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Introduction
Kolmogorov-Zurbenko (KZ) filters are commonly used in the 

analysis of time series data because they do not rely on parametric 
assumptions [1,2]. KZ filters are classified as low-pass filters, which 
have the ability to decompose the original signal into its underlying 
separate components. Isolation of these varying components is 
especially important for signals that are suppressed due to noise, 
non-linearity and non-stationarity [1-5]. In this paper, KZ filters are 
utilized on diabetes mortality data in the United States from January 
1999-December 2015.

As diabetes prevalence and the cost of diabetes medical care costs 
continue to increase it becomes more urgent to understand how 
diabetes has manifested across time and space [6,7]. Current literature 
that conduct time series analysis diabetes employ classic time series 
methods [8-11]. These classic time series data are parametric and do 
not accurately depict the original due to violations of the associated 
assumptions. Parametric time series methods are not able to accurately 
account for the complexity of non-stationary and non-normally 
distributed data [1,2,12-15]. Much like most mortality data, diabetes 
mortality time series displayed a non-stationary signal indicating 
the necessary use of non-parametric methods such as the KZ Filter 
methodology [8-11].

To our knowledge this is the first analysis employing non-
parametric methods to understand the complex nature of diabetes 
mortality in the United States. Landmark studies in diabetes such as 
the UK Prospective Diabetes Study (UKPDS), Diabetes Control and 
Complications Trial (DCCT), Action to Control Cardiovascular Risk 
(ACCORD), Action in Diabetes and Vascular Disease (ADVANCE), 
Diabetes Prevention Program (DPP) all greatly contributed to current 
knowledge in risk factors, prevention measures and outcomes related 
to diabetes [16-23]. In addition to these landmark studies, many 
supplementary studies that examine diabetes, mortality and adverse 

events related to diabetes use multiple measures to examine their 
relationship to adverse diabetes outcomes such as Hemoglobin A1c 
(HbA1c), micro/macro-albuminuria, extended Globular Filtration 
Rate (eGFR) and demographic risk factors [8-11,16-24]. Tseng et al. 
found that HbA1c has seasonal variations similar to patterns found 
in mortality [9]. Thus, landmark trials and supplementary trials may 
benefit from a time series analysis that proves the existence of seasonal 
differences in diabetes mortality that may be related to seasonal 
fluctuations in HbA1c. Future studies may benefit from this analysis 
to control for seasonal differences in winter compared to summer 
months.

KZ Filters are especially beneficial to accurately predict future 
trends by decomposing the original signal and re-constructing it with 
high accuracy in the presence of non-stationary and noisy data [1,2]. 
Furthermore, this paper introduces the correlation between diabetes 
mortality and solar radiation measures in time. This relationship is 
quantified due to the discovery of corresponding frequencies found in 
spectra of radiation and sun activity and the diabetes time series spectra 
[1,2,25,26]. To our knowledge, this is the first analysis to quantify the 
relationship between radiation and diabetes mortality. In the presence 
of high rates of mortality, especially among vulnerable populations, it is 
important to understand environmental exposures that affect diabetes 
adverse effects.
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Abstract
Kolmogorov-Zurbenko filters can be utilized in the public health context analyzing mortality data. This paper aims to 

expand upon the robust methodology of the KZ filters and their many applications. As a low-pass filter the KZ filters are 
proven to be the optimal means of analysis for non-stationary data such as mortality data which usually contains various 
underlying signals: seasonality, long-term trend, and short-term fluctuations. As diabetes incidence and prevalence 
increases, the burden of health care cost increases, thus prompting the need to understand patterns underlying adverse 
events related to diabetes, such as mortality. Increasing incidence and prevalence of diabetes prompts the need for 
preventative measures and understanding what environmental factors are related to adverse events as a result of 
diabetes. Diabetes mortality across time analyzed with non-parametric models has not previously been studied, thus 
this extension to the KZ filters is utilized as a preliminary analysis to address the gap in knowledge of diabetes mortality 
in the United States. Non-parametric time series analysis methods identify an 8.5-year long-term trend as well as annual 
seasonality of diabetes mortality. Spectral and time analysis of diabetes mortality introduces the relationship between 
solar activity and diabetes mortality, which is quantified utilizing the cross-correlation between diabetes mortality and 
total solar irradiation. The strong correlation between solar activity and diabetes mortality confirms the environmental 
role related specifically to diabetes mortality.
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Background
In 2015, diabetes was reported as the 7th leading cause of death in 

