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Abstract
Oral cancers are heterogeneous group of tumors in topography (they can be localized at on the lips, tongue, upper and lower gums, hard and 
soft palates, floor of mouth, retromolar region, or inside of cheek), histologic forms (that can be carcinoma, sarcoma, lymphoma, melanoma or 
cylindroma) and clinical outcomes (good or poor prognosis). However, more than 50% of these cancer phenotypes express a mutation at TP53 
gene while in the other 50% of cases; the TP53 protein pathway is often partially inactivated. In cancerous tissues, particularly in oral squamous 
cells, the loss of function at TP53 gene is associated with three molecular causes: (1) The genotoxic effect of risk factors such as alcohol abuse, 
tobacco smoking or betel nut chewing, (2) The inhibitory effect of the TP53 antagonist genes such as MDM2, or (3) The action of oncoproteins of 
high-risk human papillomavirus (HPV). This paper attempts firstly to make an exhaustive review of TP53 gene signalling pathways in normal and 
stressed cells, and secondly to describe in oral cancers the genetic events that occur at different steps of carcinogenesis after a loss of function 
in TP53 encoded protein.
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Introduction

Oral cancers remain a major clinical challenge in oncology and represent 
the sixth leading cancer worldwide, with an estimated incidence nearly of 
300.000 new cases per year and a mortality rate around 50%, according to the 
2018 GLOBOCAN report (Global Cancer Incidence, Mortality and Prevalence) 
[1]. The prognosis of patients suffering from oral cancers is not significantly 
improved in recent years, despite the strengthening of diagnosis and 
therapeutic approaches) [2]. This failure is essentially the fact of the clinical 
heterogeneity of these tumors, resulting from multiple kinds of precancerous 
lesions, with different biological behaviors and clinical outcomes.

However, despite their clinical and topographic heterogeneities, 50% of 
oral tumors express a mutation at TP53 gene, and in the other 50% of cases, the 
TP53 protein pathway is often partially inactivated [3]. Indeed, the degradation 
of the TP53 gene or the inactivation of its protein is now considered as a full 
etiological factor in oral carcinogenesis and the main event that precedes and 
leads to most cancers [4].

Literature Review

To date, TP53 remains one of the most important and extensively studied 
tumor suppressor over the past three decades and the new approaches in 
oral cancers research are focused on its signaling pathway and its protein 
interactions with MDM2 and E6-HPV [5].

In this review, we aimed to summarize the complexities of TP53 biology 
by listing in one hand its different ways of signalisation in normal and stressed 

cells, and in the other hand by studying the effects of its loss of function and 
mechanisms leading to oral cancers.

Oral Cancers, Epidemiology and Clinical Heterogeneity

Presentation: Oral cancers are a complex disorder that can develop at 
multiple topographic sites: lips, tongue, upper and lower gums, hard palate, 
floor of mouth, retromolar region, or inside of cheek; and include mostly 
squamous cell carcinoma (> 90%) [6,7].

Some authors argue that they are indissociable from cancers of the 
ORL sphere (oto-rhino-laryngology) and that they fit into the more general 
framework of head and neck cancers [8].

Epidemiology: Epidemiological data in oral cancers have shown a 
wide disparity in incidence and mortality around the world, according to the 
2018 GLOBOCAN report (Figure 1) [1]. In this report, oral cancers represent 
the sixth leading cancer worldwide (2-3% of all cancers), with an estimated 
incidence nearly of 300.000 new cases per year and a mortality rate around 
60%, despite the progress noted in medicine and therapeutic research.

Etiopathogenesis: The main risk factors for oral cancer are exposure to 
genotoxic agents such as tobacco smoking, alcohol consumption, and betel 
nut chewing [9-11]. These genotoxic agents act by causing genetic alteration 
in specific genes, particularly those controlling the cell cycle [2,12,13]. 
Poor oral hygiene, bad set of teeth, inadequate diet and poor nutrition, or 
immunosuppression can also increase oral cancer risk [14]. The latter can 
indeed promote chronic infections of the oral mucosa by HPV genotypes with 
a high carcinogenic potential (genotypes HPV-16 and HPV-18 in particular) 
[15,16]. The development of oral tumors is described in several stages, 
from genetic predisposition and exposure to risk factors to the appearance 
of precancerous lesions in the oral mucosa, eventually followed by the 
degeneration of these lesions into tumor formations.

