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Introduction
Breast cancer causes more than 410,000 women´s deaths worldwide 

each year [1-4]. The number of new breast cancer cases per year has 
steadily increased in the last 20 years, especially in low and middle 
income countries [5]. Despite advances in the diagnosis, classification, 
and therapeutics it is expected that mortality rate will increase in the 
following years caused by population increment, longer life-spans and 
increased exposure to environmental risks [6]. 

Current alternatives for breast cancer therapy include cytotoxic, 
hormonal, and immunotherapeutic agents. In general, first-line 
therapy produces responses in 60% to 80% of primary tumors [7,8] 
but is effective only for a short period of time [9]. As consequence, up 
to 70% of patients show recurrent and/or metastatic disease within 5 
years [9-11]. These data indicate the need of new approaches for breast 
cancer treatment. Such approaches must consider the role of breast 
cancer stem cells (BCSCs) in the initiation, maintenance, and clinical 
outcome of breast cancers.

Al-Hajj and collaborators [12] achieved the discovery of a 
subpopulation of cancer stem cells (CSCs) in human breast tumors 
almost a decade ago. They have identified a cellular population 
characterized by cell-surface CD44+/CD24-/low/Epithelial cell Surface 
Antigen+ (ESA+) markers, and lineage- (lack of expression of CD2, 
CD3, CD10, CD 16, CD18, CD31, CD64, and CD140b) that was 
highly tumorigenic [12]. As few as 200 of these cells generated tumors 
when xenotransplanted into nonobese diabetic-severe combined 
immunodeficient (NOD-SCID) mice while tens of thousands of other 
cancer cells could not [12]. Further characterization has shown that 
BCSCs [13]: i) express specific markers that allow their identification/
isolation; ii) express genes and display activated cell signaling pathways 
associated with normal stem cells; iii) are able to self-renew; and iv) 
can differentiate to the heterogeneous phenotypes that compromises 
tumors.

Targeting BCSCs

The molecular and phenotypic differences between BCSCs and non-
stem tumor cells are reflected in differences in sensibility to radiation 

and chemotherapy. At present, it is accepted that BCSCs display 
increased resistance to therapy. For example, cancer cells isolated 
from patients who received chemotherapy have increased in vitro self-
renewing capability and augmented proportion of BCSCs compared 
with cells isolated from chemotherapy-naive patients [14,15]. Similarly, 
radiation therapy increases the proportion of CD44+/CD24-/low cells 
in mouse xenografts [16,17]. Thus, therapy increases the fraction of 
BCSCs cells by eliciting a selective pressure and/or preventing their 
differentiation. Furthermore, the resistance to therapy can be inherited 
from BCSCs to progenitor cells and then to the non-stem tumor cells, 
as reported by Shafee et al. [18]. Therefore, the expansion of the CSC 
population after therapy may be directly related to the appearance of 
clinical resistance.

Because of their intrinsic characteristics and their clinical relevance, 
new therapies for breast cancer should pursue the eradication of the 
BCSC pool with no harm to other cell types. At least three different 
strategies have developed to achieve this goal (Figure 1). First, BCSCs 
can be targeted using differentially expressed proteins, like surface 
markers, transporters, or enzymes. Secondly, BCSC expansion can be 
limited by inhibiting the pathways involved in self-renewal. Finally, 
given that BCSCs require specific microenvironments, targeting their 
interactions with the niche may be beneficial. These strategies will be 
discussed further below.

Targeting of differentially expressed markers
BCSCs overexpress ATP-Binding Cassette (ABC) transporters 
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like P-glycoprotein (P-gp or MDR1), multiple resistance-associated 
protein-1 (MRP1), breast cancer resistance protein (BCRP), and ABC 
sub-family G member 2 (ABCG2) [19-21]. The expression of these 
and other ABC transporters partially explains why chemotherapy 
is ineffective in eradicating BCSCs. For example, ABCG2 is over- 
expressed in a subpopulation of breast tumor cells with stem-cell 
properties [21] but its expression and the ability to efflux drugs is lost 
during differentiation of BCSCs to non-stem cancer cells [14].