the United States and is known to lead to serious complications such 
as: kidney failure, cardiovascular disease, retinopathy, and neuropathy 
[27]. The National Diabetes Statistics Report reports approximately 
30.3 million people have diabetes, which accounts for 9.4% of the 
United States population in 2015. Of these 30.3 million with diabetes 
7.2 million (23.8%) were undiagnosed. Currently 1 in 11 individuals 
will develop diabetes; this number dramatically increases for ethnic 
minorities such as African Americans and Hispanics. The increasing 
prevalence of diabetes and prediabetes in the United States has incurred 
heavy economic burden for those diagnosed and for the United States 
health care system [27,28].

In 2017, prediabetes diagnoses have been recommended by the 
Standards of Medical Care in Diabetes in order to decrease the number 
of undiagnosed cases and to implement preventative interventions 
among those diagnosed with prediabetes [24]. These new diagnoses 
will likely increase the number of diabetes diagnoses in future years. 
According to the CDC, 84.1 million under the age of 18 were diagnosed 
with pre-diabetes and 23.51 million over the age of 64 have been 
diagnosed with pre-diabetes [28]. Pre-diabetes cases are especially 
important to predict future burden and prevalence of diabetes.

The American Diabetes Association reports that the total cost 
for diabetes and prediabetes in the United States in 2015 was $322 
billion. Additionally, the average economic burden of medical care for 
individuals with diabetes is 2.3 times higher1 compared to individuals 
without diabetes. Health care cost of diabetes care continues to 
increase; from 2003 to 2013 the price of insulin increased 3-fold thus 
demonstrating the growing economic burden of diabetes [6,7,28]. 
The cost of care for both individuals with diabetes and for the nation 
are points of concern especially for those affected by poverty, lack of 
adequate access to health care, and minority populations.

The increasing burden of diabetes creates an urgency in 
understanding the components of its original signal throughout time 
[6,7,27-29]. Diabetes mortality requires non-parametric analysis to 
accurately capture its long-term and seasonal fluctuations. Classic 
time series analysis is not able to handle signals under non-stationary 
and noisy conditions, however previous studies utilize parametric 
time-series analysis, thus revealing a current gap in knowledge of 
diabetes mortality across time. Furthermore, prevention and control of 
diabetes currently lies upon drastic lifestyle changes, as seen in current 
and past prevention trials, such as DPP [23]. Lifestyle changes are 
especially burdensome for those with lack of access to healthcare and 
insurance, and among vulnerable populations. Thus, it is essential to 
identify components of adverse diabetes events that are a result of an 
individual’s environment such as radiation.

Methodology
Data

Diabetes mortality data was extracted from the Center for Disease 
Control Wide-ranging Online Data for Epidemiologic Research (CDC 
WONDER) database [30]. Monthly counts of total deaths were filtered 
by International Classification of Diseases, 10th Revision for diabetes 
(ICD-10: E10-E14). Diabetes mortality under ICD-10: E10-E14 
accounts for all diabetes including Type I and Type II. However, only 
5% of all diabetes cases are classified as Type I [22,24]. Monthly counts 

1 This estimate is adjusted for age group and sex.

of diabetes-related deaths were aggregated and compiled per year from 
January 1999 through December 2015. Once all years were merged 
together, exploratory analyses were performed utilizing both raw data 
and log-transformed data.

Both raw and log-transformed time series plots displayed signs of 
seasonality in addition to a non-linear trend. Due to lack of stationary 
and linear trends in the data, classic parametric time series analysis 
tools would not yield robust results in comparison to KZ filters. All 
analyses were conducted in RStudio.

Solar activity is known to have a strong correlation with irradiation, 
thus prompting the use of ground-based radiation as a way to quantify 
the relationship between solar activity, such as sunspots, and diabetes 
mortality in time [2,25-26]. Ground Total Solar Irradiation (GTSI) data 
was obtained from the National Solar Radiation Database (NSRDB) 
[31]. Data availability spanned from 1961-2010 and was collected 
hourly. Summary data is available which compiles hourly data into 
monthly averages of ground-based total solar activity measured in 
W/m2. Monthly summary data was exported from a station located 
in Albuquerque, New Mexico. A subset from January 1999-December 
2010 was taken to directly correspond to the diabetes mortality time 
series.