Precancerous lesions: Most of oral cancers result from changes to 
cells of the oral mucosa that make them more likely to develop into cancer. 
These changes known as precancerous or premalignant lesions correspond 
to non-neoplastic disorders associated with a significantly higher risk of cancer 
[17,18]. Oral precancerous lesions are benign and asymptomatic tumors for 
the most part, beginning as hyperplastic tissue, that can develop (or not) into 
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invasive oral cancer with multiple clinical features [19].

The most frequent forms

1.	 Among the most frequent oral precancerous lesions, we have [19-21]:

2.	 Leukoplakia: whitish lesions of the oral mucosa resulting in keratotic 
areas;

3.	 Erythroplakia: reddish lesions of the oral mucosa characterized by 
erythematous areas;

4.	 Oral submucous fibrosis that are chronic progressive disease 
modifying the fibroelasticity of the oral submucosa;

5.	 Oral lichen planus, also called lichenoid lesions, which are chronic 
inflammatory dermatoses, most often papular, pruritic with 
mucocutaneous localizations;

6.	 Actinic cheilitis occurring mainly in the lower labial half-mucosa after 
prolonged exposure to ultraviolet rays; and finally,

7.	 Keratotic candidiasis that are superficial mucocutaneous and fungal 
infection caused by Candida albicans.

Viro-induced forms

HPV virus mostly induces five kinds of oral premalignancy [22,23]:

1.	 Squamous cell papilloma that are outgrowths of hilly and pedunculated 
appearance, with a surface bristling with papillary projections;

2.	 Oral Florid papillomatosis that are verrucous, keratotic, whitish 
in appearance, sometimes considered as grade I squamous cell 
carcinomas;

3.	 Vulgar verrucas, which are soft eruptions sometimes covered with a 
keratotic layer;

4.	 Condyloma acuminata which are inflammatory, proliferative and highly 
contagious papillomatous lesions classified as sexually transmitted 
infections;

5.	 Multifocal epithelial hyperplasia also known as Heck’s disease: 
common in children, these are HPV-induced diseases (HPV 13 and 
32 in particular), characterized by the presence of soft layered or 
rounded papules.

These viro-induced lesions are generally painless, superficial with planar 
or exophytic topography (rarely endophytic) [23].

Rare forms

Three kinds of hereditary precancerous lesions can lead to oral cancer 
[19,21]:

1.	 Congenital dyskeratosis which are rare ectodermal dysplasias 
that often clinically manifest following the triad nail dysplasia, skin 
pigmentation abnormalities and oral leukoplakia. They are associated 
with a high risk of bone marrow failure and cancers;

2.	 Dystrophic bullous epidermolysis causing by hereditary 
mucocutaneous fragility manifested by skin that tends to peel off, 
forming bubbles that are often painful; and,

3.	 Fanconi anemia, which is a recessive hereditary disease characterized 
by progressive pancytopenia, bone marrow aplasia, variable 
congenital malformations and a predisposition to blood diseases and 
solid tumors.

Some other disorders such as immunodeficiency, or certain forms of 
hypersensitivity such as Xeroderma pigmentosum (extreme sensitivity to 
ultraviolet rays) have also been associated with an increased risk of cancer in 
the oral cavity [19,24].

The risk for these different precancerous lesions to evolve towards oral 

Figure 1. Epidemiological data in oral cancers throughout the word. a. Incidence, b. Mortality [1].
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cancer depends on their size, topography (planar, exophytic or endophytic) 
and most importantly on the tissue or organ affected. The cytological and 
histological changes induced by these lesions are called dysplasia.

Oral epithelial dysplasia seems to have a predilection for males. However, 
the decrease in the male/female ratio observed in recent years suggests that 
the tendency may be changing [25]. This fact may be related to increased use 
of tobacco and alcohol among women.

Even though only 5 to 18% of oral epithelial dysplasia becomes malignant, 
erythroplakia has a much greater probability (91%) of showing signs of 
dysplasia or malignancy at the time of diagnosis [26]. Thus, oral premalignancy 
have been classified, according to evolutivity, into three categories: mild 
(facultative degeneration), moderate (quasi-mandatory degeneration) and 
severe (mandatory degeneration) (Kuffer classification, 1975) [27].

