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This editorial article is concerned with some open problems 
regarding the thermostatted kinetic theory for active particles. This 
framework refers to the modeling of complex systems composed by a 
large number of elements grouped into different functional subsystems.

Introduction
The thermostatted kinetic theory for active particles has been 

recently proposed in [1] and generalized in papers [2-5], with the aim 
of modeling real-world complex systems. Complexity is an intrinsic 
characteristic of most living systems that makes the modeling of the 
system complicated. Indeed not only the large number of elements 
constituting the system but also the emergence of behaviour that arises 
as result of the whole interactions among the elements that occur 
in nonlinear fashion are key issues of the complexity. The complex 
behavior is also due to the fact that the living entities, differently from 
the inert matter entities, have the ability to perform specific strategies 
and functions such that small variations in their will could modify the 
overall asymptotic dynamics. According to the thermostatted theory 
for active particles, the complex system is composed by a large number 
of elements, called active particles that interact in nonlinear matter and 
under the effect of macroscopic external force fields. The microscopic 
state of the active particles is composed, at time t, by the space variable 
x, the velocity variable v, and the activity variable u ∈ Du which models 
the ability of the particles to express strategy. Particles having the same 
strategy are grouped into a subsystem, called functional subsystem. The 
evolution of each functional subsystem is depicted by a distribution 
function fi (t; x; v; u) defined on [0; T]×Dx×Dv×Du. In particular fi (t; 
x; v; u) dx dv du stands for the density of particles into the volume 
element dx dv du centered at (x; v; u). It is worth stressing that every 
function defined in this editorial article is assumed to be measurable in 
all variables.

The mathematical framework

Let Ω=Dx×Dv×Du be the domain of the all possible microscopic 
states of particles. Each functional subsystem is subjected to the 
external force field Fi=Fi (u): Du → R whose magnitude modifies the 
asymptotic behavior and move out of equilibrium the system. The 
function Fi is assumed to be a known function of u. The evolution 
equation for the distribution function fi is obtained under the following 
main assumptions:

• The interactions among the particles occur with rate nij, which
denote the probability that a particle of the ith functional subsystem 
with activity u* interacts with a particle of the jth functional subsystem 
with activity u*.

• The particles of the ith functional subsystem with activity
u*interacting with the particles of the jth functional subsystem with 
activity u* have a probability density to reach the activity u given by 
A=A (u*; u*; u), which satisfies the following condition:
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• A particle moves with constant velocity v ∈ Dv into a straight line, 
stops after a certain time, chooses a new direction, continues running 

and so on (velocity-jump process). The domain Dv is such that v and –v 
∈ Dv). The thermostatted kinetic theory for active particles for fi, i ∈ {1, 
2, … , n}, thus reads:
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and

• v • ∇x fi is the usual transport operator;

• v is the turning rate or turning frequency of the velocity-jump,
hence 1/v is the mean run time;

• The operator Ji [f ]=Ji [f ](t; x; v; u) models the interactions in the
activity, and reads:
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The above term is obtained by considering the following rule: a 
particle with state u having an encounter with a particle with state u* 
will change its activity as a result of the interaction and thus will leave 
the state u. The operator Vi[fi] ≡ Vi[fi] (t; x; v; u), which models the 
velocity-jump process is defined as follows:
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where Ti(v*, v) is the turning kernel which give the probability that 
the velocity v* ∈ Dv jumps into the velocity v ∈ Dv (if a jump occurs). 
The transport term due to the activity of the particles reads:

1
Ω

= ∂ − ∫ i i iF [ f ] : u( Fi( u )( u uf ( t ,x,v,u )dxdvdu ) f ( t ,x,v,u ))T      (1.6) 

This term models the Gaussian thermostat, which is based on the 
mathematical thermostats [6,7] and the Gauss’s principle of the least 
constraint [8].

Open Challenges
The thermostatted kinetic framework proposed in this editorial 

article generalizes the thermostatted kinetic frameworks of the 
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pertinent literature; see the recent review paper [9], to complex 
systems where the space and velocity variables have an important role. 
Nevertheless we are aware that mathematical problems are still open. 
Specifically: - The first open problem is the existence and uniqueness 
of solution of the main framework (1.2). This is a hard problem 
considering that the presence of the transport term, namely the role 
of the space and velocity variables, and the nonlinearity introduced 
by the thermostat term. The second open problem refers to the 
modeling of biological systems, where genetic mutations can modify 
the interactions among the cancer cells, therefore the underlying 
description offered by the thermostatted kinetic theory models needs 
to be related to the evolution at the molecular (microscopic) and tissue 
(macroscopic) scale. In this context the asymptotic limits methods can 
be performed, see papers [10-12] and references cited therein. - The 
third open problem refers to the environment role. Indeed, as known, 
the collective behavior of biological, animal or human systems occurs in 
response to environmental factors that can affect the whole dynamics. 
Therefore the environment role has to be taken into account, not only 
at the macroscopic scale by F, but also by modeling the interaction 
with the outer environment at the microscopic scale. Modeling 
external actions at the microscopic scale means representing the outer 
system as a specific functional subsystem with the ability to interact 
with the active particles of the inner system. It is worth stressing that 
the OMICS’ Applied & Computational Mathematics Open Access 
policy (http://www. omicsonline.org/OpenAccess.php) and the special 
features provided by the publisher (http://www.omicsonline.org/
specialfeatures.php) can help the community to give an answer to these 
open challenge.
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