KZ-filters

The Kolmogorov-Zurbenko (KZ) filter is a low-pass filter with 
two parameters: m, the length of the moving average window and k 
iterations of the desired moving average [1,2]. The KZ filter was utilized 
rather than a standard Fast Fourier Transform (FFT) due to its ability 
to perform well for noisy and non-stationary data [1,2,12-15,32-34].

Extensions of the KZ filter used in this analysis include the KZ 
Fourier Transformation (KZFT) and the KZ Adaptive (KZA) filter. 
The KZFT filter is used for non-stationary data with evidence of 
periodicities as a result of seasonality and noise in order to reconstruct 
periodic signals [1,2]. The KZFT filter uses parameters m, length of 
moving average, and k iterations at a specific frequency, f, identified by 
spectral analysis [1,2,35-37].

The KZA filter is used to identify change points or breaks in noisy 
and non-stationary data. The KZA adapts the filtering window of the 
original KZ filter. Rather than over-smoothing the area where the break 
occurs, the KZA filter adapts the filter window to zoom in on the break 
point allowing for clear interpretation of a break point in the presence 
of a signal suppression due to noise [1-2,38,39].

Diabetes mortality methods

After aggregating monthly diabetes mortality data from the 
CDC WONDER database from January 1999-December 2015, non-
parametric time series analysis was conducted using the kz package in 
R [30,40]. Spectral analysis in addition to KZ periodograms were used 
to confirm seasonality and identify long-term trends. Seasonality, long-
term trend, and noise were extracted separately. The long-term trend 
was identified by taking a simple moving average of 13 months and two 
iterations.

Seasonality (Se) was isolated and smoothed by the following 
method:

( )( ),13, 2 , 3, 1 .t tSe KZ X KZ X m k= − = =

The remaining noise was plotted using the following:

( ),13, 2 .t tX KZ X Seε = − −
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Identification of a change point in the long-term trend utilized the 
KZFT function in R at the frequency, 1

12
f =  [41]. The KZA package 

in R identified a break point in the data to correspond with the KZFT 
change point [42]. Once a change and break point were detected, 
monthly means before and after the change point were plotted and 
analyzed.

Analysis of the residuals included obtaining spectra of the log-
transformed and raw residuals and assessing peaks present in the 
spectra plots. The proportion of noise was quantified by obtaining a 
ρ2 value from the linear model of the raw time series data modeled 
by the seasonal component and long-term component. Subtracting 1 
from the ρ2 associated with this linear model yields the proportion of 
variation (Varnoise) attributed to the residuals.

( )( )(2% 1 [  ~ ,13, 2 )noise t tVar Linear Model Y Se KZ Xρ = − + 

Final plots reflect the results of variation due to noise and 
smoothed seasonality. Normal QQ-plots of the residuals from the noise 
component were plotted in R to assess the overall signal consisting of 
the long-term trend and seasonality with respect to the original signal.

TSI methods

Monthly summary data of average TSI was imported into R. Data 
availability included 1961-2010, however, to directly align with the 
diabetes mortality data a subset of January 1999 through December 
2010 was used for the cross-correlation analysis. The long-term trend 
of radiation (LTTSI) was isolated by removing annual seasonality and 
two-year cycles. These short-term 2-4 year cycles are a result of regional 
fluctuations as a component of El Nino [1,2,25,26]. These fluctuations 
should be smoothed for the use of comparing TSI to diabetes mortality 
across the United States because they reflect regional differences within 
the United States.

Annual seasonality was first removed with a simple moving average 
of 13 months with 2 iterations. The resulting time series had a two-year 
short-term trend due to El Nino which was removed with a moving 
average of 23 months and 2 iterations. This yielded an isolated long-
term trend of TSI from 1999-2010:

( )( ), 13, 2 23, 2 .TSI tLT KZ KZ TSI m k m k= = = = =
This long-term trend was utilized to obtain ρ2 between TSI and 

diabetes mortality using the cross-correlation function in R [43].