Although this classification seems intuitive and hard to prove, oral epithelial 
dysplasia generally progresses to cancer if it is associated with other factors. 
For example, (1) erythroplakia within a leukoplakia, (2) proliferative verrucous 
appearance, (3) location at a high-risk anatomic sites such as the tongue or 
oral floor, (4) presence of multiple lesions, and, paradoxically, (5) precancerosis 
in an individual with no history of alcohol or tobacco consumption [26].

Histologic and Topographic forms of oral cancers

The characteristics of oral cancers are very diverse (location, size, 
appearance, prognosis, etc.) and imply a plurality of topographical features 
such as cancers of gums, tongue, oral floor, palatal vault, retromolar region, 
the internal surface of the cheeks or the mucous portion of the lips [28,29].

Squamous cell carcinoma, that usually arise from the dysplastic surface 
epithelium, account for more than 90% of histological forms of tumors 
located in the oral cavity [6,7]. Various cytological and architectural subtypes 
of oral squamous cell carcinoma have been described. The most common 
feature is the conventional invasive squamous cell carcinoma, but there are 
also numerous cell-forms of squamous cell carcinoma including fusiform, 
verrucous, papillary, basaloid, cuniculatum, acantholytic or adenosquamous (= 
adenoid cystic), lymphoepithelial (= lymphoepithelioma), mucoepidermoid and 
sarcomatoid (also called spindle cell carcinoma, pseudocarcinoma or ‘collision 
tumor’) [14,30].

In addition to these squamous cell carcinomas, there are in a much 
lower prevalence (less than 10%) many other types of oral tumor formation 
such as sarcoma, chondrosarcoma (=osteosarcoma), lymphoma (Hodgkin’s 
and Non-Hodgkin’s lymphoma, Burkitt’s lymphoma), cylindroma, basal-cell 
cancers, odontogenic tumours (teeth), adenocarcinoma (salivary glands) 
and melanoma (external face of the cheeks) (the last two forms cited are not 

considered by some authors to be part of oral cancers) [30-33].

The cancerous involvement site can also be multiple, synchronous 
(concerning many localizations at the same time) or metachronous (shifted 
in time).

Detection and clinical diagnosis are mostly done by visual inspection, 
with naked eyes and allows to completely evaluate the oral cavity. It is 
imperative in this case to be able to clearly differentiate the existing clinical 
forms. Confirmation of clinical diagnosis is therefore required by means of an 
anatomopathological examination of a tumour biopsy.

To date, despite the progress noted in medicine and therapeutic research, 
survival rate after detection at the final stage remains almost unchanged. The 
main reason for this is probably related to the late diagnosis of these tumors, 
which are not symptomatic at their early stage.

The phenotypic diversity noted in oral cancers makes necessary to question 
the expression profile of genetic predisposition markers (polymorphisms at the 
level of the TP53 gene in particular), which can be decisive in the prediction 
and early diagnosis. 

The study of the TP53 gene signalling pathways and its protein interactions 
with MDM2 and HPV has now become a classic in therapeutic research 
against oral cancers.

TP53 signaling and expression in normal cells

The mutation of the TP53 gene in half of human cancers and the alteration 
of its protein pathway (p53) in the other half testify to its essential role in tumor 
suppression [3]. TP53 acts as the ‘‘guardian of the genome’’ because its target 
genes are regulators of genome stability and cellular homeostasis [34]. It is 
also a ‘‘tumor suppressor gene’’ with 20.303 base pairs length and 11 exonic 
regions, located at the locus 17p13 of chromosome 17 (Figure 2). Its loss of 
function is described in several cancers including oral cancers [35].

The protein encoded by TP53 (= p53) consists of 393 amino-acids with 
5 main domains: (1) the transactivation domain (amino-acids 1 to 42) in 
N-terminal responsible for the transcriptional activation as well as the binding 
to MDM2, (2) the proline-rich domain (amino-acids 40 to 92) containing 5 
PXXP motifs (P = Proline and X = any other amino-acid) which has a role in 
regulating the stabilization and activation of p53, (3) the DNA binding domain 
(amino-acids 101 to 306) which specifically binds to the promoters of the p53 
target genes, (4) the tetramerization domain (amino-acids 307 to 355) that 
contains a nuclear export site, and (5) the C-terminal domain (amino-acids 370 
to 393) that non-specifically binds to DNA and regulates DNA specific binding 
via the DNA binding domain [36].

