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Introduction
From an ancient time, plants and herbs have been used as a healing 

agent in a variety of ailments, and almost every plant, vegetable, and fruit 
contains different bioactive compounds (produced through secondary 
metabolism) that have numerous therapeutic uses [1]. Among the 
different groups of these bioactive phytochemicals, triterpenoid is 
one of the important compounds used as an anti-inflammatory, anti-
cancer, and anti-microbial agent [2]. Triterpenoids are universally 
found in plants; specifically, pentacyclic triterpenes have distinctive 
biological properties as shown by emerging research [3]. American 
Cancer Society (2015) declared cancer as the second leading cause 
of death in the US, with expectations to overtake heart disease in the 
next few years [4]. Similarly, the World Health Organization (WHO) 
estimates that cancer causes the most fatalities compared with any 
other disease worldwide [5]. However, modern advances in the field of 
medical sciences have decreased the number of cancer deaths over the 
last two decades [4,5]. In addition to surgery and radiotherapy, natural 
compounds, particularly triterpenoids such as ursolic acid (UA), have 
shown great potential to inhibit cancer development [6].

UA is a 3β-hydroxy-12-urs-12ene-28-oic acid and is one of 
the pentacyclic triterpenoids present in different plants, herbs, and 
fruits (e.g., apples, pears, and figs) [7]. Extensive research has been 
conducted over the last few decades to clarify the role of UA in various 
diseases, especially cancer [8,9] (Figures 1 and 2). Some of the plants 
that contain UA include Malus domestica, Origanum majorana, 
Rosmarinus officinalis, Salvia officinalis, Thymus vulgaris, Eucalyptus, 
and Coffea arabica, in addition to the outer peel of many different 
fruits [10]. Ongoing studies have demonstrated that UA is capable of 
inducing apoptosis, arresting cell cycle progression, inhibiting cellular 
proliferation, and reducing tumorigenesis in some cancer cells via 
multiple signaling pathways [2,11]. Bonaccorsi et al. found that UA 
suppresses endogenous reverse transcriptase (RT), an enzyme which 
regulates cellular proliferation and differentiation, in both melanoma 
(A375) and anaplastic carcinoma (ARO) cells [12]. Because UA is not 
soluble in water, its bioavailability is lower in the body, making it difficult 
to acquire its full advantage [13]. Potential anti-cancer anti-cancer 
effects of UA include anti-proliferative, proapoptotic, anti-metastatic, 
and anti-angiogenic effects [14], and pharmacological properties of UA 
include anti-inflammatory, anti-oxidative stress, anti-mutagenic, anti-
atherosclerotic, anti-hypertensive, anti-leukemic, anti-viral, and anti-
diabetic effects [15]. In addition, a recent phase I clinical trial conducted 
by Qian et al. found that UA efficiently enhances the patient remission 
rate with an acceptable level of toxicity in 21 subjects with solid tumors 
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[16]. Therefore, the goal of this review is to summarize the effects of UA 
on various types of cancer and discuss the signaling, mechanisms, and 
pathways involved in the prevention and treatment of cancer.

Chemistry of UA
The structure of UA comprises C-30 isoprenoid in a pentacyclic 

triterpenoid, and UA has low solubility in water but is highly soluble 
in glacial acetic acid and alcoholic NaOH. Its physical appearance is 
a crystalline solid, with fine hair-like spikes, with a melting point of 
284°C and a molecular weight of 456.70032 g/mol [14].

Therapeutic Roles
Apoptosis and cell cycle arrest

Apoptosis, or programmed cell death, is specific morphological 
and biochemical alterations leading to natural cell death. Apoptosis 
has a very significant role in controlling various biological processes, 
such as embryonic development, hematopoiesis, and immunity [17]. 
Kim et al. showed that UA induces apoptosis via activating caspase-3 
in a HepG2 cell line [18]. The features of apoptotic cells include 

