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Skin Structures
The skin, in addition to provide a vast barrier against external 

physical threats, acts as a defence system against UV radiation (UV-R), 
through the high-molecular-weight brown pigment melanin [1,2]. The 
three skin’s layers are epidermis, dermis, and hypodermis [3].

The epidermis is the outermost layer, providing a waterproof 
barrier; it is a stratified epithelium devoid of blood or nerve supplies, and 
composed of several distinct cell populations, above all keratinocytes 
and melanocytes [4]. It is arranged in four layers, as follows (Table 1):

The dermis is beneath the epidermis and forms the neural, 
vascular, lymphatic, and secretory apparatus of the skin. It contains 
connective tissue, fibroblasts (required for synthesis and degradation 
of the extracellular matrix), macrophages and mast cells (able to trigger 
allergic reactions by secreting bioactive mediators), hair follicles 
(providing a protective niche to several stem cell populations required 
during wound healing), nails, excretory and secretory glands [1,3,5].

The hypodermis is the deeper subcutaneous tissue. It contains fat 
and connective tissue; typical cells found in this layer are fibroblasts, 

adipose cells, and macrophages. It is used mainly for fat storage.

Melanocytes, Melanosomes and Melanogenesis
Normal human skin colour is mainly influenced by the production 

of the brown pigment melanin that also protects skin against ultraviolet 
light, and determines several aspects of the phenotypic appearance. 
The exogenous yellow pigment carotenoids and the endogenous red-
oxygenated or blue-reduced haemoglobins contribute to skin colour, 
too [6]. However, skin and hair pigmentations depend mostly on 
size, number, composition and distribution of melanosomes, the 
melanocyte cytoplasmic particles containing melanin. In addition, 
human pigmentation may be determined by the melanogenic activity 
inside melanocytes and by the melanin synthesis rate [6,7].

Melanocytes are dendritic cells, embryologically derived from 
the melanocyte precursor cells melanoblasts. The development of 
melanoblasts and their migration from the neural crest to peripheral 
sites are the first important steps of melanogenesis. Melanoblasts 
migrate from the neural crest throughout the embryo mesenchyme 
reaching specific target sites, mainly dermis (between the 10th and 
the 12th week of embryonic life), epidermis (between the 12th and the 
14th week of development), and hair follicles, but also the eyes (retina 
pigment epithelium, iris and choroid), ears (vascular strias), and central 
nervous system (leptomeninges) [7,8].

During embryogenesis, the proper migration of neural crest-
derived cells is greatly dependent on interactions between specific 
receptors and their extracellular ligands. For example, mast cell growth 
factor or stem cell factors (SCF) bind specific receptors on melanocytes 
and melanoblasts. Genetic mutations affecting the SCF pattern genes 

Abstract
Melasma is a common skin disease involving changes in normal skin pigmentation. It results from epidermal 

melanocyte hyperactivity that causes increased production and accumulation of melanin. The onset of the disease 
has been associated with sun exposure, drugs, genetic and hormonal factors. The primary focus of this review was 
to provide an updated overview of the main biological aspects behind skin pigmentation and melasma development.

As a second aim of this review, the main mechanisms by which different compounds could reduce melanogenesis 
were also discussed. Common hypo-pigmenting agents act by reducing the melanogenesis through several 
mechanisms; they can affect melanin transcription and glycosylation, inhibit tyrosinase (a pivotal enzyme in melanin 
synthesis), slow the melanosome transfer or increase the skin turnover. Although a number of skin-lightening agents 
were proposed for treatment of hyperpigmentary disorders, none of these has achieved satisfactory effects. In this 
light, the most recent therapeutic strategies for melasma, and emerging molecular targets to control skin pigmentation, 
such as MITF, Wnt and mTOR, were herein described.
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quinone, the pathways are then divided into eumelanogenesis or 
pheomelanogenesis. The other melanogenic enzymes are TRP-
2 (DOPA-chrome tautomerase) and TRP-1 (DHICA Oxidase) 
for eumelanogenesis. (DHI: 5,6-Dihydroxyindole; DHICA: 
5,6-Dihydroxyindole-2-carboxylic acid; I-Q: Indole-5,6-quinone; 
I-QCA: Indole-5,6-quinone carboxylic acid) [13].

The initial elements of melanogenesis are tyrosine, an essential amino 
acid, and tyrosinase, a copper protein enzyme complex. Tyrosinase is 
a glycoprotein located in the membrane of the melanosome; it has an 
inner melanosomal domain containing the catalytic region, a short 
transmembrane domain and a cytoplasmic domain composed of 
approximately 30 amino acids [14]. Histidine residues are present in 
the catalytic portion of tyrosinase and bind copper ions required for 
tyrosinase activity [15]. Other two members of the tyrosinase-related 
enzyme family are involved in the melanogenesis: tyrosinase-related 
protein 1 (TRP-1), and DOPA-chrome tautomerase (TRP-2) [16].

