
Volume 5 • Issue 1 • 1000144
J Bioengineer & Biomedical Sci
ISSN:2155-9538 JBBS an open access journal 

Research Article Open Access

Salgado et al., J Bioengineer & Biomedical Sci 2015, 5:1 
DOI: 10.4172/2155-9538.1000144

*Corresponding author: Salgado SIA, Salgado Institute of Integral Health,
Londrina, PR, Brazil, Tel: +55 43 33754700, E-mail: afonsosisalgado@yahoo.com.br

Received: December 19, 2014; Accepted: March 10, 2015; Published: March 
17, 2015

Citation: Salgado SIA, Parreira RB, Ceci LA, de Oliveira LVF, Zangaro RA (2015) 
Transcranial Light Emitting Diode Therapy (TCLT) and its Effects on Neurological 
Disorders. J Bioengineer & Biomedical Sci 5: 144. doi:10.4172/2155- 9538.1000144

Copyright: © 2015 Salgado SIA, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
 The Transcranial LED Therapy (TCLT) is a modality of low-level energy therapy based on the principle of photons 

delivered in a non-invasive manner for the rehabilitation of some neurological conditions such as psychological 
disorders, traumatic brain injuries, and neurodegenerative diseases among others. Because the phototherapy approach 
has attracted interest in the scientific medical field we discuss the action of TCLT at the cellular level in this review. 
Cytochrome c oxidase is the main target of TCLT for therapeutic effects by enhancing cerebral blood flow. This enzyme 
boosts cell respiration and energy production, which induces cell proliferation and reduces apoptosis in Alzheimer 
and Parkinson’s diseases. Thus, TCLT is a safe, non-invasive, and low cost alternative treatment compared to other 
treatment modalities for clinical neurological disorders.   
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Introduction
The brain suffers a wide variety of anatomical and functional 

alterations during normal aging associated with an increased 
risk of neurovascular age-related changes that compromise the 
functional integrity of the neurological system, which can lead to 
neurodegenerative diseases [1]. Cerebral blood flow (CBF) and 
continuous cerebral perfusion are vital for neural function, and thus, 
are considered important indicators of brain health. Reduction and 
disruption in the CBF have been associated with numerous disease 
conditions such as hypertension, ischemic stroke, and dementia related 
diseases such as Alzheimer's disease (AD) [2]. Regional hypoperfusion 
is associated with an accumulation of amyloid [3,4] and cognitive 
impairment [5].

The effects of phototherapy on CBF have been demonstrated 
including those produced by light emitting diodes (LED). One of the 
main mechanisms of action of TCLT (Transcranial LED therapy) is 
potentially the prevention of neurons death, hypoxia, trauma, or 
toxicity [6] by upregulating the production of cytoprotective genes 
such as those encoding antioxidant enzymes and anti-apoptotic 
proteins. In AD, the presence of the β-amyloid peptide can trigger the 
formation of reactive oxygen species and nitrogen (ROS) that induce 
lesions in mitochondria, which in turn, lead to neurons synaptic loss 
and cell death [7], which are also observed in other neurodegenerative 
diseases [7,8].

Researches show that radiation in the red region of the 
electromagnetic spectrum is absorbed by the cytochrome c oxidase in 
the mitochondrial respiratory chain [9] leading to increased cellular 
respiration, ATP synthesis, and increased proliferation of nerve cells 
[10] among others. However, few studies analyzed the efficacy of TCLT 
in relation to cerebral blood and vascular circulation in humans and
its correlation with pathological states, age ranges, and functional
conditions. Thus, this review examined studies concerning the effects
of TCLT on neurodegenerative diseases.

Overview of the Use of LED in Medical Science
The use of light as a therapeutic tool (the generic term is 

phototherapy) has been documented in the medical literature since 
1500 B.C. The use of light for therapeutic implications involves 
only a small portion of the total electromagnetic radiation spectrum 
characterized within 630-1000 nm (red to near-infrared) [11,12]. Since 
the advent of phototherapy in the field of medical science, a wide 
variety of light sources have being evaluated. The effects of radiation 
(i. e. red and near-infrared) on tissues and cells have been studied by 
physicists initially using low-intensity lasers and later LED [13]. Thus, 
researchers have demonstrated the applicability of therapeutic red/
near-infrared LED in the treatment of a range of diseases and injuries 
after the observation of the benefits promoted by LED in astronauts in 
the space.

