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Introduction
The Shield Wire Scheme (SWS) is a technical method to supply 

power to the villages and communities located along the High Voltage 
(HV) lines, up to 100 km distant from the HV transforming stations.

The SWS consists of insulating the shield wires (SWs) from the 
towers of the HV lines and energizing the SWs with Medium Voltage 
(MV) (20-34.5 kV) from the HV/MV transformer station at one
end of the HV line [1] (Figure 1). This technique reduces the cost of
investments while adapting to the low power requirements of these
communities [2]. Supply of the villages along the HV line through
fused single phase or three-phase transformers, depends on the scheme 
chosen and on the nature of the load to be supplied [3]. The overruling 
criterion has been to propose solutions that require only conventional
distribution equipment, without power electronic devices, to provide a 
reliable service with simple and ordinary operational methods.

In fact, the three-Phase SWS is an unsymmetrical system 
with voltage fluctuation; because the three-Phase SWS supplying 
conventional MV/LV distribution transformers operated with one 
MV terminal permanently grounded [4]. Moreover, it has been 
reported that the drying up of land leads to an uncontrolled increase in 
grounding impedance [5]. However, the limit values for this increase 
are still unknown. Increasing the value of the impedance results 
in a high voltage unbalance which engenders a degradation of the 
unbalance factor of up to 8.18% for resistance variation and 27.31% 
for the inductance variation [6]. The value of unbalance factor must be 
contained within 1-2% for a correct operation of equipment [7].

The balancing of voltage can be obtained by applying different 
methods. But all, use only passive components, using a series resistor-
reactor in the earth path and capacitors connected between the two 
SWs and between each SW and ground [8]. While these techniques 
allow the reduction of voltage unbalance in three-phase Shield wire, 
these types of passive compensators do not fit when a voltage variation 
occurs. They are functional only for predefined unbalance conditions.

To address this problem, this paper presents the use of H-bridge 

STATCOM to reduce unbalance and voltage fluctuation on the three-
phase shield wire.

Matlab/Simulink software has been used to simulate the three-
phase Shield wire of 34.5 KV and, a significant improvement of the 
unbalance and voltage fluctuation rate is obtained.

Investigated three-phase shield wire system

Three phase shield wire scheme description: Figure 1 presents a 
general representation of three-phase Shield Wire Scheme. A 34.5 kV 
shield wires medium voltage is used to provide 145/240 V. A medium-
voltage transformer terminals MV/LV cables are connected to two 
cables and the third cable is grounded by an electrode that contains a 
resistance and an inductance (Figure 2).

The three-Phase SWS is planned to be implemented in Western 
Africa. It has a HV 225kV-50Hz-338 km long transmission line with 
an intermediate substation at 134 km from the sending end. The 
225kV line is equipped with AAAC conductors with Φ=31.04 mm, 
R20°C=0.0583 Ω/km, whereas the SWs are ACSR conductors with 
diameter=10.02 mm, R20°C=0.58 Ω/km [9].

Cascade H-Bridge Topology and Control: STATCOM H-bridge 
can use in the SWS network to increase the system performance 
(unbalance and voltage fluctuation). The interest for multilevel CHB 
converters comes from their capacity to provide higher power, to 
generate good quality of waveforms, to operate at low switching 
frequency with low loss of energy and the low effort on statics devices 
[10]. The cascade H-bridge (CHB) STATCOM topology considers the 
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analysis the technical characteristics of the network and the existing 
theories have served to determine the essential parameters for the 
functioning of the integrated network STATCOM. Elements of Matlab 
Simulink library Simpower Systems were used for the simulation. For 
the simulation we have given different values for the impedance and 
raise the voltage on the SWSs line. The unbalance factor was calculated 
from the values of voltage composed by the method proposed in the 
literature [13].

Passive filter’s design

As any other voltage controlled source (VCS) based topology, this 
configuration needs a passive filter in order to absorb the instantaneous 
voltage differences between the converter and the grid, and to reduce 
the harmonic content of the injected AC current.

series connection of several H-Bridges modules in order to share the 
total load voltage among all the modules. This allows a low voltage 
rating of the semiconductor devices (Figure 3).

The Sinusoidal PWM (SPWM) control method is used for this 
application. It is one of the most widely used control method in 
VSCs owing to its simplified mathematical requirements and easy 
implementation even with basic microcontrollers. The SPWM method 
is based on comparing a sinusoidal modulating signal with a triangular 
carrier waveform that is arranged according to required switching 
outputs [11,12] (Figures 4 and 5).