Two types of melanin are synthesized within melanosomes, 
eumelanin and pheomelanin; eumelanin is a dark brown-black 
insoluble polymer, whereas pheomelanin is a light red-yellow sulphur-
containing soluble polymer [17]. In the presence of molecular oxygen, 
tyrosinase oxidizes tyrosine into DOPA and this into DOPA-quinone. 
From then on, the content in cysteine determines the progression 
of pathway through eumelanin or pheomelanin [18]. Indeed, in the 
absence of cysteine, DOPA-quinone is converted into DOPA-chrome 
and then into DHI (dopa-5,6-dihydroxyindole), mostly, or DHICA 
(5,6-dihydroxyindole-2-carboxylic acid). This process is catalyzed by 
TRP-2. Finally, the dihydroxyindoles are oxidized into eumelanin by 
TRP-1 [18].

On the contrary, in the presence of cysteine, DOPA-quinone 
quickly reacts with cysteine to generate 5-S-cysteinyldopa and 
2-S-cysteinyldopa, which are oxidized into intermediates to produce 
pheomelanin (Figure 2).

Eumelanin absorbs and disperses ultraviolet light, attenuating its 
penetration on the skin and reducing the harmful effects of the sun. 
On the other hand, pheomelanin has a great potential to generate free 
radicals in response to UV-R, which are capable of causing damage to 
DNA, and, in this manner, may contribute to the phototoxic effects of 
UV-R [19].

The second step of melanogenesis is the melanin distribution that 
uses the cytocin activity of melanocytes. Indeed, following the synthesis 
of melanins, filled melanosomes are introduced in the keratinocytes in 
the corresponding epidermal melanin unit, through the melanocyte 
dendritic extensions. Once inside keratinocytes, the melanosomes tend 
to spread through the cytoplasm, over the nucleus, to protect it from 
ultraviolet radiations [9,20,21].

decrease are responsible for certain pigmentation disorders [1]; in 
example, the Albinism Database (http://www.ifpcs.org/albinism/) 
collects genetic mutations, which had been associated with all major 
known forms of pigmentary disorders.

Adult melanocytes are located on the basal layer of the epidermis 
and, occasionally, on the dermis. The melanocyte density varies in 
different parts of the body: over 2,000 epidermal melanocytes/mm2 
of skin are in the head and forearm, and about the half in the rest of 
the body. This rigorous regulation of melanocyte density on epidermis 
seems to be mediated by specific mediators, such as the fibroblast 
growth factor (FGF2) [9]. Furthermore, the number of melanocytes is 
reduced with age in areas not exposed to light, at a constant proportion 
per decade [8].

The pivotal function of melanocytes is the production of melanin 
and its storage in the melanosomes, specific intracytoplasmatic 
structures. Then, the dendrites of melanocytes, crossing over basale 
and spinosus strata (Malpighian stratum), transfer the melanosomes to 
keratinocytes (Figure 1). This melanocyte-keratinocyte association is 
the epidermal melanin unit; in human, it has been estimated that each 
melanocyte is in contact with ∼40 keratinocytes [10].

Melanosomes are highly specialized elliptical organelles, where 
there is the synthesis and the deposition of melanin, and storage 
of the tyrosinase (TYR) enzymes. Melanosomes mature in four 
morphologically defined stages, from no pigmented (stage I) to melanin 
filled (stage IV) organelles [1,11].

The major phenotypical difference between the more pigmented 
and less pigmented skins resides in the quality of the melanosomes; 
they are larger and more mature in hyper-pigmented than hypo-
pigmented skins, and are stored more as units than in clusters. The 
higher levels of skin pigmentation are also maintained by a delay in 
melanosome degradation in the keratinocytes [7].

In normal melanosomes, melanin is extremely dense. It is an 
insoluble high-molecular-weight nitrogenized polymer forming a 
pigment, which plays an important UVR damage protection role 
filtering and absorbing UV-R. An inverse correlation between the 
melanin content and the incidence of skin tumours was reported in 
literature [12].

The process of melanin synthesis and distribution is called 
melanogenesis. It takes place exclusively in melanosomes and depends 
on many genes. The melanin synthetic pathway is schematized in 
Figure 2.