The use of inhibitors of ABC transporters simultaneously with 
anticancer drugs is an efficient approach to overcome resistance in vitro 
and in animal models [22]. Thus, several inhibitors of ABC-transporters 
have been identified and some of them have been evaluated in breast 
cancer models. Different secondary metabolites from plants modify 
the activity of ABC transporters. For example, jatrophane diterpenoids 
isolated from Euphorbia species inhibit ABC transporters and sensitize 
mouse lymphoma cells to chemotherapy [23]. Similarly, the plant 
alkaloids thaliblastine and berberine reverse multi-drug resistance in 
breast cancer cells by decreasing the expression of P-gp and ABCG2, 
respectively [24,25]. Even when the effect of these plant metabolites on  
BCSCs has not been evaluated, they could be useful in the eradication 
of BCSC pools due to their mechanism of action [20]. However, the 
ability to target drug transport in BCSCs may be difficult since these 
cancer cells express multiple ABC transporters [26]. Furthermore, 
since ABC-transporters are also expressed in normal stem cells, there is 
a high risk of serious side effects [22,27].

A different approach for targeting BCSCs is based on the 
differential expression of specific surface markers that can be identified 
with antibodies. This strategy has proven to be partially successful 
in acute myeloid leukemia (AML) [28,29]. Likewise, anti-CD44 
antibodies conjugated with cytotoxic drugs or radiolabels have shown 
to reduce disease progression in breast cancer patients and animal 
models [30]. Similarly, a humanized anti-CD44 antibody reduces 
effectively tumor growth in pancreatic cancer xenografts [31]. Different 
anti-ESA antibodies are effective in preclinical models of colon and 
prostate cancer [32,33], suggesting that they may have activity in breast 
tumors where ESA is a BCSC marker. Agonist antibodies against death 

receptors also have shown activity against BCSCs; immunotherapy 
with anti-Fas or anti-DR5 induces apoptosis efficiently in mammary 
BCSCs [34]. 

In conjunction, these data suggest that the use of antibodies can be 
a good approach for BCSCs eradication. However, immunotherapy has 
some limitations: BCSCs are typically present at low numbers within 
tumors, which can complicate the interaction of antibodies with the 
target cells. In addition, BCSC markers can overlap with normal stem 
cells, which may lead to serious adverse effects. In other to improve 
the selectivity and efficacy of immunotherapies that target CSCs, it has 
been suggested the combined use of two antibodies with two different 
targets, but such strategy would require extensive optimization. 

Targeting of self-renewal pathways

BCSCs have the ability to self-renew. The molecular pathways 
involved in this process are similar to those that control self-renewal 
in normal stem cells. In BCSCs, the Notch, Hedgehog, PTEN, Wnt, 
NF-κB, and BMI-1 pathways have been implicated in self-renewal [35]. 
Even when the clarification of the role of each self-renewal pathway 
in maintaining BCSCs remains to be determined, BCSC pool may be 
reduced by targeting these pathways. For example, the PTEN/PI3-K/
Akt/Wnt/β-catenin pathway is active in BCSCs. PTEN knockdown 
in human breast cancer cell lines induced activation of Akt, increased 
in vitro self-renewal, and increased the BCSC population [36]. Active 
Akt phosphorylates GSK3β and thereby the Wnt pathway. Ongoing 
autocrine signaling via the Wnt pathway has been shown to regulate 
and maintain BCSC self-renewal [37]. PKF 118-310 is an inhibitor 
of Wnt pathway that is able to decrease self-renewal of mammary 
epithelial stem/progenitor cells in vitro, and blocks tumor growth in 
mouse models [38].