Figure 2. TP53 locus, gene organization and protein domains [36].
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In response to various cellular stresses such as oncogenes activation, 
hypoxia, depletion of growth factors or the presence of breaks on DNA, p53 
has the ability to stabilize and bind DNA in specific sequence to activate or 
repress hundreds of genes that are involved in multiples biological processes 
such as cell cycle arrest, DNA damage repair, senescence and apoptosis [37]. 
The picture below summarizes the different ways of intervention of p53 to 
regulate the cell cycle (Figure 3).

Know functions of p53

p53, the protein translated by TP53, acts like a transcription factor in case 
of cellular stress by firstly activating genes implicated in cell growth arrest and, 
depending on scenarios, p53 can lead to the activation of DNA damage repair, 
(4) programmed cell death (apoptosis) or stoppage of permanent proliferation 
(senescence) pathways [38,39]. In cancerous cells, p53 can also lead to 
the inhibition of the angiogenesis (process conducting to tumor growth and 
metastasis) (Figures 3A-3F) [40].

Concerning its cell growth arrest and DNA damage repair function, p53 
acts as a transcription factor to control the cell cycle progression through three 
target genes: p21WAF1 (wild-type p53-activated fragment 1), Gadd45 (Growth 
Arrest and DNA-Damage-inducible protein) and 14-3-3σ [39]. p21WAF1 causes 
cell cycle arrest in G1 phase and prevents entry into S phase before DNA 
damage repairing, while Gadd45 and 14-3-3σ control G2/M transition [41,42].

Concerning pro-apoptotic activities of p53, most of them pass through the 
intrinsic mitochondrial pathway controlled by members of the Bcl-2 family and 
are dependent on the transcription of several target genes encoding either 
for cell surface proteins (DR5, CD95 and PERP), for mitochondrial proteins 
(Bax, Noxa, Puma and p53AIP1), or for cytoplasmic proteins (PIGs and PIDD) 
[43,44]. At the same time, p53 is able to induce the repression of pro-survival 
(=anti-apoptotic) factors such as Bcl-2, Bcl-XL and IAPs [45].

Besides inducing cell growth arrest and apoptosis, p53 activation can also 
modulate cellular senescence and organismal aging. Several p53 isoforms 
and two p53 homologs, p63 and p73, have been shown to play a role in cellular 
senescence and/or aging through a process not yet elucidated [46].

p53 also acts against angiogenesis in tumor formations. Angiogenesis is 
due to the expression in a tumour of the VEGF gene (vascular endothelial 
growth factor) which promotes the formation of new blood vessels in a tumour 
and metastasis. In the case of prolonged hypoxia (reduction of oxygen delivered 
to a tissue by blood), a situation frequently observed in tumour formations, p53 
indirectly inhibits the expression of VEGF via the retinoblastoma pathway [40].

Depending on the cellular activity, two p53 signaling pathways have been 
described in the literature: a transcriptional activity that takes place at the level 

of the cell nucleus and concerning the functions such as cell growth arrest, 
DNA damage repair and senescence and a non-transcriptional activity or cell 
death pathway that takes place in the cytoplasm and mitochondria.

Transcriptional activity of p53 in cell nucleus: In normal cells, p53 
forms a protein complex with MDM2, which complex is able to inhibit p53 
transcriptional activity. During a cellular stress, kinases produced by stress 
phosphorylate p53 at the level of serine and threonine on the transactivation 
domain (serine15, threonine 18 and serine 20) [47,48]. This phosphorylation 
induces a relaxation of p53-MDM2 complex, thus freeing p53 which will 
accumulate and form tetramers in cell nucleus [49]. Tetramerization masks p53 
nuclear export sites. p53 then accumulates and remains within the nucleus [50]. 
Subsequently, phosphorylation of the p53 transactivation domain will promote 
interaction with histone acetyltransferases (HATs) such as p300 which binds 
to the proline-rich domain through the PXXP motifs, leading respectively to the 
acetylation of lysines at the C-terminal domain, the stabilization of p53 and the 
increasing of its affinity to bind its target genes [51,52]. p300 can also acetylate 
histones at the promoters of the p53 target genes, inducing an opening of their 
promoters and thus allowing activation of their transcripts [53].