Cross-correlation of TSI and diabetes mortality

The cross-correlation function quantifies the correlation between 
two time series signals, in this case, TSI and diabetes mortality. The 
cross-correlation function accounts for possible lag or latency between 
the two signals of interest. Data points from the opposing datasets are 
paired at each time point and counted backward or forward by t steps, 
or t lag. After time points are paired, cross-correlations are calculated 
starting at t=0, which implies that no latency or lag exists between 
the two time series. Cross-correlations may be calculated from t=0 to 
any large value to account for a long latency period between diabetes 
mortality and TSI. An appropriate upper limit for t can be obtained 
with several methods, such as maximization between two peak 
correlations while also accounting for contextual latency of diabetes 
mortality. Diabetes-related mortality usually occurs after 15 years of 
diagnosis, and among an elderly population. In this analysis, lag, t, was 
estimated for the entire data availability, 144 months or 12 years. Final 
analysis only includes the cross-correlation plot where ρ2 is maximized 
at t=0 [25,26].

Long-term trends were isolated for diabetes mortality and TSI to 
quantify the cross-correlation. These ensured results were not biased by 
underlying components such as seasonality and the El Niño oscillations 
present in TSI time series. Solar activity measures, such as radiation, 
are not log-transformed in practice. Thus, the cross-correlation 
function utilizes original scales for both diabetes mortality and TSI for 
consistency.

Results
Diabetes mortality results

Spectral analysis confirmed a seasonal cycle of 12 months and 
additionally a long-term cycle of 102 months which corresponds to 8.5 
years (Figure 1). The strength of the seasonality component can be seen 
in the power compared to the first prominent spike corresponding to 
the long-term trend. Small spikes in the spectra are a supplement of 
seasonality due to its prominence as seen in the power. Peaks in spectra 
prompted separation of the seasonal and long-term trend.

The first cycle of the long-term component reflects an initial 10% 
increase in diabetes deaths from December 1999 through January 2005, 
and a 10% decrease in diabetes deaths from January 2005 until the end of 
the first 8.5-year cycle, June 2008 (Figure 2a). The seasonal component 
(Figure 2b) revealed increased frequencies of diabetes mortality during 
winter months, which corresponds to lowest sun activity. In contrast, 
decreased diabetes mortality corresponds to warmer months when 
sun activity is highest. Thus, the relationship between sun activity and 
diabetes mortality would be expected to have a negative correlation 
coefficient. Isolation of seasonality and the long-term trend accounted 
for approximately 85% of the true signal reflected in the maxima of the 
residuals (Figure 2c).

Due to the large dominant frequency in spectra at 12 months, 1
12

f = , 
(Figure 1), a KZFT filter was used to analyze the log-transformed data 
at 1

12
f = . The KZFT filter displayed evidence of a phase shift at April 

2007 which corresponds to a time-point index 100 out of total 204 time 
points (Figure 3a). A break point was identified to occur at December 
2008 using the KZA filter, occurring directly after the first long-term 
cycle of 8.5 years (Figure 3b).

Figure 1: Depicts the raw spectra of diabetes mortality data with spikes 
highlighted in red at 0.0093 1( )

102
f =  and 0.083 

1( )
12

f = , thus indicating long-
term trend of 8.5 years and seasonality.
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With the identification of the change point at December 2008, 
which aligned with the 10% increase after December 2008 in the long-
term component, aggregated monthly counts of diabetes mortality 
were plotted separately (Figure 4). Aggregated monthly counts of 
diabetes death before and after December 2008 show increased 
amounts of diabetes deaths after the change point, especially during 
warmer months and January (Figure 4).

Figure 2c displayed some residual seasonality within the noise 
component, thus prompting further investigation. Spectra were 
plotted and analyzed for the residuals. Pronounced peaks are revealed 
at 2.5 and 3 months corresponding to, 1

3
f =  and 1

2.5
, respectively. These 

frequencies correspond to the small fluctuations seen in the unsmoothed 
seasonal trend, which are a result of the annual seasonal trend. Small 
fluctuations are to be expected due to the harmonic sine wave result 

of KZFT at 1
12

f = . Diabetes mortality resembles a sin wave but does not 
fit perfectly in nature, thus leaving minimal seasonality leakage in the 
residuals. That leakage is very small as can be noticed from spectra in 
Figure 1, Normal QQ plot in Figure 5 proves that residuals resemble 
high quality noise with the corresponding correlation coefficient of 
0.965. Thus, the residuals contribute approximately ±5% toward the 
total signal.