The synthesis of melanin initiates with the transformation of 
L-phenylalanine into L-tyrosine and in turn to produce L-DOPA and 
DOPA-quinone, via phenylalanine hydroxylase (PAH), tyrosinase 
(TYR) and partly tyrosinase hydroxylase 1 (TH-1). From DOPA-

Stratum Characteristics
S. basale
(or germinativum)

- a single layer of cells attached to a non-cellular basement membrane separating the epidermis from the dermis;
- basal keratinocytes with stem cell-like properties, Merkel cells (for the transmission of touch sensation) and melanocytes.

S. spinosum - a pivotal role in immunological reactions
- irregular polyhedral keratinocytes, Langerhans’ cells (bone marrow-derived sentinel cells of the immune system).

S. granulosum - flattened, polyhedral non-dividing keratinocytes (producing granules of keratinohyalin). The dividing cells underneath them 
progressively push non-dividing keratinocytes toward the skin surface.

S. corneum

- non-viable, but biochemically active corneocytes.
- keratinocytes continue to differentiate as they move from the basal layer to the stratum corneum, resulting in cornified cells with 
abundant keratin and lack cytoplasmic organelles.
- a barrier against the physical and chemical agents, able also to reduce transepidermal water loss from within.

Table 1: Layers of the epidermis
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Figure 1: Integumentary System

Figure 2: Melanin synthesis
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Melanogenic Regulatory Proteins
The melanocyte-keratinocyte complex responds quickly to a wide 

range of environmental stimuli, often in paracrine and/or autocrine 
manners. Thus, melanocytes respond to UV-R, signaling proteins, 
melanocyte-stimulating hormone (MSH), endothelins, growth factors, 
cytokines, etc. [1,13,22] (Figure 3).

The gene encoding the basic helix–loop–helix leucine zipper 
Microphthalmia-Associated Transcription Factor (MITF) [23,24] 
appears to be fundamental for the regulatory network of signalling 
pathways controlling the survival, proliferation and differentiation of 
melanocyte lineage [25]. Melanocyte development and pigmentation 
are affected by MITF via its transcriptional regulatory effect on 
tyrosinase, TRP-1 and TRP-2 [26], and on Rab27A, a protein important 
for melanosome transport [27].

UV radiation stimulates the melanocyte expression of 
proopiomelanocortin (POMC, the precursor of MSH) and its receptor 
melanocortin 1 receptor (MC1-R), TYR and TYRP1, protein kinase 
C (PKC), and other signalling factors [28,29], and increases also the 
production of endothelin-1 (ET-1) and POMC by keratinocytes [30,31] 
and those peptides can then act in a paracrine manner to stimulate 
melanocytes.

In addition, keratinocytes and fibroblasts produce cytokines, 

growth factors, and inflammatory mediators that can increase melanin 
production and/or stimulate melanin transfer to keratinocytes by 
melanocytes. α-MSH, ACTH, basic Fibroblast Growth Factor (bFGF), 
Nerve Growth Factor (NGF), endothelins, Granulocyte-Macrophage 
Colony-Stimulating Factor (GM CSF), stem cell factors, Leukemia 
Inhibitory Factor (LIF), and Hepatocyte Growth Factor (HGF) 
are keratinocyte-derived factors involved in the regulation of the 
proliferation and/or differentiation of melanocytes [32] (Figure 3).

The main factors that regulate the quantity and quality of the 
melanin produced by melanocytes include α-MSH, MC1-R, Agouti 
signalling peptide (ASP), ET-1, prostaglandins (PGEs), bFGF, SCF and 
HGF [1,6].

α-MSH is a tridecapeptide with a sequence identical to 
the first 13 amino acids of ACTH. The proteolytic cleavage of 
proopiomelanocortin, on the pituitary gland, is responsible for the 
origin of α-MSH [18]. Human keratinocytes and melanocytes are 
capable of synthesizing α-MSH at physiological quantities [6,19,31,33]. 
α-MSH and ACTH are produced in and released by keratinocytes and 
are involved in regulating melanogenesis and dendrite formation. They 
bind to a melanocyte-specific receptor, MC1-R [34], which activates 
adenylate cyclase through a G protein, which then elevates cAMP from 
adenosine triphosphate. Cyclic AMP exerts its effect in part through 
Protein Kinase A (PKA), which phosphorylates and activates the cAMP 

Figure 3: Scheme of signalling pathways within the epidermal melanin unit and mechanisms by which keratinocyte-derived factors act on 
human melanocyte proliferation and differentiation. Based on and modified from references 1 and 23.
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Response Element Binding Protein (CREB) that binds to the cAMP 
Response Element (CRE) present in the M promoter of the MITF gene 
[35,36]. The increase in MITF-M expression induces the up-regulation 
of TYR, TYRP1, and TRP-2 leading to melanin synthesis. Notably, it 
has been well established the activation of MC1-R influences the relative 
quantities of pheomelanin and eumelanin produced, and its activity 
loss is associated to red or yellow hair; variants of MC1-R have been 
associated with red hair inheritance, in which more yellow-reddish 
pheomelanin pigment is produced and they present very small tanning 
capacity [19,37,38]. In 1994, the discovery of a peptide consisting of 131 
amino acids acting as an inverse agonist at MC1 was reported, the ASP 
[39]. In mice, the agouti gene encodes a paracrine signalling molecule 
that causes hair follicle melanocytes to synthesize the yellow pigment 
pheomelanin instead of the black or brown pigment eumelanin.

