

TMA and AI: Transforming Cancer Pathology

Ingrid Johansson*

Department of Breast & Soft Tissue Pathology, Nordic Institute of Clinical Medicine, Uppsala, Sweden

Introduction

This article offers a comprehensive overview of how tissue microarrays are used in breast cancer research. It covers their utility in biomarker discovery, prognosis, and therapeutic target identification, highlighting the advantages of high-throughput analysis for large patient cohorts. The authors discuss current applications and consider future advancements, focusing on integrating Tissue Microarray (TMA) with emerging technologies like Artificial Intelligence (AI) to enhance diagnostic and predictive capabilities[1].

This chapter details a protocol for creating automated tissue microarrays specifically for mouse brain tissue, combining it with digital pathology. The method aims to streamline histological analysis, allowing for high-throughput screening of brain samples. It offers a standardized approach for researchers working with large cohorts of animal models, which helps in efficient data acquisition and analysis in neuroscience research[2].

This study investigates the use of tissue microarrays to assess prognostic markers in head and neck squamous cell carcinoma. The researchers highlight how TMAs facilitate efficient evaluation of multiple tumor samples, which helps identify key pathological features and biomarkers associated with disease progression. The findings underscore the value of TMA technology in improving prognostic accuracy for patients with this specific cancer type[3].

This article explores the evolving landscape of digital tissue microarray technology, particularly its intersection with Artificial Intelligence (AI). The authors discuss how digitizing TMAs enables advanced computational analysis, improving efficiency and accuracy in pathological diagnosis and biomarker discovery. It covers current applications in research and clinical settings, forecasting future trends where AI-powered image analysis will transform how we interpret and utilize TMA data[4].

This chapter provides essential guidelines for effectively using tissue microarrays in conjunction with immunohistochemistry. It focuses on critical validation steps, ensuring the reliability and reproducibility of results. The authors emphasize proper technique and quality control, which are vital for accurate biomarker analysis and translation of research findings into clinical practice[5].

This review article explores the widespread applications of tissue microarray technology in lung cancer research. It covers how TMAs facilitate high-throughput analysis for identifying novel biomarkers, studying therapeutic responses, and understanding disease progression. The authors also discuss emerging trends, including the integration of Tissue Microarray (TMA) with advanced imaging and computational methods to enhance diagnostic and prognostic capabilities in lung cancer[6].

This systematic review comprehensively examines how tissue microarray technology is utilized in the pathological diagnosis of breast cancer. The authors synthesize evidence on its effectiveness in identifying various biomarkers, assessing tumor heterogeneity, and improving diagnostic workflows. It emphasizes the efficiency of TMAs in handling large sample sets, which is crucial for advancing personalized medicine approaches in breast cancer[7].

This article discusses the application of tissue microarrays for high-throughput analysis in colorectal cancer research. It highlights the benefits of TMAs in efficiently screening numerous tissue samples to identify prognostic and predictive biomarkers. The authors also address the challenges associated with Tissue Microarray (TMA) technology, such as sample representativeness and data interpretation, while outlining future directions for maximizing its utility in personalized cancer therapy[8].

This protocol describes the detailed steps for constructing tissue microarrays specifically designed for high-throughput analysis of brain tumors. It guides researchers through core selection, array assembly, and quality control, ensuring that representative samples are included for biomarker studies. The method provides an efficient platform for investigating molecular features across a large number of brain tumor specimens[9].

This article explores the powerful synergy between tissue microarrays and digital pathology for high-throughput analysis in cancer research. It details how combining these technologies allows for efficient screening of numerous tissue samples and subsequent automated image analysis, leading to accelerated biomarker discovery and validation. The authors highlight the benefits of this integrated approach in handling large datasets and facilitating more precise and quantitative pathology assessments[10].