p53 non-transcriptional activity or cell death pathway: In addition 
to its functions of regulating the transcription of certain genes and inducing 
DNA damage repair, senescence or apoptosis within the cell nucleus, it has 
been known for more than 20 years now that p53 can also act at the level 
of cytoplasm and mitochondria to induce apoptosis through independent 
mechanisms of transcription [54,55]. This non-transcriptional activity of p53 
also known as cell death pathway is controlled by proteins members of the 
Bcl-2 family (Figure 4) [56].

Bcl-2 proteins family have a general structure that consists of two central 
predominantly hydrophobic α-helix surrounded by five to seven amphipathic 
α-helices of varying lengths [57]. Their similarities in amino-acid sequence and 
function suggest that they have all descended from a common gene [58].

In case of cellular stress requiring intervention of the apoptotic pathway, 
MDM2 can conjugate a single ubiquitin residue to p53 which induces its 
transport to cytoplasm [59]. From there, p53 interacts first with Bad (BCL-
2 antagonist of cell death) and the formation of p53-Bad protein complex 
promotes the accumulation of p53 in mitochondrial membrane, which in turn 
leads to its interaction with pro-apoptotic proteins of the mitochondrial pathway 
such as Bax (Bcl-2 associated X protein) and/or Bak (Bcl-2 homologous 
antagonist killer), causing mitochondrial outer membrane permeabilization 
(MOMP) (Figure 3) [60,61]. The MOMP causes the release of cytochrome c in 
the cytoplasm, thus promoting apoptosis [62].

Regulation of p53 expression

Because of its growth-limiting and cell cycle-regulating properties, 

Figure 3. Different signaling pathways of p53. A. Transcription factor, B. Apoptosis, C. Cell growth arrest, D. Senescence,E. Angiogenesis, F. DNA damages repair [38].
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p53 expression is finely regulated or inactivated in particular physiological 
conditions. The p53 wild-type protein has a short half-life (4 to 5 minutes, 
instead of 6 hours for the mutated form), and remain at a low base level, 
sometimes undetectable in most tissues, although the p53 mRNA is 
constitutively expressed [13,63]. The level of its expression is mainly controlled 
by specific inhibitor such as MDM2 and MDM4 (also called MDMx and hDMX) 
in different but complementary ways: MDM2 regulates p53 stability, while 
MDM4 regulates p53 activity (Figures 5A and 5B) [64].

MDM2 is a transcriptional target of p53 and nevertheless represents its 
main inhibitor [65,66]. The fact that the high mortality in MDM2 deficient mice 
is suppressed by rendering them deficient in p53 revealed the fundamental 
role of this protein in the regulation of p53 [61]. MDM2 acts in two ways: firstly 
by blocking the p53 N-terminal transactivation domain thus preventing it from 
recruiting co-activators such as p300 and p21, and secondly through its ubiquitin 
ligase activity on the p53 C-terminal RING domain, by mono-ubiquitylation to 
promote p53 nuclear export to cytoplasm, or poly-ubiquitylation to induce p53 
degradation by the 26S proteasome [66]. This ability of MDM2 to lead to the 
degradation of p53 makes it an E3 ubiquitin-ligase protein [67]. In response 
to oncogenic stress, the p14ARF tumor suppressor protein will inhibit MDM2 to 
release p53 [68].

MDM4 is another specific inhibitor of p53. Unlike MDM2, it does not control 

the stability of p53 but its transcriptional activity. MDM4 is therefore not a 
transcriptional target of p53, as its expression does not depend on p53. MDM4 
regulates p53 expression at three key levels: (1) by binding to wild-type p53 
and inhibiting its transcriptional activity in normal cells, (2) by promoting MDM2 
E3 ubiquitin-ligase activity, or (3) by promoting p53 translation from TP53 in 
response to cellular stress [69]. Other p53 regulators (= inhibitors) have been 
found in recent years, such as COP1, Pirh2, PACT, Daxx and CARPs (CARP1 
and CARP2) [70-72].