Noise assessment was done using a Normal Quantile-Quantile (QQ) 
plot of the residuals from the noise component of the log-transformed 
signal, thus the plot reflects the removal of annual seasonality and sun 
activity, 8-11 years, trend. The Normal QQ plot of the residuals shows 
a good fit to a normal distribution and only contains high frequencies 
(Figure 5).

Figure 2: Depicts the log-transformed raw time series of diabetes mortality with a moving average of 13 months iterated 2 times using KZ(13,2) (a), the log-
transformed seasonal component time series after removing the long-term trend, KZ(13,2), and smoothing for noise, KZ(3,2) (b), and the remaining noise after 
smoothing and removal of log-transformed long-term trend and log-transformed seasonality components (c).

Figure 3: Highlights the change point at time point 100, which corresponds to the year April 2007, after analyzing the KZFT(m=204, k=1, f=0.083) for the log-
transformed diabetes mortality data (a), and the KZ decomposition of the log-transformed time series. The KZA filter, bottom panel, reflects the change point 
starting just before 2009 (b).
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Analysis of the residuals for both the log-transformed and raw data 
reveal that the log-transformed data stabilize the variance and have an 
improved signal-to-noise ratio. The log-transformed signal-to-noise 
ratio was 5.67 compared to 5.09 for the raw data.

Cross-correlation results

The spectral peak corresponding to an 8.5-year long-term trend 
reveals a relationship with solar activity. The unique signal of solar 
activity has been proven previously which corresponds to an 8-11 years 
cycle [1,2,25,26]. Similar spectra peaks in solar activity and diabetes 
mortality prompted further investigation quantifying the correlation 
between the two signals. TSI was used as the measure of solar activity, 
which is proven to be strongly correlated with sun activity [2,25,26]. 
The long-term trend plot of diabetes mortality overlaid with the long-
term trend of TSI indicate a strong inverse relationship (Figure 6a). 
During 2004-2006, diabetes mortality is at its peak whereas TSI is at its 
lowest. The cross-correlation coefficient shown in Figure 6b quantifies 
the inverse relationship in Figure 6a. Cross-correlation results found 

that the correlation coefficient is maximized at t=0, with ρ2=-0.76 
(Figure 6b). A high negative correlation coefficient confirms a strong 
inverse relationship of diabetes mortality and TSI. Thus, when TSI 
decreases, diabetes mortality will increase (Figures 4 and 6).

Conclusion
Spectral analysis reflects a long-term trend and seasonality of 

mortality among diabetes deaths with prominent peaks at frequencies 
corresponding to 8.5 years and 1 year. Small peaks occurring after 
12 months in the spectra of the log-transformed data are a result of 
the strong presence of seasonality. It has been previously proven 
that sunspot activity has a unique frequency peak in spectra which 
corresponds to the spectral peak at 8.5-years in diabetes mortality [1,2]. 
This proof of solar activity prompted further investigation between 
diabetes mortality long-term trend and solar activity long-term trend 
[2].

The corresponding 8.5-year cycle depicts the first cycle from 
January 1999 through June 2008 and the second cycle starting after 
June 2008 through the data cut-off, December 2015. The first cycle of 
the long-term component reflects an initial 10% increase in diabetes 
deaths from December 1999 through January 2005, and a 10% decrease 
in diabetes deaths from January 2005 until the end of the first 8.5-year 
cycle, June 2008. The second cycle, which starts after June 2008, shows 
approximately a 15% increase in diabetes deaths from June 2008 to its 
peak in January 2015 and decreases until the data-cutoff in December 
2015.

Figure 4: Log-transformed average monthly diabetes mortality count 
aggregated per year from 1999-2015 to analyze changes before and after 
the break point of 2008, red depicts after December 2008 and black depicts 
before December 2008.

Figure 5: Normal QQ-plot of the residuals from the noise component after 
removing long-term trend, oscillation of 8-11 years periodicity, and annual 
seasonality from original data on the log-scale. Log scale provides differences 
in approximate percentage scale; thus the range of residuals contribute 
approximately 5% toward the total signal.

