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Abstract

Evolvable Hardware (EHW) is a field of Evolutionary Computation (EC) started in the early 1990’s that includes a
subfield of Evolvable Hardware Design and a subfield of Adaptive Hardware. Two methods of evolvable hardware
design of a one-bit full adder are analyzed in this paper: first method is based on the well-known idea of gate-level
design using a network of programmable gates, and the second method uses Verilog instructions coded in
chromosomes represented as binary strings. Eventually, the two solutions were compared in terms of hardware
resources and propagation times.

Keywords Evolvable hardware; Genetic algorithms; FPGA; Digital
electronics; Verilog HDL

Introduction
The conventional design process in electronics, either analog or

digital, is top-down and begins with a precise specification. EHW
design may be used when no hardware specification is known before.
Its structure is adaptively searched using a Genetic Algorithm (GA) in
a bottom-up way. EHW design combines knowledge of both GA and
electronic design to evolve electronic circuits. It can offer new design
solutions, which differ from the patterns typically used by humans.

In this paper we deal only with extrinsic evolution, which uses a
model of the hardware and evaluates this model by simulation in
software. Although [1] deals only with intrinsic evolution, which uses
a real hardware programmable device, it is a very good up to date
critical review of the field. It compares the current state of the field to
that described in [2], a famous paper published by Yao and Higuchi 15
years ago.

Taking into account the progress of this research field in the 1990’s,
the two authors discussed the promises and possible advantages of
EHW, and pointed on the challenges meet in order to develop real
large-scale EHW. Unfortunately, [1] considers that the field is in a
critical stage today. In its early stages, the field was developed with
small steps forward. But the hope of bigger steps in the near future has
not been confirmed by the passage of time. One of the main challenges
remains scalability, which is representation of evolved complex
circuits in terms of chromosomes [1,3,4]. Other challenge is
measurement, that is fitness evaluation, or the metric used to evaluate
the viability of an evolved circuit, and, on the other hand, the ability to
compare traditional and evolved designs [1,5].

One of the first ideas for the use of Hardware Description
Languages (HDLs) in the field of EHW was introduced in [6]. In order
to improve the scalability, and taking into account that only structural
HDL is synthesizable, while behavioral HDL is not, it was proposed, as
a promising research direction, evolutionary-based compilation of
behavioral HDL to structural HDL. A method of EHW design using
Grammatical Evolution (GE) has been proposed in [7]. GE allows

evolution in any programmable language, including Verilog HDL. As
we can see in [8], there are a lot of functional HDLs, but Verilog HDL
is the Industry Standard HDL.

The remainder of the paper is structured as follows: next section
describes the two implementations of a one-bit full adder, the
following section discuss some experimental results by comparing the
two solutions in terms of hardware resources and propagation times in
a FPGA circuit, and the last section contains conclusions.

Methods

Genetic implementation using a network of logic gates
The main stages of evolutionary design in electronics, both analog

and digital, are illustrated in Figure 1. First, a population of
chromosomes is randomly generated. Then, these chromosomes are
converted into circuit models and circuit responses are compared with
design specifications. Those chromosomes that generate the best
circuits receive the best evaluations or the best fitness. They are
selected as parents for a new generation of chromosomes.

If evolutionary algorithm is a GA, then new chromosomes are
generated using genetic operators such as crossover and mutation.
Through crossover, chromosomes are chosen two at a time, as parents,
and their off springs are generated by exchanging parts of their
structure. So, each offspring inherits a combination of features from
both parents. Mutation means a small change in a new generated
chromosome, with a small probability. In this way the algorithm can
explore new features that are not yet in the population, in order to
avoid premature convergence, when the diversity in population is lost.
It makes the entire search space reachable despite the finite population
size. The whole process is repeated for several generations, until is
generated the best chromosome which represents a valid solution for
our design.

Our problem is to design a circuit that performs a desired binary
function, specified by a truth table, using a certain specified set of
available logic gates. Based on the ideas presented in [9] and [10], we
have used a network of programmable logic gates for each binary
function in the circuit.
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Figure 1: Evolutionary design of electronic circuits.