Genetic events in TP53 leading to oral cancers

Most of oral cancers histologic and topographic forms result from multistep 
accumulation of genetic alterations in TP53 gene, resulting in clonal outgrowth 
of transformed cell [2]. Any alteration or inactivation in TP53 gene is thus 
described to genetically predisposing to cancers [12,13]. In oral cancers, 
TP53 tumor suppressor activity is annihilated either by the genotoxic effect 
of etiological factors (mainly alcohol and tobacco), or by the oncotic actions 
of inhibitor proteins such as MDM2 and E6-HPV which act on its expression 
[9,11,15,16].

Causes of a loss of functions in TP53

Mutations in TP53: Mutations in TP53 lead to loss of function in gene and 
may result in conformational or functional modifications of the protein. Most 

Figure 4. Pro-apoptotic Bcl-2 proteins family [63].

Figure 5A. The MDM2 and MDM4 proteins structure [73].
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TP53 point mutations in oral cancers are caused by the mutagenic effect of 
genotoxic factors such as alcohol consumption, tobacco smoking or betel nut 
chewing, and occur preferentially at sites encoding the DNA binding domain 
of the p53 protein, which may conduct to an inability of the protein to bind and 
transcribe its target genes [73,74].

Several sequence variations in TP53 are described as potential risk 
factors for the development of oral malignancies (29 in non-coding regions 
and 19 exonic polymorphisms, according to the IARC (International Agency for 
Research on Cancer) TP53 mutation database) [75]. Most of these variations 
have no cancer related consequences. Among the 19 exonic polymorphisms, 
there are only sufficient molecular evidences for two polymorphisms (Pro47Ser 
and Arg72Pro) that are formally associated to oral cancer predisposition [10]. 
Nevertheless, it’s important to mention that the functional role of these two 
polymorphisms of p53 in oral cancer risk remains uncertain and extensively 
discussed.

The codon 47 polymorphism (Pro47Ser, rs1800371), resulting in Proline 
(P) to Serine (S) substitution is rare whereas Arginine (R) to Proline (P) 
substitution in codon 72 (Arg72Pro, rs1042522) is common [76]. These non-
conservative amino acid changes are associated with altered electrophoretic 
mobility of variants, affecting the structure of p53 protein and its biochemical 
activities such as cell cycle regulation, apoptosis and senescence [77].

In addition, TP53Mut tumors (tumors that express a mutation in TP53) 
are more chemoresistant, and some of these tumors also appear to be more 
invasive and more likely to metastasize due to the TP53 non-specifically 
binding to DNA and the supposed transactivation of genes such as MDR1, 
MYC and VEGF or inactivation of other members of the p53 family by 
heterodimerization, which promote tumor growth, angiogenesis, metastasis 
and chemoresistance [78-80].

Effects of the p53 inhibitor protein MDM2

The inactivation of p53 may be the consequence of overexpression of its 
inhibitors, particularly MDM2 in oral cancers through the p14ARF-MDM2-p53 
pathway. MDM2 acts on p53 as ubiquitin ligase protein: its activity may lead to 
poly-ubiquitination then degradation of p53 via the proteasomal complex 26S 
[81]. In oral cancers, overexpression of MDM2 is parallel to the inactivation of 

p14ARF with which it forms an inactive complex [82]. The dissociation of MDM2-
p14ARF complex follows a mutation in CDKN2A gene and release of MDM2 
which becomes overexpressed. p14ARF is an alternative reading frame protein 
product of the CDKN2A gene of which it is one of the transcripts, as well as 
p16INK4A. The first one is involved in the p14ARF-MDM2-p53 pathway, and the 
second is a regulator the p53-pRb-HPV pathway to prevent retinoblastoma 
[68].

Human MDM2 gene, located at the locus 12q13-14 and its protein (491 
amino acids long), interacts through its N-terminal domain with an α-helix 
present in the transactivation domain of p53 [83]. The MDM2 gene is a cellular 
proto-oncogene overexpressed in 25% to 40% of all human cancers, with an 
even higher proportion in oral cancers (40% to 80%) [2].