Description

This article offers a comprehensive overview of how tissue microarrays are used in breast cancer research. It covers their utility in biomarker discovery, prognosis, and therapeutic target identification, highlighting the advantages of high-throughput analysis for large patient cohorts. The authors discuss current applications and consider future advancements, focusing on integrating Tissue Microarray (TMA) with emerging technologies like Artificial Intelligence (AI) to enhance diagnostic and predictive capabilities[1]. This systematic review comprehensively examines how tissue microarray technology is utilized in the pathological diagnosis of breast cancer. The authors synthesize evidence on its effectiveness in identifying various biomarkers, assessing tumor heterogeneity, and improving diagnostic workflows. It emphasizes the efficiency of TMAs in handling large sample sets, which is crucial for advancing personalized medicine approaches in breast

cancer[7].

This chapter details a protocol for creating automated tissue microarrays specifically for mouse brain tissue, combining it with digital pathology. The method aims to streamline histological analysis, allowing for high-throughput screening of brain samples. It offers a standardized approach for researchers working with large cohorts of animal models, which helps in efficient data acquisition and analysis in neuroscience research[2]. This protocol describes the detailed steps for constructing tissue microarrays specifically designed for high-throughput analysis of brain tumors. It guides researchers through core selection, array assembly, and quality control, ensuring that representative samples are included for biomarker studies. The method provides an efficient platform for investigating molecular features across a large number of brain tumor specimens[9].

This study investigates the use of tissue microarrays to assess prognostic markers in head and neck squamous cell carcinoma. The researchers highlight how TMAs facilitate efficient evaluation of multiple tumor samples, which helps identify key pathological features and biomarkers associated with disease progression. The findings underscore the value of TMA technology in improving prognostic accuracy for patients with this specific cancer type[3]. This review article explores the widespread applications of tissue microarray technology in lung cancer research. It covers how TMAs facilitate high-throughput analysis for identifying novel biomarkers, studying therapeutic responses, and understanding disease progression. The authors also discuss emerging trends, including the integration of Tissue Microarray (TMA) with advanced imaging and computational methods to enhance diagnostic and prognostic capabilities in lung cancer[6]. This article discusses the application of tissue microarrays for high-throughput analysis in colorectal cancer research. It highlights the benefits of TMAs in efficiently screening numerous tissue samples to identify prognostic and predictive biomarkers. The authors also address the challenges associated with Tissue Microarray (TMA) technology, such as sample representativeness and data interpretation, while outlining future directions for maximizing its utility in personalized cancer therapy[8].

This article explores the evolving landscape of digital tissue microarray technology, particularly its intersection with Artificial Intelligence (AI). The authors discuss how digitizing TMAs enables advanced computational analysis, improving efficiency and accuracy in pathological diagnosis and biomarker discovery. It covers current applications in research and clinical settings, forecasting future trends where AI-powered image analysis will transform how we interpret and utilize TMA data[4]. This article explores the powerful synergy between tissue microarrays and digital pathology for high-throughput analysis in cancer research. It details how combining these technologies allows for efficient screening of numerous tissue samples and subsequent automated image analysis, leading to accelerated biomarker discovery and validation. The authors highlight the benefits of this integrated approach in handling large datasets and facilitating more precise and quantitative pathology assessments[10].

This chapter provides essential guidelines for effectively using tissue microarrays in conjunction with immunohistochemistry. It focuses on critical validation steps, ensuring the reliability and reproducibility of results. The authors emphasize proper technique and quality control, which are vital for accurate biomarker analysis and translation of research findings into clinical practice[5].

Conclusion

Tissue Microarray (TMA) technology is a crucial tool in diverse cancer research, enabling high-throughput analysis across various tumor types. It finds extensive application in breast cancer for biomarker discovery, prognosis, and therapeutic target identification, enhancing diagnostic and predictive capabilities through inte-

gration with Artificial Intelligence (AI). TMA also facilitates the pathological diagnosis of breast cancer by assessing tumor heterogeneity and streamlining workflows for personalized medicine.

