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Abstract

Ischemia/reperfusion injury is a reaction occurring after successful treatment of an acute myocardial infarction or
in the setting of solid organ transplantation. After successful reperfusion of a previously occluded vessel or a
transplanted organ, an additional loss of otherwise vital cells may occur, the so-called lethal ischemia-reperfusion
injury. This lethal reperfusion injury is based on rapid tissue oxygenation, leading to a release of reactive oxygen
species (ROS) and inducing oxidative stress, endothelial cell activation and inflammation. Experimentally the
reperfusion injury can be attenuated via ROS-scavenging, vessel stabilizing and anti-inflammatory interventions.
Cytoprotective genes, such as heme oxygenase-1 (HO-1), offer a therapeutic approach to address this problem.
Therefore, this review will focus on the beneficial effects of HO-1 in ischemia/reperfusion injury.
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Introduction
With more than 550000 new cases each year only in the US, heart

failure is a major component of cardiovascular disease [1]. As cardio
protective measures are needed in the face of this epidemic to be
utilized in treatment of heart failure and development of novel
transplantation strategies; HO-1 offers a promising avenue for this
purpose, especially considering the significant body of research
evaluating it as a therapeutic target.

Ischemia, literally meaning restriction of blood, induces tissue
damage through disruption of aerobic metabolism, inducing cell death
via apoptosis and necrosis. Reperfusion of the ischemic tissue, meant
to rescue the ischemic tissue, may induce additional damage via
endothelial activation, thrombotic and inflammatory cell recruitment
as well as ion imbalance and cardiomyocyte damage. The phenomenon
is dubbed ischemia/reperfusion (I/R) injury, and has implications in
wide-ranging clinical settings, including ischemic heart disease, organ
transplantation or even remote organ damage. Molecular mechanisms
include oxidative stress, calcium overload and intracellular
acidification [2]. In endothelial cells reperfusion injury is characterized
by an activation and an inflammatory phenotype. This activation leads
to an increased production of reactive oxygen species, induction of
vascular permeability and expression of cytokines and leukocyte
adhesion factors [3]. Thus, ischemia-reperfusion injury is essentially an
inflammatory process, therefore, modulation of inflammatory
activation is an attractive therapeutic strategy (Figure 1). For this
reason, antioxidant molecules have been intensively studied for
potential immunomodulatory effects. Carotenoids, eg., being
constituents of a normal diet have been screened for beneficial effects
in atherosclerosis and cardiovascular disease, as reviewed by Ciccone

et al. [4]. Plasma carotenoid levels are reduced in various
cardiovascular disease stages; but contradictory results are present for
the protective effects of carotenoid supplementation.

Since directly targeting inflammatory cells has not proven efficient,
due to redundancy of cytokines and adhesion molecules involved, and
due to detrimental as well as healing functions of the same cell source
in various phases of the inflammatory process, an alternative treatment
approach would be cytoprotection in the affected tissue. As shown by
the so-called “ischemic preconditioning”, tissue subjected to limited I/R
is driven to express protective genes that attenuates damage of further
ischemic insults [5]. Among these genes, heme oxygenase-1 (HO-1) is
particularly promising. Heme oxygenases catabolize free heme into
Fe2+, CO and biliverdin, which would otherwise act as a damage
signal. HO-1 is the inducible isoform; whose function becomes the
rate-limiting step of free heme degradation under stress. Although the
enzyme and its function has been known for a long time [6],
recognition of its cytoprotective effects [7] has a shorter history. The
allure of HO-1 as a protective gene is not only caused by its ability to
hamper heme accumulation, but individual protective effects of the
catalytic products of its enzymatic action, i.e. Fe2+, CO and biliverdin.

