sum of Sines targeting and tracking.
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ing values and readily apparent by inspection. 

Careful experimentation with different weighting values for 
multiple waveforms at different frequencies resulted in the values 
presented in (29). The effect of penalizing velocity more heavily than 
position, along with weighting the coupling between them, resulted in 
exceptional tracking performance for the smooth pursuit portion of the 
movement.

Saccade

As shown in Figure 5, the LQTC can be used to track a saccade 
produced by the step response of the Westheimer model. Additionally, 

Figure 21: Optimal Control for Product of Sines A) No Delay, B) Delay 
of 150ms.

it computes an optimal control that reproduces the original step input 
to the system. However, in order to achieve this objective, the values 
selected for the weights had to be different from those presented in (29) 
which were used for the smooth pursuit portion of the movement. For 
example, Figure 23 shows the tracking performance for three pursuit 
motion profiles using the two sets of weights. This suggests that the 
oculomotor system may modulate the weighting factors of the control 
to accommodate the specific motion objective, that is, to either move 
fast or to track accurately.

To further explore this notion, we test the tracking performance 
of a step input with different weight sets and by gradually increasing 
the delay. In order to produce a 20° saccade that has a peak velocity 
consistent with the main sequence diagrams, the penalty on the position 
of the movement has to be much higher than on velocity as shown in 
Figure 24A. Similarly, if we use the LQTC to simulate a saccade with the 

 

Figure 17: Sum of Sines targeting, saccade to smooth transition, zoomed.

Figure 18: Optimal Control for Sum of Sines A) No Delay, B) Delay of 
150ms.

Figure 19: Product of Sines targeting and tracking.

 

Figure 20: Product of Sines targeting, saccade to smooth transition, 
zoomed.

Pursuit Trajectory Movement Mag 
(Deg)

SIM MSD SIM MSD
Duration 
(sec)

Peek Velocity 

5 + 20t 14.458 .048 .048 544 625
5 - 20t -2.045 .027 .027 138 125
20 Cos( t) 12.287 .049 .046 498 600

( )20 [    ];
2

Sin t Sin tπ π − + 
 

-25.365 .061 .062 694 750

( )15 [    ];
2

Sin t Sin tπ π 
 
 

-0.246 .026 .028 19 25

 Table 1: Comparison of simulated saccades with main sequence diagrams.
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Figure 25: Effects of increasing neural transmission delay.

weighting values presented in (29) the response is negligible.

Finally, as delay is introduced into the position feedback for the 
weighting values shown in Figure 24A, the stability of the system starts 
to deteriorate, becoming more oscillatory and quickly growing without 
bound (Figure 25). These results further support the dual mode control 
strategy which is specific to either targeting or tracking a desired 
trajectory.

Conclusion
The addition of a saccade, to rapidly reposition the eye to an 

estimated target location on the motion profile, greatly enhances the 
time course in which the LQTC can track the desired trajectory with 
minimal error and in the presence of large neural transmission delays. 
The performance criteria for the movement clearly must change from 
that of a targeting system, which penalizes the time to acquire the 
target, to that of a tracking system which penalizes a tradeoff between 
control energy usage and perturbations from the difference between the 
actual state and desired state trajectories.
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