Figure 6: Depicts the long-term trend from January 1999-December 2010 of 
both TSI (red) and diabetes mortality (black) (a) and the cross-correlation plot 
with the associated ρ2=-0.76 at lag=0 (b).
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The difference from the first and second cycles of the long-term 
trend reflect an especially sharp increase in deaths around January 2015 
in comparison to the peak in the first 8.5-year cycle. This increase in 
diabetes deaths could be the result of reporting changes in ICD-codes 
and a reflection of a very latent disease that progresses with age. The 
complexity of diabetes and its many co-morbidities make it hard to 
classify as the underlying cause of death. The American Diabetes 
Association reports that diabetes is likely under classified as the cause 
of death due to the results of studies which state that between 35-40% 
of the deceased with diagnosed diabetes had diabetes listed on their 
death certificate, however, only 10-15% of these death certificates listed 
diabetes as the underlying cause of death.

The spectra show the most prominent peak at the corresponding 
1-year frequency. The magnitude of the sharp peak indicates the strong 
presence of seasonality among diabetes mortality in the United States. 
The seasonality component reveals increased diabetes mortality during 
winter months and the lowest incidence of diabetes mortality during 
June through September months. These results correspond to previous 
studies that previously address seasonal differences in diabetes 
mortality in which diabetes mortality is increased in during winter in 
comparison to summer months [9-11].

Seasonal differences in diabetes mortality correspond to seasonal 
trends in sun activity. June is known to have the highest sun activity 
and lowest sun activity occurs in December or January. Figure 4 shows 
highest diabetes mortality occurring during winter months, December 
and January and lowest diabetes mortality during summer months. 
Seasonal sun activity trends are strongly correlated with seasonal 
radiation trends, thus TSI was used to quantify the negative correlation 
between solar activity and diabetes mortality [1,2,25,26].

Some studies hypothesize that diabetes mortality seasonal 
differences are attributed to varying weather patterns as well as latent 
adverse effects of poorly managed glycemic levels. Tseng et al. found 
seasonal variations in hemoglobin A1c levels, where high HbA1c levels 
were found to occur during winter months in comparison to summer 
months [9]. HbA1c levels have been shown to be correlated with 
negative adverse effects for diabetes mellitus. Additionally, long-term 
uncontrolled HbA1c levels often lead to co-morbidities closely aligned 
with diabetes such as chronic kidney disease and cardiovascular disease 
[9,16-24,28].

After isolating seasonal and long-term trends, the residuals 
reflected that 85% of the true signal of the log-transformed diabetes 
mortality time series data was covered. However, there still appeared 
to be slight seasonality present within the residuals (Figure 2c). Thus, 
1-ρ2 value was calculated to quantify the proportion of variation of 
the true signal that was attributed to the residuals. The 1-ρ2 was 15% 
for the log-transformed data, thus, the residuals attributed 15% of the 
variation not accounted for by the seasonal and long-term components. 
Supplementary peaks of seasonality occurring at 2.5-3 months reflect 
the strength of seasonality presence among the residuals.

A sharp increase in diabetes mortality after 2008 led to use of the 
KZFT and KZA filter to confirm a change point in the sinusoidal signal 
of diabetes mortality. The KZFT filter identified a change in frequency 
of the sin wave for log-transformed diabetes mortality time series data 
in 2008. The KZA filter identified a change or break-point in noisy and 
nonstationary data starting in 2008. This break point corresponds to 
the phase shift found in the KZFT filter as well as the sharp increase 
after 2008 in the long-term trend plot. The phase shift and break point 
may correspond with changes in reporting for diabetes as a cause of 

death on death certificates or a change in the way ICD codes were 
recorded. In 2008, there were new revisions made for diabetes mellitus 
with additional categories and sub-categories allowing additional 
classification under diabetes mellitus as a cause of death. However, as of 
October 2015, ICD-10 codes are now used in place of ICD-9 codes due 
to the ICD-10 codes including twice the categories and classifications 
in comparison to ICD-9 codes [44].

Aggregate monthly means taken before and after 2008, where the 
phase shift and change point approximately occurred, show an overall 
increase across all months. However, January and summer months, May 
through September, had a much higher increase in diabetes mortality 
after December 2008. This reflects the phase shift and change point in 
diabetes mortality and could be the result of ICD code changes as well as 
an increasing elderly population due to the “Baby Boomer” generation 
[24,45]. The increase in diabetes diagnoses among all populations, 
especially in the young population, seemingly may influence the phase 
shift and sharp increase in death as well as administration or policy 
changes. In addition to a limited time frame of data points, the reports 
of diabetes as an underlying cause of death may be underreported due 
to diabetes’ close relationship with cardiovascular events.