The Notch receptors and their ligands participate in a conserved 
mechanism that can regulate cell fate determination [39,40]. Notch 
receptor activation depends on its interaction with ligands from the 
Delta and Serrate/Jagged families. Following ligand binding, Notch 
receptors are sequentially cleaved by a metalloprotease and γ-secretase 
[40]. These steps lead to the release of the Notch intracellular domain 
(NICD) into the cytoplasm, which in turn translocates into the 
nucleus to activate target genes such as HES, HEY and c-Myc [40,41]. 
Elevated levels of Notch1 and Jagged1 mRNA are associated with poor 
prognosis in human breast cancer [42,43]. Therefore, Notch-activated 
signaling has being identified as a therapeutic target in breast and other 
cancer types [44]. Accordingly, a γ-secretase inhibitor and a Notch-4 
neutralizing antibody inhibit in vitro self-renewal in breast cancer cells 
[43]. Furthermore, Notch inhibition induces apoptosis in breast cancer 
cells but not in normal breast epithelial cells, although self-renewing 
was also blocked in normal cells [43]. These results indicate that drugs 
designed to target Notch signaling may be effective to block self-renewal 
of BCSCs. However, preclinical studies of γ-secretase inhibitors have 
shown that they produce organ-specific toxicity [45], suggesting that 
further work is needed to identify the role of specific Notch receptors in 
BCSC biology as well as selective inhibitors for each of them.

Targeting the niche

The CSCs require a highly specific and discrete microenvironment 
(niche) just as normal stem cells. The function of the niche is to provide 
a physical anchoring site for CSCs via adhesion molecules and supply 
extrinsic factors [46]. It has been hypothesized that the survival, 
proliferation, and/or differentiation of BCSCs can be activated by 
signals from the niche [46-48]. Thus, the niche can promote BCSC 

Figure 1: Therapeutic targets in breast cancer stem cells. Three different 
strategies have been identified for the eradication of BCSCs. (1) The 
subpopulation of BCSCs can be reduced by targeting proteins differentially 
expressed in those cells, such as surface markers, transporters, or enzymes. 
(2) The expansion of BCSCs in tumors can be limited by inhibiting the pathways 
that control self-renewal (pictured as a self-pointing arrow), such as Notch, 
Hedgehog, PTEN, Wnt, NF-κB, or BMI-1. (3) Survival, proliferation, and/
or differentiation of BCSCs can be affected by blocking their interaction with 
normal cells (pictured on the far right) or extracellular matrix at their primary or 
metastatic niches.
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expansion or the acquisition of stem cell-like properties. Additionally, 
the microenvironment is a critical regulator of BCSC-driven metastasis. 
Signals from the extracellular matrix (ECM) or stromal cells can act 
as chemo attractants or can regulate the dormancy at metastatic sites 
(reviewed by [49]).

Interaction of hyaluronic acid (HA) with its receptor CD44 in 
breast carcinoma cells causes the recruitment of Nanog into the 
CD44-HA complex which supports the expression of pluripotent stem 
cell regulators such as Rex1 and Sox2 [50]. Additionally, the CD44-
HA pathway may be important in therapeutic resistance, since HA-
treatment of breast cancer cells reduces intracellular retention of 
cytotoxic drugs and promotes multidrug resistance [50]. Inhibiting 
HA synthesis using the drug 4-methylumbelliferone (4-MU) enhanced 
trastuzumab (an anti-HER2 antibody) effectiveness [51]. Antibodies 
specific for the HA-binding interface have been developed to target the 
CD44-HA interaction [52]. Similarly, the α6 integrin (CD49f), a subunit 
of a laminin receptor, is necessary for survival and/or proliferation of 
BCSCs. The expression of the α6 integrin subunit increases with serial 
passages of mammospheres generated from individual breast cancer 
cells [53]. Inhibition of α6 integrin, using antibodies or siRNA, induces 
the complete loss of mammosphere-forming ability and inhibits 
tumorigenicity in vivo [53]. These data indicate that adhesion receptors 
containing the α6 integrin subunit may be suitable targets to block 
tumor growth in breast cancer.

Beside ECM components, the niche has different types of cells 
that secrete a complex mixture of soluble factors that promote BCSC 
expansion/survival. For example, the cytokine IL-8 and the chemokine 
CCL5 can be secreted by breast cancer cells [54] and normal 
mesenchymal stem cells [55], respectively. Interestingly, the secretion 
of CCL5 from mesenchymal stem cells is dependent on the presence of 
breast cancer cells [55] indicating that the interaction between cancer 
cells and their niche is reciprocal. The therapeutic importance of 
blocking soluble signals generated at the niche in BCSC eradication has 
been highlighted by the evaluation of cytokine-receptor antagonists. 
The anti-inflammatory drug repertaxin, an antagonist of the IL-8 
receptor CXCR1, reduced the BCSC population, producing apoptosis 
in the non-stem tumor population and reducing metastasis formation 
in mouse models [56]. These results suggest that other receptors 
involved in BCSC biology can be targeted, either with antagonists or 
with interference RNA. 