The proposed digital circuit is a one-bit full adder, which is in fact a
system of two binary functions, each of them with three Boolean
variables. Each function is implemented in a network of four gates,
using a standard GA. Each gate has maximum two inputs and may be
one of the following 8 types of logic gates: AND, NAND, OR, NOR,
NOT taking into account the first input, NOT taking into account the
second input, XOR, and the complement of XOR. An example with
only 4 types of gates is given in Figure 2.

Figure 2: Circuit representation.

The first interesting aspect of this problem is the encoding of
solutions as strings of bits, each string being a chromosome that the
GA can evolve. Figure 2 explains the main idea used for this purpose.
Each chromosome contains the whole information about the
connections between inputs and outputs of the gates. Each gate
contain three fields: the two first fields refer to each of the inputs used,
and the third is the type of the gate [11].

If we want to implement the output si of the full adder of rank i,
which has the boolean equation:

s i = x i⊕y i⊕c i−1       (1)

then, as we can see in Figure 2, we need only two XOR gates,
corresponding to the positions III and IV. The gates numbered with I
and II are not used to implement this function, so, it doesn’t matter
how they are connected, and this part of the chromosome may be
considered as beeing in fact “junk DNA”. This evolved function is
represented in Figure 3.

The other function of the adder, ci, was implemented on another
similar network of four programmable gates, and Figure 3 presents the
whole circuit.

Figure 3: A possible evolved one-bit full adder.

The optimal equation of the carry output of the adder, ci, is:

c i = x i ⋅y i +c i−1⋅ x i⊕y i       (2)

because the XOR gate is shared by both functions of the adder. One
of the potential evolved equations is represented in Figure 3:

c i = x i ⋅y i +c i−1⋅ x i +y i       (3)

Equation (3) gives the same function as that represented in equation
(2), and it’s not optimal because the two function of the adder have
evolved separately.

In order to represent the chromosomes that describe a binary
function using circuit representation in Figure 2, we may choose the
following codes to inputs and outputs of the gates: 1 – 000 or 110, 2 –
001 or 111, 3 – 010, 4 – 011, 5 – 100, and 6 – 101. Double codes could
be used for constants 0 and 1. The gates may have the following codes:
AND – 000, NAND – 001, OR – 010, NOR – 011, NOT1 – 100, NOT2
– 101, XOR – 110, and the complement of XOR – 111.

Thus, the length of a chromosome is 36 bits, and the best
chromosomes that describe the functions si and ci are [11]:

crom_s i = 110000010110111110110110010010100110     (4)
crom_c i = 001000000000001010010100000011101010     (5)

As we can see, the first half of the chromosome given in (4) does not
encode anything because two of the gates are not connected in circuit.
So, half of the genetic information in first chromosome is rather “junk
DNA”.

Genetic implementation using Verilog HDL
Probably one of the first papers that proposes the use of HDL

languages in EHW design is [6]. Taking into account that only
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structural VHDL (Verilog) is synthesizable, while behavioral VHDL is
not (because structural VHDL offers a problem decomposition), the
following two research directions are proposed:

a) Evolutionary-based compilation of behavioral HDL to structural
HDL. Force specifications to be in a standard behavioral language. b)
Evolutionary-based synthesis of structural AHDL. AHDL is the
acronym from Analog HDL. Structural AHDL may be the required
first step to automatic analog synthesis.

Verilog HDL is an Industry Standard HDL and its syntax is simpler
than that of VHDL. In this paper we deal with the synthesis of digital
circuits, but the method may be also used for the synthesis of analog
circuits. The building blocks may be sufficiently small to allow
evolution toward optimal solution [6,12].

Verilog code for the one-bit full adder is given in Figure 4. It is a
behavioral code, because Boolean functions are defined with
instruction assign and there is no reference to the circuit structure,
that is we don’t care how the logic gates are interconnected. The only
instructions that change in the evolutionary process are the two
instructions assign, one for each of the two binary functions.

Figure 4: Verilog HDL code for one-bit full adder.