This type of light source has advantages over laser because it 
is relatively less expensive, its diode can be configured to produce 
multiple wavelengths allowing diffuse light radiation over large surface 
areas, it does not produce heat, it requires less energy, and is considered 
safe by the FDA (Food and Drug Administration).

The therapeutic use of LED in the red to near-infrared wavelengths 
is also characterized by relatively low energy density. In addition to 
its beneficial effects observed on a variety of clinical conditions, much 
attention has been currently given to the satisfactory results observed 
on functional and structural brain injuries such as traumatic brain 
injuries resulting in behavioral, cognitive, and biochemical changes 
[14,15]. Significant results were seen when TCLT was applied to patients 
suffering from depression and anxiety [16], in neurodegenerative 
diseases such as Parkinson's and Alzheimer’s diseases experimentally 
induced in rats [17,18], and in cerebral blood flow disruption [19] 
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among others. Table 1 shows a summary of studies about the effects of 
TCLT and the parameters used.

Transcranial light emitting diode therapy (TCLT)

The mitochondrial function in events such as ischemia, 
neurotoxicity, and cell repair and the effects of phototherapy on affected 
brain regions have been researched for some time. Neurodegeneration 
and some brain functions, such as memory, are very sensitive to the 
inhibition of cytochrome oxidase and the energy deficit associated with 
aging and cerebral perfusion impairment [20]. Some studies show that 
increased CBF, specified in the parietal and frontal lobes in humans, 
significantly improve psychological performance in patients with 
psychological disorders, traumatic brain injuries, and neurological 
disorders such as Alzheimer and Parkinson's diseases (Table 1).

The results suggest improvements that can be categorized in three 
areas. 

1 – Improved brain function in the prefrontal cortex and anterior 
cingulate gyrus region. These areas are responsible for monitoring, 
maintaining, and manipulating information in the working memory 
and sustaining attention [21,22]. Rojas et al. conducted a study with 
rats submitted to behavioral experiments (extinction and renewal 
effects). These authors concluded that the rats had enhanced extinction 

memory, prevented the reemergence of extinguished conditioned 
fear responses, and showed a reduced fear renewal after TCLT. In 
humans, Schiffer et al. showed that one single TCLT session applied 
to the skull (frontal region) resulted in increased (CBF) and significant 
improvement in the treatment of major depression and anxiety.

2 – In vivo photobiostimulation can promote increased mitochondrial 
respiration and metabolic capacity in the brain. This effect involves a 
neuroprotective action [23-25] and an increased production of nitric 
oxide (NO) and CBF in mice [26]. Photobiostimulation increases the 
utilization of oxygen and NO production through cytocrome oxidation 
and may protect against cerebral hypoperfusion. Poor perfusion is a 
condition that occurs in some neurological conditions and in elderly 
people. Salgado et al. verified the effects of TCLT on CBF in elderly 
women by transcranial Doppler ultrasound. The authors showed that 
left and right middle cerebral arteries and the basilar artery showed 
increased CBF after TCLT delivered in the front and parietal cranial 
regions. A previous study showed a rise in CBF after one single session 
of TCLT.

3 – TCLT can prevent neurodegenerative diseases through the 
activation of transcription factors involved in the expression of many 
protective factors such as antioxidants and anti-apoptotic factors 
[27]. These effects are demonstrated in a study by Hanczyc et al. [28] 

Author Study type Model Condition Protocol Results
Schiffer et al.,  [16] Pilot study Human Depression and 

anxiety
LED 810nm; PD=250 mW/cm2; 
ED=60 J/cm2, 4 min.

Significant results on 
HAM-A 2nd e 4th week treatment; 
on 2nd week symptoms remission
in 6 of 10 patients.

Naeser et al., [15] Case study Human Traumatic brain
injury

LED 870nm; Total power=500mW
PD=25.8 mW/cm2;
ED=1 J - 2 s, 1 J/cm2 - 38.8 s.