Beyond breast cancer, TMAs are employed to analyze brain tissue in animal models, supporting efficient data acquisition in neuroscience, and for constructing arrays specifically for human brain tumors to investigate molecular features. In head and neck squamous cell carcinoma, TMAs help identify prognostic markers and improve diagnostic accuracy. Similarly, lung cancer research benefits from TMAs for biomarker identification and understanding disease progression, with emerging trends integrating advanced imaging. For colorectal cancer, TMAs are vital for screening prognostic and predictive biomarkers, despite challenges in sample representativeness.

The synergy between digital TMA technology and Artificial Intelligence is transforming pathology. Digitized TMAs allow for advanced computational and automated image analysis, significantly improving efficiency and accuracy in diagnosis and biomarker validation. Effective TMA utilization, especially with immunohistochemistry, depends heavily on rigorous validation and quality control steps to ensure reliable and reproducible research outcomes that translate into clinical practice.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Xuan Sun, Mengya Tian, Ke Liu. "Applications of Tissue Microarray Technology in Breast Cancer Research: Current Landscape and Future Perspectives." *Breast Cancer* (Auckl) 17 (2023):11782234231206132.
2. Laurent Harsan, Maxime Gendron, Bruno Stankoff. "Automated Tissue Microarray Production and Digital Pathology for High-Throughput Histological Analysis of Mouse Brain." *Methods Mol Biol* 2396 (2022):389-408.
3. Fatin Al-Niami, Tahani Al-Hilli, Huda Al-Hadidy. "Role of Tissue Microarray in the Prognostic Evaluation of Head and Neck Squamous Cell Carcinoma." *Med Arch* 75 (2021):148-151.
4. Yan Zhang, Pengfei Liu, Jia Peng. "Digital Tissue Microarray Technology: Current Applications and Future Perspectives in the Era of Artificial Intelligence." *Int J Mol Sci* 24 (2023):8007.
5. Anders Hjerpe, Bengt Hultgren, Catharina Larsson. "Tissue Microarrays and Immunohistochemistry Validation: Key Steps to Success." *Methods Mol Biol* 2112 (2020):175-188.
6. Ming Chen, Yu Li, Hong Wang. "Tissue Microarray in Lung Cancer Research: A Review of its Applications and Emerging Trends." *Front Oncol* 12 (2022):956711.
7. Min Li, Hong Zhang, Ping Wang. "The Application of Tissue Microarray Technology in the Pathological Diagnosis of Breast Cancer: A Systematic Review." *J Breast Cancer* 26 (2023):e1.
8. Rui Liu, Ya Fan, Zhigang Wu. "High-throughput analysis of colorectal cancer using tissue microarray: opportunities and challenges." *J Gastrointest Oncol* 12 (2021):168-176.

9. Shengqi He, Yun Liu, Wen Zhang. "Construction of Tissue Microarrays for High-Throughput Analysis of Brain Tumors." *Methods Mol Biol* 2029 (2019):103-112.
10. Li Zhao, Xuan Sun, Jing Li. "Integrating Tissue Microarrays with Digital Pathology for High-Throughput Analysis in Cancer Research." *Cancers (Basel)* 14 (2022):3901.

How to cite this article: Johansson, Ingrid. "TMA and AI: Transforming Cancer Pathology." *J Surg Path Diag* 07 (2025):31.

***Address for Correspondence:** Ingrid, Johansson, Department of Breast & Soft Tissue Pathology, Nordic Institute of Clinical Medicine, Uppsala, Sweden , E-mail: ingrid.johansson@nicm.se

Copyright: © 2025 Johansson I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Nov-2025, Manuscript No. jsdpd-25-174864; **Editor assigned:** 04-Nov-2025, PreQC No. P-174864; **Reviewed:** 18-Nov-2025, QC No. Q-174864; **Revised:** 24-Nov-2025, Manuscript No. R-174864; **Published:** 29-Nov-2025, DOI: [10.37421/2684-4575.2025.6.031](https://doi.org/10.37421/2684-4575.2025.6.031)