First instruction assign describes function si, which is given in
equation (1). If we represent this instruction in a binary coded
chromosome, and we guess that our function follows a pattern like the
one given in (6), where in1, in2, and in3 are any of the three inputs,
and op1 and op2 are any of the valid logic operators, then the
chromosome may be the one from (7).

crom_s i = in1_op1_in2_op2_in3     (6)
crom_s i = 001100111010     (7)

We have generated this chromosome using the following rules: in1
– 00, in2 – 01, in3 – 10, and logic operators are the same used for the
circuit representation in Figure 2 (XOR – 110). This representation
uses only 12 bits instead of 36 bits and the search space is much
smaller in this case.

Function ci has another pattern. Instruction assign in Figure 4 (for
function Carry_out) has three product terms written in a disjunctive
form. If in is any of the three inputs, and op is any of the valid
operators, then the pattern could be:

crom_c i = in_op_in_op_in_op_in_op_in_op_in     (8) 
crom_c i = 000000101010000000101000001     (9)

and the chromosome will have only 27 bits. If we use distributive
for the last 2 product terms, then will remain only 4 operations, and
the length of the chromosome will be only 24 bits. We can further
reduce the length of the chromosome to only 22 bits, if we consider

only AND, OR and NOT operators. This last pattern may be used also
for si function, due to the idempotency theorem.

It is obvious that when we evaluate a chromosome as a solution of
the problem, we must take into account the precedence of the
operations. All these potential solutions are evaluated using a fitness
function. In our case, for a single Boolean function, fitness is the ratio
between the number of the correct values of the function and the
number of all possible values (which is 2n, if the Boolean function has
n input variables). A well-designed circuit will be obtained only when
the value of fitness is 100%. An approximately value of the fitness is
unacceptable in our case.

Experimental Results
Another structure of an evolved one-bit full adder using a network

of gates is given in Figure 5. This time, useful part of the first
chromosome is the same, but the second chromosome is completely
different, as we can see in (10) and (11):

crom_s i = 000001010110111110011010000010100110     (10)
crom_c i = 000111001001000110010100001001101001     (11)

Figure 5: Another valid evolved one-bit full adder.

Both methods described above used a standard GA with the
following parameters: population size was 128 chromosomes (a
tournament type selection was used), 40 or 80 of them have been
changed each generation, crossover probability 1 or 0.8, mutation
probability 10%, and number of generations, 500 for the first method
and only 100 for the second method.

GA was implemented in Matlab environment on an Intel Core 2
Duo CPU, 2,4 GHz, and, using the first method, the average time in 10
runs for si function was 5,487s, and for ci function was 14,269s.

Using the second method, based on Verilog HDL, the average time
in 10 runs, for si function was only 0,506s, and for ci function was
0,694s.

We have tried also to implement this circuit in a real FPGA, in
order to compare the resources used and the times of propagation. We
have synthesized the circuit in a Spartan 3 FPGA from Xilinx, using
the development integrated environment ISE 14.1. We found that
there is no difference between the analyzed solutions. Both solutions
implemented with gates, the conventional and the evolutionary, use 2
LUTs, each of them with 4 inputs, and 1 slice, time delay being
between 5,479 and 5,882 seconds. Implementation with Verilog HDL,
in structural and behavioral versions, use also 2 LUTs with 4 inputs
and 1 slice, and global time propagation is between 5,481 and 5,853
seconds.
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So, in conclusion, there is no advantage in FPGA implementation,
because ISE environment optimizes the internal resources used to
implement our functions, regardless of the form of representation.
However, as we claimed from the beginning, EHW can provide
surprising solutions in some cases, especially at a certain level of
complexity, when a favorable pattern can provide a gain compared to
conventional solutions. And the use of HDL languages seems to be a
promising solution for the future.

Conclusions
The field of EHW has been developed for almost 20 years without

having a uniform rate of growth. Current results are much more
limited than previous expectations. We are confident that using of
HDL languages can provide another significant development of this
interesting area of research.

We fully agree with the authors of [1], who write that: “One thing is
for certain, if we want to keep the field of evolvable hardware
progressing for another 15 years we need to take a fresh look at the
way we think about evolvable hardware: about which applications we
should be applying it to; about where it will actually be of real use;
about where it might finally be accepted as a valid way of creating
systems and about what medium it should be based in.

We wish us all luck in this, the second generation of evolvable
hardware.”
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