Improvement in cognition. 

Nawashiro et al., [26] Case study Human Vegetative state
CBF

LED 850nm; PD=1.14 W/cm2; 
ED=20.5J/cm2; 30 min;  

Increase in CBF (20%) and
Improved neurological con- 
dition from the 6th day.

Naeser et al., [15] Protocol study Human Severe and mild
Traumatic brain injury

LED - 633nm, and 870 nm
PD=13 J/cm2; ED 22.2 mW/cm2

Improved sleep, fewer post-
traumatic stress disorder 
Symptoms. Better social, 
occupational and interpesonal
functions.

Duan et al., [18] Experimental In vitro β-amyloide LED 640 ± 15nm; PD=0.5 to 
10W/cm2; T=30 a 60 min.

LED significatly decreased 
apoptosis induced β-amyloide.

Quirk et al., [14] Experimental Animal Traumatic brain
injury

LED 670 nm; PD=50mW/cm2; 
ED=15J/cm2; 5 min.; for 10 days.

Improves the recovery process
after head injury; significant 
decrease of Bax e Bcl-2.

Salgado et al., [19] Clinical Human Cerebral blood
flow 

LED 627 nm; PD=70 mW/cm2;
ED=10J/cm2

TCD parameters showed sig-
nificant improvement in the 
blood flow on the arteries 
analyzed
cellular ATP increased significantly
and reduced neuronal death. LED
protected nerves cell from toxins   
related to Parkinson’s disease.

Liang et al., [17] Experimental In vitro Neurotoxicity LED 670 nm; PD=50mW/cm2; ED =
4 J/cm2; 80 seconds, 2 times/day

Wong-Riley et al., [23] Experimental In vitro Neurotoxicity LED 670, 728, 770, 830, 880 nm;
PD=50 mW/cm2; ED=4 J/cm2;
applied for 1 min and 20 sec.

Wavelengths 830 and 670 nm 
was the most effective in the NIR 
absorption spectrum of Cco. 

Rojas et al., [20] Experimental Animal Cognitive functions 
Oxygen consumption

LED 660 nm; DP=9 mW/cm2

ED=9, 10.9, 21.6, 32.9 J/cm2
TCLT increased prefrontal cortex
oxygen consumption; was able 
to facilitate fear extinction memory 
at 10.9 Jcm/2, prevented fear re-
newal and increased the metabolic
capacity of the prefrontal cortex

Moro et al., Experimental Animal Parkinson’s disease LED=670 nm; PD=5.5 mW/cm2;
ED=2 J/cm2; 

Neuroprotective benefits at both
cellular and behavioural levels 

Note: LED=light emitting diode; PD=power density; ED=energy density; HAM-A=Hamilton Anxiety Rating Score;  NIR=near-infrared; CBF=cerebral blood flow; Aβ=beta-
amilase; ROS=reactive oxigen species; VEGF=vascular endothelial growth factor; MAPK=mitogen-activated protein kinase; Cco=cytochrome c oxidase; TDC= transcranial 
Doppler ultrasound; TLTC=trasncranial led therapy.

Table 1: Summary of LED articles on neurological conditions.
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showing that amyloid fibrils, which include the β-amyloid, have great 
absorption capacity of photons emitted in the 650-930 nm range due 
to the presence of chromophores in their molecular structure; this 
structure can be damaged according to the absorbed energy.

Duan et al. used LED (640 ± 15 nm) in cultured cells and observed 
a significant reduction in apoptosis induced by β-amyloid. According 
to Yang et al. [29], the inhibition of ROS production after low-energy 
laser therapy reduced the formation of β-amyloid and presence of 
astrocytes, and induced post-trauma nerve regeneration. The results of 
our experiments [in revision for publication] showed a reduction in 
glial cells and senile plaques in the brains of rats after 21 days of TCLT 
compared with untreated rats in the control group. 