Methodology
A mathematical analysis and simulation were used. In mathematical 

Figure 1: Circuit schematic of three-Phase SWS distribution network.

 

 
Figure 2: High voltage network and SWS.
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Figure 3: Topology for five level Cascaded H-Bridge Inverter.

Figure 4: Control SPWM five level Cascaded H-Bridge Inverter.

Figure 5: Three-Phase SWSs and STATCOM H-bridge.
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Applying the voltage law in the AC side for the phase a of the 
STATCOM, the passive filter equation is obtained [14].

a a a a a
c c c c c c dc s

dL i R i n s v v
dt

+ + =                                  (1)

Where, a
cs is the commutation function of modules of phase a and 

the resistor Rc is the parasitic (series) resistance of the inductor Lc.

Input voltage calculation

In order to evaluate the stationary behavior of the CHB STATCOM, 
the state variable equations must be evaluated in steady state [15]

Results and analysis of simulation
The Figure 5 has been implemented in Matlab/Simulink/

SimPowerSystems. The nominal voltage Vn at the bus bar is 34.5 
kV. The impact of variation of grounded resistor and inductance are 
evaluated [13].
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Where the variables in capital letters denote the constant value of 
each variable in an arbitrary operating point. The voltage should ensure 
that the summation of the DC voltages of all the power cells must be 
higher than the amplitude |Vs| of the source voltage. This constraint 
rises because VCSs operate with a DC voltage Vdc that must be higher 
than the peak value of the voltage in the AC side. A suitable value for 
Vdc should consider at least a 10% security margin. Then Vdc is:

2 2V  dc (V )  (V )d qdc
dc s s

c

k
n

= +                                             (3)

Where dck  kdc = 1.1 to ensure the 10% margin.

Case study 1: Variation of resistor

The grounded resistance is varied from 33 to 8 000 Ω (Figure 6). 
The system’s three phase-to-phase voltages with passive components 
(capacitor bank). The rated voltage Vn is 34.5 kV. Grounded resistance 
variation affects the phase-to-phase voltage Vab, Vbc and Vca. The voltage 
rise or reduction varies +1.3% (for Vab) to -6.6% (for Vbc). The most 
voltage reduction on Vbc and Vca is due to the connection of phase C 
to the ground. The voltage unbalance factor varies from 2.8% to 8.18% 
(Figure 7).

In this case, the voltage amplitude variations varies between 
+0.37% (for Vab) and -7.33% (for Vca) (Figure 8). The use of the cascade 
H-bridge STATCOM makes an improvement in unbalance factor 
which varies between 0.15% and 3.24% (Figure 9).

Case study 2: Variation of the inductance

The grounded inductance is varied from 10 to 110 H (Figure 
10). The rated voltage Vn is 34.5 kV. Grounded inductance variation 
affects the phase-to-phase voltage Vab, Vbc and Vca. The voltage rise or 
reduction varies +1.3% (for Vab) to -23.3% (for Vca). The most voltage 

reduction on Vca and Vbc is due to the connection of phase C to the 
ground. The voltage unbalance factor varies from 3.56% to 27.31% 
which is well above standard values (Figure 11).

In this case, the voltage amplitude variations varies between -5.31% 
(for Vca) and +31.59% (for Vbc) (Figure 12). The use of the cascade 
H-bridge STATCOM makes an improvement in unbalance factor 
which varies between 0.2% and 2.31% (Figure 13).

Figure 6: Voltage amplitude variation with passive components.

Figure 7: Factor unbalance with passive components.

Figure 8: Voltage amplitude with cascaded H-bridge STATCOM: The system’s 
three phase-to-phase voltages with cascaded H-bridge STATCOM.
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Conclusion
In this paper, we investigated the impact of the use of H-bridge 

cascaded STATCOM to reduce unbalance and voltage fluctuation on 
the three-phase shield wire. The unbalance and voltage fluctuation are 
created by the impedance difference.

The results show that the use of a STATCOM improves significantly 
the quality of the voltage of three-phase shield, with a very similar 
unbalance factor at acceptable limit compared to case when the passive 
components (capacitor bank) are used.

The variation of the inductance has a greater effect on the unbalance 
as that of the resistor. The method of unbalance reduction by H-bridge 
cascaded STATCOM is more efficient than passive components. From 
this study, we can conclude that the use of STATCOM can provide 
technical means to limit excessive voltage variation in SWS systems to 
ensure service’s quality.
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