Endothelin-1 is a 21 amino acid peptide with vasoactive properties 
synthesized and secreted by keratinocytes after UV-R exposure 
[1]. Binding of ET-1 to its G protein-coupled receptor (ETBR) on 
melanocytes activates a cascade of signaling pathways, resulting in 
calcium mobilization, PKC activation, raise of cAMP levels, and 
activation of mitogen-activated protein kinase (MAPK). The ET-1 
effect is the increase of melanocyte dendricity and the enhancement 
of melanocyte migration and melanisation [40]. Interestingly, UV-R 
stimulates keratinocytes to produce interleukin-1 (IL-1) that induce 
ET-1 expression in keratinocytes in an autocrine manner. These 
intracellular events in keratinocytes lead to increased TYR mRNA, 
protein, and enzymatic activity in neighboring melanocytes as well as 
to an increase in melanocyte number [41].

Prostaglandins PGE2 and PGF2α are known to be produced/
released from keratinocytes by the stimulation of proteinase-activated 
receptor 2 (PAR-2). PGE2 and PGF2 α stimulate the cAMP-independent 
dendritogenesis, through EP1, EP3, and FP receptors [42].

SCF and FGF are expressed by keratinocytes and are involved in 
proliferation and melanogenesis/dendritogenesis of melanocytes [43-
46].

HGF binds to its specific receptor, c-Met, activates MAPK, eliciting 
the up-regulation of proteins required for melanocyte proliferation 
[47-49].

GM-CSF binds to its specific receptor, GM-CSFR, activates the 
signal transducer and activator of transcription (STAT-1, STAT-3, and 
STAT-5) or MAPK, inducing the up-regulation of proteins required 
for the proliferation of melanocytes, and TYR, TYRP1 [50-53].

Finally, the molecular and cellular mechanisms involved in 
melanosome transfer to keratinocytes are not completely understood 
yet. Studies of the keratinocyte receptor PAR-2 suggested it controls the 
melanosome ingestion and phagocytosis by keratinocytes. Moreover, 
PAR-2 is induced by UV irradiation and inhibition of PAR-2 activation 
results in the prevention of UVB-induced tanning [54].

In summary, the epidermis has a complex network that secretes 
as well as responds to autocrine and paracrine factors produced 
by keratinocytes and melanocytes. It is likely that the melanocyte 
proliferation requires the cross talking of several signaling pathways 
(including the cAMP/PKA, PKC, and tyrosine kinase pathways), and 
the mechanisms by which various factors increase skin pigmentation 
are closely inter-related.

Melasma Pathogenesis
Up or down regulation of the interconnected network so far 

described is intrinsically involved in the alteration of melanocytic 

functions occurring in many epidermal pigmentation disorders [55]. 
In literature, it has been evidenced that in most hyperpigmentation 
syndromes multiple pathways regulating melanoblast differentiation/
migration, melanogenesis and melanocyte proliferation are 
simultaneously affected.

Among skin pigmentation disorders, a typical melanogenesis 
dysfunction characterized melasma, a chronic acquired hypermelanosis 
of the skin [56,57]. Melasma common presentation consists of facial 
hyperpigmented macules, which become more evident after sun 
exposure. It may affect both sexes and all races, but it occurs more often 
in Asian or Hispanic people with intermediate phototypes. It is more 
common in adult women in childbearing age, but its onset can also be 
after menopause. The age of onset is usually between 30-55 years and 
men account for 10% of cases [58-60].

In melasma, the melanocytes are enlarged and highly dendritic, 
as in a hypermetabolic state, and an increase in melanin deposition in 
epidermis and dermis is evidenced [61,62].

There are numerous factors involved in the aetiology of the disease, 
including genetic influences, endocrinopathies, pregnancy, exposure 
to UV-R, distress, hormone therapy, drugs and cosmetics; among 
all these, it seems that genetic predisposition and exposure to sun 
radiation play the pivotal role.