These benefits are mainly mediated by the bioenergetics effects of 
mitochondria on cytochrome oxidase in the brain as demonstrated in 
in vivo experiments showing induced up-regulation of cytochrome 
oxidase in the cortex after TCLT. It is assumed that the effect of TCLT 
over cytochrome oxidase reverses the consequences of cerebral hypo 
perfusion through the vasodilator effect of NO that results in increased 
oxygen consumption and, thus, improved neuronal respiration.

Biological effects of TCLT

Low power photostimulation can modulate many cellular 
processes in biological tissues. In the transcranial modality, TCLT acts 
directly on the brain tissue generating significant effects of stimulation 
and proliferation, release of chemical mediators, regulation of cellular 
processes, and improvement of energy metabolism in mitochondria 
among others [30]. The basic principle of TCLT is to stimulate brain 
cells through photons that are absorbed primarily by the mitochondrial 
respiratory enzyme, thus resulting in increased basic energy processes 
in each photo stimulated cell, i. e., acceleration of electron transfer in 
the respiratory chain, activation of the cytochrome c oxidase system 
and increase in cellular ATP production.

The mechanism proposed by TCLT is that phototherapy stimulates 
the cytochrome c oxidase increasing the usage of oxygen in the brain 
and its metabolic capacity; these effects would increase brain function 
and protect against neurological deficits such as those caused by cerebral 
vascular hypoperfusion. However, other possible mechanisms may be 
involved in intra, inter-, and extracellular biological events. Thus, there 
is a growing body of evidence suggesting that the primary effects of 
TCLT would be the photo stimulation of mitochondrial cytochromes, 
which may initiate secondary cell-signaling pathways [31,32] producing 
desirable effects. It is well known that there is a high concentration of 
mitochondria in the brain, which is responsible for several functions. 
Therefore, some pathologies such as neurodegenerative diseases can 
lead to mitochondrial dysfunction that impairs the energy supply in 
the brain.

Some researchers have investigated the effects of cytochrome 
oxidase and TCLT on brain functions. Rojas et al. reported that TCLT 
induces brain metabolic and antioxidants effects through the analysis 
of cytochrome oxidase increases. In another study, these authors 
reported an increase in memory retention and oxygen consumption 
over cytochrome oxidase stimulation in the frontal cortex of rats. Thus, 
mitochondria would be the prime target of TCLT because they because 
they display the highest potential as a photo acceptor and because of 
their crucial role in supplying energy to cells.

Cytochrome c oxidase as a primary photoacceptor 

The three major photoacceptors in the red/near-infrared 

wavelength range are hemoglobin, myoglobin, and cytochrome 
c oxidase. Cytochrome c oxidase is the only one to produce energy, 
displays the greatest potential as a neuronal photoacceptor in the red 
to near-infrared light range [33], and is a marker of neuronal energy 
metabolism. Cortical neurons are extremely rich in mitochondria and 
believed to be the origin of the transducing effects of mitochondria 
radiation to other neural components such as cytoplasm, cell membrane, 
and the nucleus [34]. Thus, the process of photo transduction can occur 
after light exposure, which activates several intracellular metabolic and 
enzymatic pathways and is considered responsible for the TCLT effects.

Cytochrome c oxidase is an enzyme that catalyzes the final step in 
the mitochondrial respiratory chain when an electron from each of 
the four cytochrome c molecules is transferred to an oxygen molecule, 
converting into two water molecules. Protons across the mitochondrial 
inner membrane will be released in this process allowing the formation 
of adenosine triphosphate (ATP) by oxidative phosphorylation 
[35]. The cytochrome c has two copper centers (the CuA and CuB), 
where the electrons admitted CuA of cytochrome c in the process of 
mitochondrial respiration chain [36], where the absorption of light 
occur, mainly in the red/near-infrared spectrum.

TCLT acts as an exogenous source of highly energized electrons 
for the respiratory chain, thereby promoting endogenous donation 
of electrons, for example in NADH and FADH2, enhancing the 
cellular energy metabolism [37,38]. Photo stimulation can restore 
the flow of electrons when the entry of these electrons is blocked in 
the respiratory chain as it occurs in neurodegenerative diseases. 
Indeed, it is also possible that phototherapy can maintain the cellular 
membrane potential in mitochondria, reduce the reverse passage in 
the electron transport chain, and increase ATP synthesis, which results 
in a reduction in the release of free radicals, by increasing the flow of 
electrons in the electron transport chain .Thus, TCLT facilitates the 
activity of cytochrome c oxidase accelerating the transfer of electrons in 
the mitochondrial inner membrane and boosting cell respiration and 
energy production.