HO-1 attenuates ischemia/reperfusion injury in the heart
In a study published by Pachori et al. [8] recombinant adeno-

associated virus (rAAV) delivery of HO-1 to rat myocardium; followed
by daily repetitive I/R through for five days; HO-1 treatment resulted
in reduced wall thinning and better ejection fraction in comparison to
LacZ controls, with similar levels of cardiac function to sham operated
animals. Apoptosis and superoxide generation was also curbed in
HO-1 expressing animals. Liu et al. [9] investigated long term effects of
HO-1 rAAV delivery on left ventricular function. Acute I/R injury was
induced in rat hearts by left anterior descending artery (LAD) ligation
and subsequent reperfusion. In a one-year period, HO-1 treated
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animals had twice the survival rate of LacZ controls. Left ventricular
(LV) remodeling was alleviated in the treatment group according to
echocardiographic and histological analyses, as was the LV function as
shown by an invasive pressure-volume analysis in anesthetized
animals.

A possible mechanism for HO-1 induced cardioprotection through
attenuation of inflammation was suggested by data from the study of
Zhao et al. [10] in a mouse model of diabetic cardiomyopathy.
Systemic overexpression of HO-1 has decreased cardiac expression of
inflammatory cytokines, IL-6 and TNF-α; whereas transgenic mice
with a mutant form of HO-1 displayed increased cytokine expression.
Following up on this relation, recently, we have elucidated the
inflammatory profile of HO-1 overexpressing cardiac tissue in mice
[11]. After ischemia/reperfusion (I/R), we observed in HO-1 knockout
mice higher levels of cytotoxic and phagocytic leukocyte recruitment,
but not of the regenerative cells. Increase in infarct size and reduced
contractile responsiveness upon adrenergic stimulation, as well as
more TUNEL positive nuclei, was noted in the knockout hearts.
Application of recombinant adeno-associated viral delivery of human
HO-1 (rAAV.hHO-1) rescued the phenotype by shifting the immune
response from cytotoxic to repair phase, reducing pro-inflammatory
neutrophilic and monocytic populations and increasing proangiogenic
cells.

The revelation of inflammatory modulation in HO-1 in knockout
mice, concordant with the anti-inflammatory effects of HO-1
overexpression in endothelial cells under flow conditions, led to
investigating the cardioprotective potential of HO-1 in a porcine
model of acute myocardial infarction. Overexpression of hHO-1 was
achieved by generating transgenic pigs ubiquitously expressing hHO-1
as well as by regional application of rAAV.hHO-1. Both methods
yielded similar levels of expression as quantified by qPCR. Strikingly,
after I/R, transgenic and rAAV treated animals displayed reduced
levels of myeloperoxidase expressing cytotoxic neutrophils in the
ischemic areas. A similar decrease was also observed in CD14+
monocytes. An inhibitor of HO-1 activity, zinc protoporphyrin (ZnPP)
abolished this effect.

Analysis of cardiac function in hHO-1 overexpressing pig hearts
indicated a cardioprotective effect in I/R injury. Structurally, infarct
size was abrogated and TUNEL-positive nuclei were found in reduced
quantities. Functional preservation was improved in transgenic
animals as seen by a preserved left ventricular ejection fraction and
reduced end diastolic left ventricular blood pressure. Finally,
sonomicrometric measurements showed improved contractile function
in the ischemic areas. Reversal of these phenomena by regional
application of ZnPP reinforces the causality of the HO-1 treatment and
the observed effects.

Evidence of enhanced microvasculature preservation after I/R in
HO-1 transgenic pigs was found by PECAM1 staining in infarct border
zone. The increase in capillary density was observed in both
constitutive transgenic and rAAV.hHO-1 treated animals. As the rAAV
serotype 2/9, which we used in our study, has a clear myotropism [12],
this effect is mainly dependent on the cardiomyocyte compartment.
Indeed, we have shown that in vitro culture of endothelial cells with
pre-conditioned media from HO-1 overexpressing myocytes displays
improved cell survival after hypoxia and reoxygenation.