During pregnancy, increased levels of estrogen, progesterone 
and MSH have been associated with melasma. In addition, oral 
contraceptives have been linked to skin hyperpigmentation; it has been 
speculated that increased levels of estrogens may stimulate the activity 
of melanocytes [63]. Indeed, melanocytes express estrogen receptors 
and estradiol stimulates melanogenesis enzymes, such as TYR, TRP1, 
and TRP2 [64]. Moreover, β-estradiol increases the expression of 
α-MSH and MC1-R in melanocytes [65]. In addition, a case report 
study demonstrated an increased expression of estrogen receptors on 
skin in two patients with melasma [66].

A strong α-MSH immunoreactivity on skin with melasma was 
suggested by immunohistochemical findings. A strong expression of 
α-MSH antigen in keratinocytes of melasma-affected skin suggested 
that α-MSH plays a key role in the hyperpigmentation [58,67]. 
Probably, persistent overexpression of α-MSH following UV exposure 
contributes to the development of melasma [67]. Nonetheless, the 
exact pathogenesis remains to be elucidated.

Other hypotheses on melasma pathogenesis include a) an up-
regulation of genes modulating Wnt and prostaglandin pathways [68]; 
b) the involvement of non-coding RNA (H19 gene) [69]; c) the UV-
mediated increase in inducible nitric oxide synthase (iNOS) levels, 
which can activate the AKT-NFkB pathway [70,71]. Finally, a genetic 
predisposition has been suggested in melasma development by reports 
of family occurrence [72].

Topical treatments for melasma and drugs affecting 
melanogenesis

Open clinical trials, randomized controlled and non-randomized 
trials about the interventions in the treatment of melasma evidenced 
that the conventional treatments for melasma include sunscreens, 
cosmetic camouflage, bleaching creams, acne creams, topical retinoids, 
chemical peels and laser therapy [73]. Furthermore, some treatments 
incorporate a combination approach; the most popular combination 
is a triple-combination cream consisting of hydroquinone, tretinoin, 
and steroid [74].
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DRUG (name) Biochemical Effects Ref

Hydroquinone (HQ, 
1,4-dihydroxybenzene)

HQ has been used for more than 50 years and is the standard drug for the treatment of facial hyperpigmentation. 
It acts by inhibition of tyrosinase, thus arrests the conversion of DOPA to melanin. Other proposed mechanisms 
of action are degradation of melanosomes and inhibition of DNA and RNA synthesis.
The efficacy of hydroquinone depends on several factors, such as location of pigment and vehicle of administration.

77-79

Mequinol (4-hydroxyanisole, hydroquinone 
monomethyl ether)

Mequinol is a derivative of hydroquinone. It is thought to be a substrate of tyrosinase, and acts as a competitive 
inhibitor of the enzyme formation of melanin precursors. 80

Retinoids

Retinoids reduce hyperpigmentation through many mechanisms, such as stimulation of keratinocyte turnover and 
reduction of melanosome transfer Retinoids inhibit tyrosinase transcription, interfere with melanin synthesis and 
inhibit tyrosinase-related proteins 1 and 2.
Tretinoin (retinoic acid, RA, vitamin A acid) is thought to have an effect on tyrosinase by inhibiting the enzyme’s 
transcription, as well as on dopachrome conversion factor, with a resulting interruption of melanin synthesis. RA 
reduces hyperpigmentation also through the induction of skin desquamation.
Adapalene is a naphthoic acid derivative with retinoid activity, controlling cell proliferation/differentiation. It has 
also significant anti-inflammatory actions.

81-84

Azelaic acid (9-carbon dicarboxylic acid)
Azelaic acid is a compound derived from Pityrosporum ovale. It acts as a weak, reversible, competitive inhibitor 
of tyrosinase in vitro. Moreover, it has antiproliferative and cytotoxic effects on melanocytes, via inhibition of 
mitochondrial oxidoreductase activity and DNA synthesis.

85

N-acetyl-4-S-cysteaminylphenol (NCAP) NCAP is a synthetic compound bearing phenol, catechol, and sulphur moieties. It acts as inhibiting the tyrosinase's 
activity as alternative substrate for it. It is more stable and causes less irritation than HQ. 86

Kojic acid (5-hydroxy-2-hydroxymethyl-4H-
pyran-4-one)

Kojic acid is an antibiotic generated by many species of Aspergillus, Acetobacter and Penicillium. It inhibits 
tyrosinase through chelation of copper at the enzyme’s active site. Moreover, it has NFκB activation-inhibitory 
effects in keratinocytes and is a potent antioxidant.

87-92

Topical steroids
It is well known that reversible hypopigmentation of normal skin is an untoward effect of prolonged potent steroid 
application, but the mechanism of this effect is still to clarify. Corticosteroids show inhibitory effects on the 
synthesis of prostaglandin and leukotriens and this action may partly explain their effects on melanogenesis.