Figure 1: Chemical structure of UA.
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DNA fragmentation, cellular shrinkage, an increase in cytoplasmic 
Ca2+ levels, cytoplasmic and nuclear membrane blebbing, as shown 
in HL-60 (human promyelocytic leukemia) cells and Daudi (human 
B-lymphoblastoid) cells after treatment of UA [8,19]. UA reportedly 
suppressed epidermal growth factor receptor/mitogen-activated 
protein kinase (EGFR/MAPK) pathway to induce apoptosis and 
inhibit cellular proliferation [20]. Moreover, Weng et al. found that 
UA significantly decreased the proliferation of gall bladder cancer 
cells (i.e., GBC-SD and SGC-996 cells), using an MTT assay in a dose-
dependent manner, and that US caused an S-phase cell cycle arrest in 
both cell types and increases the expression of pro-apoptotic markers 
(i.e., activated caspases and PARP), using an immunoblot assay. The 
authors also performed an in vivo study using a xenograft model and 
observed tumor growth inhibition zin nude mice [21]. Moreover, an 
in vitro study of bladder cancer demonstrated that UA induces ER 
stress in T24 cells, which in turn activates a Jun N-terminal kinase 
(JNK) signaling pathway to trigger eventual apoptosis [22]. A study 
involving breast cancer cells (i.e., MCF-7 and MDA-MB-231) revealed 
that the induction of apoptosis occurred via the mitochondrial death 
pathway, the extrinsic death receptor pathway, and by downregulating 
the expression of FoXM1 protein. Wang et al. also found that in MCF-7 
cancer cells, UA initiates apoptosis, as well as downregulates cyclinD1/
CDK4, resulting cell cycle arrest [23,24]. In addition, a study of cervical 
cancer (i.e., HeLa and SiHa) cells found that UA has the potential 
to induce apoptosis via a mitochondrial intrinsic pathway and the 
inhibition of the ERK1/2 MAPK pathway [25]. Treatment of colorectal 
cancer with UA targets the phosphatidyl inositol 3 kinase (PI3K) 
signaling pathway to induce apoptosis in HCT15 and CO115 cells [26]. 
Moreover, the upregulation of the expression of p53, NF-κB, and Bax 
followed by enhanced transcriptional p21 activity and the activation of 
caspase-3 and caspase-9 was shown to be regulated by UA in human 
colon adenoma (SW480) cells [27]. Another group of researchers has 
reported the efficient induction of apoptosis in gastric cancer (SNU484, 
BGC-803) cells via the downregulation of Bcl-2, the upregulation of 
proteolytic activation of caspase-3 and caspase-8, and the arrest of the 
cell cycle at the G0/G1 stage [9,28]. Glioma (U251) cells also exhibit 
an inhibition of proliferation and the initiation of apoptosis via the 
activation of caspase-3 in a dose-dependent manner [29]. The cell 
cycle arrest in the sub-G1 phase of human hepatocellular carcinoma 
(HUH7) cells is accompanied by apoptosis involving the discharge of 
cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, 
as well as the consequential cleavage of poly (ADP) ribose polymerase 
(PARP) [30]. This cleavage includes the downregulation of mRNA 
expression of the X-linked inhibitor of apoptotic protein (XIAP) in a 
dose-dependent manner following the treatment of UA [30]. In studies 
of melanoma, Harmand et al. demonstrated that UA is responsible 
for the induction of apoptosis in M4Beu cells via the mitochondrial 
intrinsic pathway and caspase-3 activation, which is associated with an 
increase in Bax expression and a decrease in Bcl-2 levels after treatment 
[31]. Furthermore, Manu et al. found that UA induces apoptosis in 
B16F-10 cells, verified by the observation of apoptotic bodies and 
DNA fragmentation through the upregulation of p53 and caspase-3 
[32]. This change was also associated with the downregulation of the 
anti-apoptotic gene Bcl-2 and melanoma progression in vitro [32]. 
Furthermore, Wu et al. investigated leukemia (K562) cells and showed 
that UA is able to inhibit cellular growth by inducing apoptosis through 
the upregulation of PTEN gene expression and inhibiting the PI3K/
Akt/mTOR pathway [33]. A study by Leal et al. demonstrated that UA 
initiates cell cycle arrest and apoptosis in pancreatic cancer (AsPC-1) 
cells with an upregulation in the levels of p53, p21 (waf1), and Noxa 
proteins [34]. One study on HCT15 (human colon cancer) cells revealed 
that UA resulted in a cell cycle arrest of the G0/G1 phase [35]. Combined 

with the initiation of apoptosis, UA is also responsible for the cell cycle 
arrest via cyclin and CDK (cyclin dependent kinase). Therefore, these 
accumulated results suggest that UA causes apoptosis in cancer cells by 
activating cell cycle arrest and altering related molecular targets that 
promote its anti-cancer properties.