The primary effects of radiation depend on the absorption of light 
by mitochondria; the cytochrome c oxidase respiratory enzyme is 
considered the greatest photo acceptor of light in the red/near-infrared 
wavelength range. Karu et al. demonstrated that cytochrome c oxidase 
has four absorption peaks in the red/near-infrared spectrum; these 
authors revealed that the photo acceptor was characterized as with 
relatively low intensity in the 710-790 nm wavelength range, while it 
was characterized as a relatively oxidized photoacceptor in the 650-680 
nm wavelength range featuring the redox state of cytochrome c oxidase. 
CuA contains a broad peak of wavelength absorption when oxidized, 
thereby allowing noninvasive penetration into the brain. Riley-Wong 
et al. also showed that 670 nm was the most effective wavelength to 
reverse the effects of the cytocrome c oxidase inhibitor (potassium 
cyanide - KCN) and suppress the neurotoxic effects promoted by 
tetrodotoxin, protecting nerve cells from cell death. Therefore, the 
cytochrome c oxidase acts as the main cellular component for photon 
absorption in the red/near-infrared wavelength range, which would be 
responsible for triggering many biological and biochemical processes. 
This function can result in an improvement in energy metabolism and 
cellular viability, prevention of cell apoptosis in an ischemic event, and 
enhancement of neuronal repair mechanisms.

TCLT radiation transmission in the skull

Few studies have evaluated the transmission rate of the red/near-
infrared radiation in the skull. Wan et al. [39] observed that radiation 
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emitted in the 600-800 nm spectrum can penetrate about 1 cm in the 
skull of human cadavers. Jagdeo et al. [40] showed that this radiation 
range can penetrate soft tissues, bone, and brain parenchyma in a study 
using cadavers preserved in formalin. According Firbank et al. [41], the 
absorption coefficient of radiation in the 650 nm and 950 nm range is 
between 0.02 and 0.05 mm-1 in the skull, while the scattering coefficient 
has a linear decrease from 35 mm-1 at 650 nm wavelength to 25 mm-1 at 
950 nm wavelength. Similarly, the absorption and scattering coefficients 
of brain white and gray matter for the same region of the spectrum do 
not differ greatly [42]. Table 2 describes the radiation absorption and 
scattering coefficients in different human biological tissues.

These data show that, in this wavelength range, the variations in 
absorption and scattering coefficients are not extreme, and therefore, a 
model for the near-infrared region does not significantly differ from the 
model for the red region. In addition, scattering coefficients are higher 
than absorption coefficients; absorption coefficients are practically 
negligible when the Beer-Lambert law is applied.

Haeussinger et al. [43] determined that the amount of radiation 
absorbed by the brain gray matter is in the order of 3% when a certain 
amount of radiation is applied to the scalp. Naeser and Hamblin 
advocated that red/near-infrared photons can penetrate deeply into 
the skull and reach the cortex. Therefore, photons could penetrate 
small vessels that supply arterial blood to the superficial areas of the 
cortex, including areas away from the site of irradiation. Salgado et al. 
demonstrated this effect when effects were observed over the basilar 
artery after TCLT was applied in the frontal and parietal regions of the 
skull. 

Thus, as demonstrated in this review, we can infer that a small 
amount of energy is sufficient to produce such effects and that this type 
of phototherapy is safe and shows little or no side effects.

Conclusion
TCLT is a cost-effective, safe, and non-invasive alternative 

treatment for neurological clinical conditions such as Alzheimer’s and 
Parkinson’s diseases, dementia, psychological disorders, stroke, and 
cranial traumatisms. Furthermore, because red/near-infrared light can 
penetrate the brain at low energy doses, TCLT could be extensively 
used in non-invasive treatments with no negative side effects.    
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