93-95

Glycolic acid Glycolic acid is an alpha-hydroxy acid that directly inhibits tyrosinase. In addition, it acts on epidermal remodeling 
and accelerated skin desquamation. 96

Ascorbic acid (Vitamin C)

Vitamin C has antioxidant properties and reduces melanogenesis by interacting with copper at the active site of 
tyrosinase. It also reduces DOPAquinone by blocking dihydrochinindol-2-carboxyl acid oxidation.
Because of its instability in aqueous solution, the magnesium ascorbyl-2-phosphate (MAP) ester has been used. 
Often acid ascorbic is in association with Iontophoresis in order to increase the penetration of vitamin C into the 
skin.

97-100

Liquorice derivatives
Liquorice is the root of the Glycyrrhiza glabra. Active drugs are glabridin, which inhibits tyrosinase in vitro, liquiritin, 
which disperse melanin, and isoliquiritin containing flavonoids. Liquorice extract has also anti-inflammatory 
properties in experimental studies. 

101, 102

Soy

Soybean trypsin inhibitor reversibly inhibits the protease-activated receptor-2 pathway. Impaired activation of 
this receptor in keratinocytes, resulting in the accumulation of melanosomes within melanocytes. Inhibition of this 
receptor therefore blocks melanosome transfer between these cells, thus also blocking the dispersion of pigment 
to keratinocytes.

103, 104

Niacinamide (nicotinamide, vitamin B3). Niacinamide reduces pigmentation by reversibly preventing the transfer of melanosomes from melanocytes to the 
keratinocytes, without effect on tyrosinase activity. 105, 106

N-Acetylglucosamine (NAG) The carbohydrate NAG represents the monomeric unit of chitin. It acts by inhibiting the conversion of protyrosinase 
to tyrosinase. NAG decreases melanin synthesis and downregulate the pigmentation-related gene expression. 107

Lignin peroxidase Lignin peroxidase is a novel method of skin lightening and acts by targeting, enzymatically oxidizing and 
breaking down melanin in the skin. It acts with efficacy parity to hydroquinone. 108

Table 2: Classical agents commonly proposed in melasma treatment

Many known substances can reduce the level of skin pigmentation, 
mostly having a tyrosinase-inhibiting effect that lead to reduced total 
melanin production (e.g. hydroquinone, kojic acid). Other drugs show 
an effect on the melanin transfer from melanocytes to keratinocytes, 
causing an overall lighter skin colour (e.g. nicotinamide and soyabean). 
The increase in the desquamation of the skin is also commonly used to 
remove excessive melanin content within the skin (e.g. retinoic acid). 
Other agents act as inhibitors of the inflammation-induced melanogenic 
response mechanisms [75]. A recent review of randomized controlled 
trials on interventions for melasma evidenced that, although there was 
poor methodology, a lack of standardized outcome assessments and 
short duration of studies, the current limited evidence supports the 
efficacy of multiple interventions [76].

Although melasma can be difficult to treat and the prophylactic 
management is often the most effective means of prevention, some 
of the most important agents, commonly used against melasma, are 
reported in Table 2.

Despite the wide availability of classical agents currently used in 
melasma, the treatment of this skin disease is usually dissatisfactory, 

above all due to the great recurrence of lesions and due to the absence 
of a definitive whitening alternative.

In the light of unsuccessful action of current therapies, a number 
of agents, both synthetic and derived from natural sources, have been 
investigated for their potential role in reducing melanin pigmentation. 
Other agents either or combined with other products are currently 
under investigations to enhance skin-lightening effects. Although 
earlier experimental evidence suggests possible benefits, controlled 
clinical trials are mostly lacking. Some of these compounds are reported 
in Table 3.

Final Considerations
Skin-color is due to complex processes including tyrosinase 

reactions, formation of melanosomes in melanocytes, transfer 
and organization in the keratinocytes. Although the knowledge of 
melanocyte biology has made significant advancement, the pathogenic 
mechanisms underlying acquired hyperpigmentation, such as 
melasma, have to be fully elucidated yet. However, the research has 
led to development of safer and enough effective skin-lightening 
drugs, mainly targeting the rate-limiting enzyme of melanogenesis, 
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Biochemical Effect Molecules under investigation Ref
Regulation of tyrosinase and related 
enzymes

Inhibition of tyrosinase activity

Gentisic acid and its methyl ester (2,5-dihidroxybenzoic acid) are natural products of Gentiana root. They inhibit 
melanin synthesis in melanocytes.
4-n-butylresorcinol effectively inhibited tyrosinase activity in a cell-free system, as an effective direct tyrosinase 
inhibitor in a mouse melanocytic cell line.
p-coumaric acid did not directly inhibit tyrosinase activity, but a competitive inhibition was demonstrated between 
p-coumaric acid and tyrosine, indicating that an alternative substrate of tyrosine can be used to induce hypopigmenting 
effects in cells.
Arbutin, derived from the bearberry plant, is a D-glucopyranoside derivative of hydroquinone. Arbutin is hydrolyzed by 
the normal skin microflora to hydroquinone; it produces skin lightening by direct, dose-dependent inhibition of tyrosinase.