Although our study demonstrates the cardioprotective properties of
HO-1 against innate immune driven I/R damage, utility of any
molecule of therapeutic potential in the context of transplantation

must address the differing inflammatory mechanics of the latter. Innate
immunity presents with an early obstacle in a xenotransplantation
setting, whereas mitigation of the adaptive immune system is essential
for long term survival of both xeno- and allografts. As the ability of
HO-1 to abrogate endothelial cell activation has been demonstrated in
our study as well as others [13] (Figure 1), it presents a noteworthy
target in transplantation technology.

Figure 1: Cell activation in ischemia/reperfusion injury: Ischemia/
reperfusion injury leads to a cell activation including reactive
oxygen species release, enhanced adhesion molecule expression and
apoptosis. Cytoprotective proteins such as, HO-1 might attenuate
this endothelial cell activation and thereby reduces lethal
reperfusion injury.

Kidney ischemia/reperfusion injury is diminished by HO-1
In a complementary study [13] utilizing the same hHO-1 transgenic

pig model, ischemia/reperfusion injury following organ
transplantation was mirrored. Here, porcine kidneys underwent ex-
vivo perfusion with human blood. In wild type kidneys the renal
vascular resistance was remarkably increased in contrast to the allo-
perfused setting. Strikingly, hHO-1 transgenic kidneys mirrored the
latter upon perfusion with human blood. Coagulation analyses
revealed reduced consumption of anti-thrombin and fibrinogen in
transgenic kidneys. Taken together with the reduced activation of
HO-1 overexpressing endothelial cells, these results indicate a
protective effect of HO-1 on graft endothelium.

The ex vivo perfusion setting employed in the study [13] was limited
to short term effects, as alloperfusion was terminated at 240 minutes.
This duration was more than sufficient as the wild type porcine
kidneys perfused with human blood lasted circa one hour. If the
complement system is impaired with C1 inhibitor, the survival
increased to two hours. In contrast, the hHO-1 transgenic kidneys with
complement inhibition could survive up to four hours. Surprisingly,
even when the C1 inhibitor was omitted, the HO-1 transgenic kidneys
markedly resisted hyperacute rejection, surviving in excess of three
hours. Additionally, this resistance was effected despite similar levels of
complement activation in wild type and transgenic kidneys.

More recently, the same group developed a pig expressing the
protective genes HO-1 and A20 and a knock-out for GGTA1 [14]. In
the ex vivo perfusion studies, kidneys from transgenic animals
displayed low renal vascular resistance and prolonged survival
comparable to autologous perfusion. This model may demonstrate
feasibility of multitransgenic porcine xenotransplant donors.
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HO-1 improves solid organ ischemia/reperfusion injury
Along with the ischemic heart disease and development of

xenotransplants, ischemia/reperfusion injury is also clinically relevant
in allografts used in end stage organ diseases. During transplantation,
donor organ in anoxic, cold storage conditions is perfused with
oxygenated, warm blood of the host, displaying the same activation of
endothelium, which contributes to the possibility of rejection. In
addition to cardiac and renal tissues as reviewed here, HO-1 has been
shown to be protective against I/R injury in the liver [15],
gastrointestinal tract [16], spinal cord neurons [17], skin [18], pancreas
[19] and lung [20] (Figure 2). With such ubiquitous cytoprotective
effects, HO-1 may present with an appealing target in transplant
pretreatment. Indeed, Ma et al. [21] demonstrates delivery of
recombinant HO-1 with a protein transduction domain to rat heart
grafts in cold preservation, which effects increased graft survival time
under preservation, as well as reduced I/R injury after transplantation.

Figure 2: Organ protection via heme oxygenase 1: HO-1 displays
protective abilities against I/R injury in a variety of organs.

Outlook and Clinical Perspective
Diverse clinical challenges of protection against ischemic heart

disease, successful organ transplantation and realization of clinically
relevant xenotransplantation share I/R injury as common component,
against which heme oxygenase-1 may present as a feasible treatment
option. To achieve therapeutic protection, HO-1 application or
induction needs to be timely associated to the reperfusion event.
Therefore, further investigations are needed to determine if strategies
that activate HO-1 have a clinical impact on the event of acute
myocardial infarction or solid organ transplantation.
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