Anti-metastasis

Metastasis causes the spread of cancer from one organ to another 
in an unpredictable manner. This renders effective treatments (e.g., 
surgery and radiotherapy) futile and leaves chemotherapy as the only 
other alternative; hence, several chemicals and natural compounds have 
been shown to inhibit metastasis of cancer [36,37]. One study showed 
that UA and its derivatives inhibit the metastatic effect of HepG2 cancer 
cells by suppressing the focal adhesion signaling pathway along with the 
regulation of cancer biomarkers such as ICAM-1, VCAM-1, E-selectin, 
FAK, paxillin, and PTEN. Additionally, immunohistochemistry 
revealed that UA also regulates the metastatic biomarker ICAM-
1 [37]. Tumor invasion linked to proteases, such as urokinase and 
cathepsin B, is also suppressed by UA [38]. A study of C6 glioma cells 
found that UA inhibits the expression of matrix metalloproteases 
(MMPs) by regulating NF-κB via the up-regulation of IκB inhibitors 
[39]. UA also inactivates MAPK/P38 signaling responsible for the 
augmentation of MMP expression in SNU484 cells [9]. Moreover, Liu 
et al. found that UA inhibits lung cancer metastasis in a dose-dependent 
manner in vitro. They found increased expression in E-cadherin as 
well as decreased expression in N-cadherin and vimentin, which 
are responsible for the epithelial–mesenchymal transition (EMT). 
Additionally, UA inhibits metastasis by decreasing the expression 
of astrocyte elevated gene-1 (AEG-1) and inhibiting NF-κB [40]. In 
another study, Prasad et al. revealed that UA considerably decreases 
tumor volume in vivo and downregulates metastatic protein expression 
(e.g., MMP-9, VEGF, and ICAM-1) in vitro [41]. Moreover, Yeh et al. 
observed that UA causes a reduction in the migration and invasion of 
breast cancer (MDA-MB-231) in a dose- and time-dependent manner. 
This effect was associated with the diminished activities of MMP-2 and 
u-PA by the inhibition of phosphorylation of Jun N-terminal kinase, 
Akt, and a mammalian target of rapamycin [42]. An in vitro analysis 
of highly metastatic human fibrosarcoma (HT1080) cells showed that 
UA triggers the downregulation of MMP-9 to reduce the extent of the 
tumor cell invasion via an invasion assay in the membrane of a transwell 
chamber [43]. Similarly, Huang et al. found that UA inhibits metastasis 
through the downregulation of MMP-9 in a dose-dependent manner, 
suppresses IL-1β, subdues TNF-α-induced activation of protein kinase 
C- ζ (PKC-ζ), and suppresses the association of ZIP/p62 with PKC- ζ 
[39]. Moreover, to investigate the anti-metastatic property of UA, a 
mouse model of prostate cancer was treated with UA, and it was found 
that UA inhibits metastasis in vivo [44]. In addition, it was observed that 
UA downregulates the expression of CXCR4, subsequently reducing 
the expression of CXCL12-induced metastasis in prostate cancer cells 
in vitro [44]. Therefore, these obtained evidence elicits the potential of 
UA to suppress cancer by hindering metastasis via different signaling 
pathways.

Anti-angiogenesis 

Angiogenesis is the development of new blood capillaries from 
previous blood vessels, for example, for tumor growth and its capacity 
for invasion. A study on Ehrlich ascites carcinoma (EAC) tumors by 
Saraswati et al. revealed that UA reduced peritoneal angiogenesis in EAC 
tumors compared to the controls in an in vivo model of angiogenesis 
[45]. Moreover, immunostaining results demonstrated a decrease 
in PECAM/CD31 (an endothelial cell marker) in UA-treated tumor 
sections, whereas the control tumor sections exhibited pronounced 
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vascularity [45]. Lin et al. reported that UA treatment inactivates signal 
transducer and activator of transcription-3 (STAT3), as well as the AKT 
and sonic hedgehog (SHH) pathways responsible for tumor proliferation, 
invasion, and angiogenesis [11]. Lin et al. used UA to treat human liver 
cancer (i.e., Hep3B, Huh7, and HA22T cells) cell lines, and found that 
the expressions of HIF-1, VEGF, and IL-8 significantly reduced in a 
dose-dependent manner. Additionally, cell invasion and migration 
were also found to have declined along with the suppressed expression 
of uPA [46]. In vitro and in vivo studies by Kanjoormana et al. revealed 
the anti-angiogenic characteristics of UA: UA inhibited capillary 
formation of the tumor induced by highly metastatic melanoma (B16F-
10) cells in C57BL/6 mice. Furthermore, UA-treated mice exhibited 
decreased levels of VEGF and proinflammatory cytokines in the serum 
compared to control mice. Likewise, UA-treated B16F-10 cells have 
decreased expression of VEGF and iNOS as well as an inhibition of 
MMP-2 and MMP-9, thereby supporting the in vivo results [47]. In 
another study, Jin et al. using nano-particle technology (UA loaded 
chitosan nanoparticle) for drug delivery and discovered a significant 
decrease in angiogenesis of chicken chorioallantoic membranes (CAM) 
in vivo for a dose 10 times lower than the normal drug delivery system 
[48]. Moreover, in an in vivo study of prostate cancer, Shanmugam et 
al. found that UA inhibits cell proliferation, invasion, and metastasis, as 
well as angiogenesis to prevent tumor growth through the suppression 
of NF-κB and STAT3 pathways [49]. Another study showed that UA is 
able to inhibit crucial steps of angiogenesis, as well as endothelial cell 
proliferation, migration, and differentiation in vitro and inhibition of 
CAM in vivo. However, it also induces other steps of angiogenesis, such 
as ECM degradation by MMP-2 and urokinase, indicating that a more 
comprehensive analysis of the role of UA in angiogenesis is required 
[50]. These results support the notion that UA has anti-angiogenic 
properties that inhibit carcinogenesis.