109-115

Decreased tyrosinase production

Sphingosine-1-phosphate (sp-1) caused the sustained ERK activation, resulting in MITF phosphorylation and 
degradation, which are in turn responsible for reduced melanin synthesis.
Transforming growth factor-β1 (TGF-β1) induced a significant delay in ERK activation and ERK-induced MITF 
downregulation, which could contribute to hypopigmentation.
Lysophosphatidic acid and C2 ceramides modulated AKT/protein kinase B or ERK, and were able to induced MITF 
degradation and blocked MITF expression, respectively by
Sphingosylphosphorylcholine inhibited melanogenesis via ERK-dependent transcriptional regulation of the 
tyrosinase gene.

116-121

Increased tyrosinase degradation

Fatty acids have been demonstrated to affect melanogenesis. The mechanism is complex, as unsaturated linolenic, 
linoleic and oleic acids reduce tyrosinase activity, while saturated palmitic or stearic acids increase it. The number of 
melanosomes and the level of tyrosinase mRNA did not appear to be influenced, suggesting hypopigmenting effect due 
to a reduction in the amount of tyrosinase, probably caused by stimulation of tyrosinase ubiquitination and proteasomal 
degradation.
Phospholipase D2 also reduces melanogenesis via the mechanism of ubiquitin-mediated degradation of tyrosinase.

122-125

Modification of tyrosinase proteins

Glucosamine and tunicamycin are specific inhibitors of lipid carrier-dependent glycosylation and induce marked 
hypopigmentation, alterating tyrosinases glycosilation. Calcium D-pantetheine- S-sulfonate, probably generated via the 
alteration of tyrosinase and TRP-1 glycosylation, exerts an inhibitory effect on melanogenic enzymes, without affecting 
their expression, and causes reversible hypopigmentation in normal human melanocytes.

126,
127

Multi-actions

Terrein, a fungal metabolite isolated from a Penicillium species, is a hypopigmenting agent that inhibits melanogenesis 
by dual actions, including the downregulation of tyrosinase transcription (via ERK inhibition) and the upregulation of 
degradation (via ubiquitin- dependent proteasomal degradation induction).
α-MSH can increase melanin synthesis by binding to 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4), a competitive 
inhibitor of tyrosinase. 6BH4 analogues such as 6,7-(R,S)-dimethyl-tetrahydropterine and 6-(R,S)-tetrahydromonapterine 
have been studied as possible tyrosinase inhibitors, and it has been suggested that these compounds, like 6BH4, can 
act through an uncompetitive allosteric mechanism. It has been demonstrated that 6BH4 (and their analogues) also 
reduces o-dopaquinone non-enzymatically.

128-134

Regulation of melanosome formation

    Interference with melanosome 
maturation

TGF-β1 added to melanocytes arrested the melanosome maturation to stage III.
A decreased number of pigmented melanosomes was detected in sp-1-treated melanocytes and the presence of 
undifferentiated earlystage melanosomes, whereas the control cells produced melanosomes with internal fibrils and 
dense pigmentation.

75, 135

 Peroxidase inhibitors
Methimazole is an antithyroid agent belonging to the thionamide group, which inhibits both mushroom tyrosinase and 
peroxidase. In the melanogenic intermediate polymerization, peroxidase is involved; peroxidase inhibition has been 
shown to inhibit melanization.

136-138

 Interference with melanosome transfer

Centaureidine is a flavonoid glucoside isolated from yarrow able to inhibit protease-activated receptor 2 in keratinocyte. 
It reduces dendritic growth and the transfer of melanosomes to keratinocytes. The inhibition of serine protease has been 
shown to result in impaired activation of protease-activated receptor 2 in keratinocytes, resulting in the accumulation of 
melanosomes within melanocytes that therefore blocks melanosome transfer.