 One SNP (single nucleotide polymorphism) in MDM2 is particularly 
studied as a potential risk factor for the development of malignancies: it is 
polymorphism T309G (rs2279744) in the first intron of MDM2 (containing 
p53-responsive elements), that increase the level of expression of MDM2 
[81,84,85]. This functional T to G polymorphism in the promoter region of the 
MDM2 gene has thus been reported to profoundly accelerate tumor formation, 
suggesting that it may also represent a powerful cancer predisposition marker 
[86].

The p53-MDM2 complex forms an autoregulatory feedback loop (Figure 
6). MDM2 is able to inhibit p53 transcriptional activity by three different ways: (i) 
through binding to its transactivation domain, (ii) through mono-ubiquitination 
and export from nucleus to cytoplasm, (iii) poly-ubiquitination and mediated 
degradation via proteasome [87]. These interactions between p53 and MDM2 
can also be summarized in three situations:

In normal and unstressed cells, p53 is present in small amounts, but 
sufficient to enable transactivation of the MDM2 gene [81]. Oncoprotein MDM2 
induces in turn inactivation of p53 by masking its transactivation domain, and 
the p53-mdm2 complex formed is then poly-ubiquitinated and transported from 
the nucleus to the cytoplasm to be degraded by the proteasome 26S [81]. 
That’s why in normal cells, the half-life of p53 is quite short, only a few minutes 
(4 to 5 minutes, instead of 6 hours in cancers) [13].

Figure 5B. Mediated regulation of p53expression [73].
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During genotoxic stress, the amino-terminal region of p53 is phosphorylated 
at specific sites [47,48]. This modification leads to the dissociation of the p53-
mdm2 complex and therefore to the accumulation of a stable p53 which form 
tetramers to enable transactivation of the target genes controlling the cell 
cycle regulation [49]. Also, in case of cellular stress requiring intervention of 
the apoptotic pathway, MDM2 can conjugate a single ubiquitin residue to p53 
which, instead of leading to its degradation as in the case of poly-ubiquitylation, 
induces its transport to cytoplasm and then the activation of death pathway via 
pro-apoptotic proteins of mitochondria [59,81].

In tumor cells however, p53 protein is often completely inactive and 
would no longer be able to induce the synthesis of MDM2 protein to ensure its 
degradation [73]. To date, numerous studies have shown that the accumulation 
of inactive p53 in nucleus, observable by immunohistochemistry would be a 
prognosticator of poor outcome in Oncology [88].

Oncoproteins of HPV-HR

Exogenous factors such as viral infection (Epstein-Barr virus in cavum 
cancer or human papillomavirus in cervical and oral cancers) may contribute 
to the functional inactivation of p53 and the development of many tumours 
in humans, by inducing cell transformation. According to the latest IARC 
(International Agency for Research on Cancer) classification (2007), HPV 
genotypes 16 and 18, and possibly 26, 31, 33 and 35, are considered high-
risk for the oral mucosa and infection of keratinocytes in the basal layers of 
stratified epithelia may lead to oral epithelial dysplasia, which is a precursor to 
squamous carcinoma [89,90].

In vitro and in vivo studies have demonstrated that the immortalizing and 
transforming power of high-risk HPV genotypes (HPV-HR) are due to their E6 
and E7 oncoproteins, early proteins expressed in significant quantities, after 
integration of the viral genome into the host cell DNA [91]. In HPV-induced 
carcinogenesis of oral cavity, the latency time between HPV-HR infection 
and cancer can take many years, showing progression through several 
stages, leading to an overexpression of the E6 and E7 oncoproteins and 
immortalization of the infected cells (Figures 7A and 7B) [92]. The oncoprotein 
E7 initiates carcinogenesis [93].

Oncoprotein E7

E7 preferably associates with the so-called ‘‘pocket proteins’’ pRb, p107 
and p130 that have a central role in controlling the cell cycle by negatively 
regulating the activity of several transcription factors, including members of 
E2F family [94]. During the G1 phase of the cell cycle, these pocket proteins 
act as transcription repressor by forming complex with E2F [93].

In healthy cells, the release of E2F is induced by cyclin-dependent 
kinases (cdk 4 or 6, and cdk2) and leads to a phosphorylation of pRb in G1 

Figure 6. The MDM2 mediated-degradation of p53 [87].