The spectrum peak associated with an 8.5-year cycle of diabetes 
mortality prompted further investigation of the relationship between 
solar activity and diabetes mortality. Furthermore, annual seasonality 
and aggregate monthly means plots reflect increased diabetes mortality 
during winter months when solar activity is lowest and decreased 
diabetes mortality during summer months when solar activity is 
highest. This a priori knowledge of solar activity in conjunction with 
findings from the KZ-filter analysis on diabetes mortality led to the 
quantification of the negative relationship between the two signals. 
Cross-correlation between diabetes mortality and TSI resulted in 
time lag equal to 0 with a -0.76 correlation coefficient. The strong 
negative correlation is the first quantified measure of solar activity’s 
relationship to diabetes mortality. More investigation regarding this 
negative feedback relationship between TSI and diabetes mortality 
across time is needed to solidify this finding. However, the strength in 
correlation indicates the real presence of a relationship between the two 
time series. Solar activity trends in time may indicate other seasonal 
environmental changes that directly stimulate adverse events among 
those with diabetes, eventually leading to increased diabetes mortality 
during months following exposure to high solar activity.

In conclusion, the discovery of annual seasonality indicates that 
future studies should control for diabetes mortality differences during 
summer and winter months. Additionally, future studies should 
confirm and control for seasonality in HbA1c or additional measures 
that indicate poorly maintained diabetes. Prolonged mis-managed 
HbA1c is associated with higher probability of adverse events among 
diabetics [9,24]. Thus, controlling for seasonality among HbA1c 
measures and duration of diabetes may lead to less biased outcomes.

The discovery of corresponding spectra peaks in diabetes mortality 
and solar activity prompted the first investigation of their relationship. 
This was the first study, to our knowledge, that has quantified the 
relationship between solar activity and diabetes mortality. The 
strong negative correlation discovered has strong implications of the 
environmental role in diabetes mortality. Using solar activity makes 
this correlation coefficient less likely to be an effect modifier due to 
the role of solar activity in regulating conditions such as temperature 
fluctuations and seasonality. Future studies may find this useful to 
control for environmental conditions related to diabetes adverse 
events, such as mortality.
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Limitations
Limitations of this analysis include the lack of data prior to 1999 

and after December 2015. The long-term trend could have been more 
insightful with a longer time-frame of data, especially with a phase shift 
of the sinusoidal wave occurring halfway through the data. The data 
used to compile all diabetes mortality counts within the United States 
consisted of diabetes mortality with the underlying cause of death as 
diabetes mellitus, which could refer to both Type 1 and Type 2 diabetes 
mellitus. However, over 90-95% of all diabetes cases in the United States 
are type 2 diabetes mellitus, thus these rarer cases would not have much 
influence on the results of this analysis. The complexity of diabetes as a 
disease with its multiple co-morbidities especially those with advanced 
diabetes create a challenge for citing diabetes as the cause of death on 
death certificates.

Papers that cite hemoglobin A1c levels fluctuate in the same cycle 
as diabetes mortality, high in the winter and lower during spring and 
summer, correspond to decreased physical activity during winter 
months [9]. This analysis could benefit from utilizing spatial analysis to 
assess differences between states with cold and hot seasons compared 
to states with less seasonal variation. Hemoglobin A1c levels, especially 
uncontrolled, have a significant effect on health outcomes for those 
with diabetes. Individuals diagnosed with diabetes for longer amounts 
of time and who have gone through multiple winter seasons with 
uncontrolled glycemic levels may lead to the increase in diabetes 
mortality during winter months.

To our knowledge, no other studies have published findings 
utilizing KZ filters and investigating the relationship between solar 
activity and diabetes mortality. Additionally, there was a lack of time-
series analysis using other classic methods assessing diabetes mortality 
thus making it difficult to compare and validate my results with others’ 
research. Most research done with diabetes and time series analysis 
were outdated, utilized parametric methods, were done in countries 
outside of the United States, or had focused population groups that 
could not generalize beyond their target population. Cross-correlation 
results only reflect one-cycle from the long-term components of solar 
activity and diabetes mortality due to lack of data availability. Further 
investigation is needed with more time points that capture more 
than one cycle to assert more robust inference from this quantified 
relationship.
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