103,
104, 139

Other mechanisms

     Diverse antioxidants and various 
mechanisms

Compounds with antioxidant properties exert hypopigmenting effects by interacting with copper at the active site of 
tyrosinase, or avoiding the oxidative polymerization of melanin intermediates, or inhibit the signaling process, enabling 
the stimulation of melanogenesis by ROS after sun exposure.
α-Tocopherol (α-Toc) interferes with the membrane lipid peroxidation and increases intracellular glutathione content. 
It inhibits tyrosinase and melanogenesis in melanocytes. The alpha-tocopheryl ferulate, a compound consisting of 
alpha-tocopherol and ferulic acid, can absorb ultraviolet radiation was found to have significant effect in the retardation 
of melanogenesis, possibly by inhibiting tyrosine hydroxylase activity in an indirect manner.
6-Hydroxy-3,4-dihydrocoumarins are antioxidants with α-Toc-like chemical structures that have recently been 
reported to exert anti-melanogenic effects in cultured normal human melanocytes at non-cytotoxic concentrations, 
without interfering with tyrosinase activity.
These agents might act via acceleration of glutathione synthesis and inhibition of tyrosinase transfer.
Thioctic acid (α-lipoic acid) prevents UV-induced oxidative damage, principally via the down-modulation of NF-κB 
activation, and inhibit tyrosinase activity, probably by chelating its copper ions.
Flavonoids are natural polyphenolic compounds characterized by ROS-scavenging properties and ability to chelate 
metals at the metalloenzyme active site. These polyphenols have well-known anti-inflammatory, antioxidant, antiviral, 
and anticarcinogenic properties. A number of flavonoids are frequently used in skin-lightening preparations. Aloesin 
has been proven to competitively inhibit tyrosinase but also been shown to inhibit TH and DOPA oxidase activities. 
Some of the more efficient pigment-lightening flavonoid subcategories are the hydroxystilbene compounds, of which 
resveratrol is one common example. Resveratrol is found in red wine and has been shown to reduce not only tyrosinase 
activity but also MITF expression in B16 mouse melanoma cells.
Other plant-derived flavonoid compounds are still under investigation, suc as catechin conjugated with gallic 
acid, and ellagic acid. Taxifolin and luteolin were shown to inhibit effectively tyrosinase-catalysed oxidation of 
L-dihydroxyphenylalanine and thereby reducing melanogenesis.
Anyway, there are some controversies however regarding the use of flavonoids in skin-lightening preparations, as some 
flavonoids are known to increase melanogenesis, such as the citrus flavonoid naringenin or quercetin.

99,
140-152
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     Inhibitors of inflammation-induced 
melanogenic response

Matricaria chamomilla extract inhibited UV-induced pigmentation by avoiding ET-1-induced DNA synthesis but not 
interleukin-α-induced ET-1 production and tyrosinase activation.
Glabridin, from licorice extracts, inhibits cyclooxygenase activity and superoxide anion production suggesting that its 
anti-inflammatory effect involves interference with the arachidonic acid cascade, and that protection against oxidative 
stress performs a key role in modulating melanogenesis.

101, 153

 Modulators of 2-adrenoreceptors and 
catecholamines.

From animal studies on propopiomelanocortin-deficient mice, it has been proposed an alternative cAMP-dependent 
pathway turning on melanogenesis: the adrenergic system. Human epidermal melanocytes express β2-adrenergic 
receptors (β2-AR) that when activated increase melanin synthesis. β2-AR antagonists blocked UV-induced 
melanogenesis.

154-157

 Modulation of sex hormones

Sex hormones affect several functions of human skin; oestrogens have been implicated in skin aging, pigmentation, 
hair growth, sebum production and skin cancer, while androgens affect sebaceous gland growth and differentiation, 
hair growth, epidermal barrier homoeostasis and wound healing.
Epidermal melanocytes are oestrogen responsive, but there are conflicting reports in the literature concerning their 
effect on pigmentation. A large series of case studies has shown that pregnant women and women on hormonal 
contraception have increased prevalence of melasma.
The androgen precursor dehydroepiandrosterone was shown to reduce skin pigmentation when taken orally.

158-162

     Other modulators

As transcriptional regulator of tyrosinase, MITF plays a critical role in the regulation of melanogenesis. A negative 
regulator of the Wnt signaling pathway, the protein DKK1, decreased the levels of MITF, and therefore inhibited 
melanocyte growth and pigment production.
Calpain inhibitors have been shown to cause marked reductions in both tyrosinase and its mRNA levels in B16 cells.
Glutaminergic receptors have been shown to affect specifically MITF expression, and blockage of the ionotropic 
glutaminergic receptors resulted in a sharp reduction in the MITF expression. Inhibition of these receptors caused rapid 
morphological changes in melanocyte associated with microfilament disorganization.

131,
163-166

Table 3: Investigated compounds and their possible benefits

tyrosinase. Different hypopigmenting agents have been discussed 
based on a review of the literature. Moreover, other potential targets 
for control of human pigmentation have been described and new drugs 
under investigation were reported. Nevertheless, there are currently 
no guidelines for the management of melasma and the comparisons 
among outcomes are difficult.
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