 
Figure 7A. HPV genome structure [104].

Figure 7B. Role of oncogenes E6 and E7 in HPV-induced cancers [104].

and inactivation of its growth-inhibitory function [95]. However, in HPV-induced 
cancers, it is found that E7 competes with E2F to bind to pRb. E2F is then 
released and causes p53 activation, which normally leads to G1 cell cycle 
arrest and apoptosis [93]. To thwart the apoptosis response, E6 oncoprotein 
starts the 2nd step of the HPV-mediated carcinogenesis.

Oncoprotein E6

The most important activity of HPV-HR oncoproteins E6 is their abilities to 
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promote cell proliferation by stimulating degradation of the tumor suppressor 
protein p53 [96]. On its own, E6 cannot target p53 for proteasomal degradation. 
Rather, it first forms a protein complex with a cellular E3 ubiquitin ligase E6AP 
(E6-associated protein), and the stable E6/E6AP complex formed then labels 
p53 for degradation in a proteasome-dependent manner [97].

As well, E6 has the ability to inhibit the activity of the protein p53, according 
to 4 mechanisms: 

1.	 Induction of post-translational modifications of p53 which lead to 
conformational and functional changes in the protein [98];

2.	 Sequestration of p53 within the cytoplasm and loss of any 
transactivation function on its target genes [99];

3.	 Stop of the p53 induced transactivation by interaction with p300, a 
histone acetyltransferase promoting stabilization of p53. In HPV 
infection, the E6 oncoproteins bind p300 which therefore inhibit p53 
acetylation. All E6 proteins are able to bind p300, but only those of 
high-risk HPV genotypes seem to bind it with more affinity [100];

4.	 Inhibition of p53 activation by interacting with hADA3, a component of 
histone acetyltransferase, which may allow E6 to perturb numerous 
cellular pathways during HPV oncogenesis [101].

Another characteristic of the HPV-HR E6 protein is its ability to inhibit the 
differentiation of epithelial cells normally leading to their keratinization and 
death [102]. As a result, viro-induced cancers of the oral cavity are histologically 
undifferentiated from the epithelium.

Also, to counter telomere erosion causing death of tumor cells, E6 stimulates 
the transcription of hTERT (human telomerase reverse transcriptase), which 
conduct to cellular immortalization, malignant transformation by stabilizing 
telomere length and erasing the senescence barrier, so unlimited and aberrant 
cellular proliferation [103].

TP53 gain of functions and oncogenic effects associated

In most cancers, there are large amounts of non-functional p53 
accumulated in the cytoplasm and are no longer undergoing degradation 
by MDM2 [104,105]. Moreover, according to the oncogenic "gain-of-
functions" theory, mutated TP53 (TP53Mut) acquires a potential for malignant 
transformation, which is why, in oncology; mutations in TP53 are readily 
associated with a poor prognosis [106].

In fact, the mutant p53 protein released into the cytoplasm has been 
shown to inhibit autophagy defined as the sequestration and digestion of a 
portion of the cytoplasm allowing the cell to be cleansed of its damaged and 
potentially toxic cytoplasmic organelles, in order to maintain genome stability 
[107]. The fact that p53, which should guarantee the stability of the genome, 
inhibits this function may therefore seem paradoxical.

In the case where the mutation at TP53 only concerns its DNA binding 
domain, p53 is no longer able to activate the MDM2 pathway leading to its 
ubiquitin-degradation. However, the autophagy-inhibition function is not 
affected. This is how p53 accumulates in the cytoplasm and that accumulation 
may partly explain its associated oncogenic effects.

Conclusion

TP53 influences a multitude and highly diverse cellular processes, 
and represents one of the most important and extensively studied tumor 
suppressor gene. The inactivation of this gene is particularly described in oral 
cancers, which pathology is particularly known for its great histological and 
topographical diversity. Today, our understanding of TP53 signaling pathways 
and its molecular implications in carcinogenesis, documented in several 
publications, has motivated pharmaceutical research and drug development to 
reactivate the p53 protein functions in most tumors. However, many questions 
remain to be answered and the molecules discovered until now have still not 
made it possible to eradicate this pathology that is cancer.
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