Other targets

Some drugs developed and tested for other therapeutic 
applications, such as salinomycin and metformin, have shown activity 
against breast CSCs. Their mechanism of action is still unclear and/
or may involve multiple pathways. The ionophore salinomycin was 
identified as toxic to BCSCs by high-throughput screening [57] and 
is effective killing gastric CSCs [58]. Treatment of mammosphere 
cultures with salinomycin reduces the expression of the stem cell 
marker SOX2, indicating a reduction in the proportion of cells with 
the BCSC phenotype [59]. The combined treatment with salinomycin 
and trastuzumab enhances therapy effectiveness [59]. Salinomycin is 
also capable of inducing apoptosis in human cancer cells of different 
origins that display multiple mechanisms of drug resistance [60,61] 
and sensitize breast cancer cell to antimitotic microtubule-targeting 
drugs [62]. Although the precise way of action of salinomycin 
remains to be determined, there is evidence that salinomycin induces 
a conformational change of the ABC transporter MDR1/ABCB1 that 
reduces its activity [63] and increases DNA damage and promotes cell 
cycle arrest in antimitotic drug-treated cancer cells [62].

The anti-diabetic drug metformin has been used in treatments in 
breast cancer due its ability to preferentially kill BCSCs. Metformin has 
a higher cytotoxic effect in BCSCs over no-stem tumor cells [64,65]. 
The combination of metformin with trastuzumab removes stem cell 
population and suppresses proliferation and renewal of BCSC HER2 
carcinomas [66]. In a xenograft mouse model, concurrent treatment 
with metformin and chemotherapeutic agents reduced tumor mass 
more effectively than either drug alone and prevents relapse [64]. 
Metformin has also been used with ionizing radiation, and this 
combination improves the effect of radiotherapy over BCSCs in vitro 
[65]. A similar effect was observed in vivo, where metformin enhanced 
tumor growth inhibition by radiotherapy [65]. Despite the increasing 
number of studies that analyze the effects of metformin in breast cancer 
cells, the mechanisms involved are not yet entirely clear. Metformin 
exerts (at least in part) its effects by activating the AMP-activated kinase 
(AMPK) pathway, which drives to mTOR inactivation. These effects 
correlate with cell arrest, apoptosis, and inhibition of tumorigenesis 
[67-69]. AMPK activation can also lead to the inhibition of Acetyl CoA 
carboxylase (ACACA) affecting fatty acid synthesis. Thus, another 
possible mechanism of metformin may be the alteration of lipid rafts´ 
functions.

Conclusions and Perspectives
BCSCs have a central role in breast cancer progression since 

they are involved in tumorigenesis, therapy response, and metastasis 
formation. Thus, new therapies that target these cells are urgently 
required. Those therapies could be a better approach to avoid the 
refractory nature of breast cancer to conventional therapy. The 
development of such therapies must consider the phenotypical 
differences between BCSCs cells and the rest of the tumor cells. Surface 
markers, transporters, enzymes, and signal transducers differentially 
expressed are ideal candidates. On the other hand, the design of 
new therapies must also take in consideration which pathways are 
shared between BCSCs and normal stem cells in order to reduce the 
possible toxic effects. Therefore, the following are still essential: i) the 
characterization of new biomarkers for BCSC; ii) the elucidation of the 
specific mechanisms by which BCSCs survive chemotherapy, regulate 
self-renewal, and interact with their primary and metastatic niches; and 
iii) the clarification of the relationship between the presence of BCSCs 
and clinical progression. Such approaches may become the basis for the 
generation of effective and clinically applicable therapies that prevent 
disease relapse, metastasis, and enhance patient survival.
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