Antioxidants

Reactive oxygen species (ROS) are normally intracellularly 
produced by mitochondria and cleared by the cell’s antioxidant defense 
mechanisms. An inability to clear ROS, and the subsequent excessive 

intracellular accumulation of ROS, can promote cancer. This explains 
why cancer cells are often characterized by excessive intracellular ROS. 
Transcription factors such as NF-κB and STAT3, kinases, growth factors, 
cytokines, and enzymes affect numerous signaling pathways that are 
further modulated by ROS, and these pathways are associated with 
cellular transformation, inflammation, tumorigenesis, proliferation, 
metastasis, invasion, and angiogenesis [51]. Some derivatives of UA 
when administered to NTUB1 cells (a human bladder cancer cell line) 
result in cell cycle arrest by increased levels of ROS in these cancer cells 
[52]. Ramos et al. found that Caco-2 cells pretreated with UA before 
being subjected to oxidative injury are protective against H2O2 DNA 
damage and also increase DNA repair. Therefore, this property of UA can 
contribute to combating the carcinogenic effects arising from ROS [53]. 
Gayathri et al. by in vivo examination of rats with hepatocarcinogenesis 
induced by diethylnitrosamine, showed a reduced amount of oxidative 
stress following UA treatment, thereby suggesting a role for UA as a 
chemopreventive agent for diseases facilitated by free radicals [54]. 
Yang et al. recently demonstrated the anti-proliferative effect of UA 
in human adenocarcinoma gastric cancer (BGC-823) cells and found 
that UA could sensitize cells to radiotherapy; this enhanced, synergistic 
treatment approach is linked with elevated activity of ROS, G2/M cell 
cycle arrest, and apoptosis [55]. In addition, Lin et al. showed that UA 
in conjunction with cisplatin causes an increase in p21, cyclin E, and 
p53 levels as well as a decrease in p27 and cyclin D1 proteins. Moreover, 
p-p38 was elevated by the increase in ROS-induced cell death of bladder 
cancer (NTUB1) cells [56]. Another study confirmed that the ethanolic 
extract of Wrightia tomentosa, which contains UA and olenolic acid, 
exhibits anti-breast cancer activity via G1 cell cycle arrest, generation 
of ROS, loss of mitochondrial membrane potential, and apoptosis of 
MCF-7 and MDA-MB-231 cells in vitro. Gao et al. also found a similar 
effect using modified UA [57,58].

Anti-inflammatory

Inflammation is an intricate occurrence linked to numerous 
diseases, including cancer. Anti-inflammatory activity of UA was 
observed with the reduced production of pro-inflammatory cytokines 

 
Figure 2: Schematic broad spectrum effect of UA on cancer. UA controls several genes to induce apoptosis and autophagy in cancer. UA 
regulates several genes to attenuate metastasis, angiogenesis, cell cycle/proliferation, oxidative stress, and inflammation in cancer. Lined up 
arrow indicates the increased gene levels whereas lined down arrow indicates the decreased gene levels after treatment of UA in cancer.

Figure 2: Schematic broad spectrum effect of UA on cancer. UA controls several genes to induce apoptosis and autophagy in cancer. UA regulates several genes 
to attenuate metastasis, angiogenesis, cell cycle/proliferation, oxidative stress, and inflammation in cancer. Lined up arrow indicates the increased gene levels 
whereas lined down arrow indicates the decreased gene levels after treatment of UA in cancer.
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(e.g., IL-2, IFN-γ, and TNF-α) by Th-1 cells after the use of UA in vivo 
[59]. UA was also found to inhibit tumor growth and accentuate the 
survival rate of mice by decreasing inflammation-inducing mediators 
(i.e., STAT3, AKT, and IKKa/b) [60]. In addition, when arthritic BALB/c 
mice were treated with UA, the production of pro-inflammatory 
cytokines (e.g., IL-2, IFN-γ, and TNF-) by Th-1 cells was reduced 
[59]. Takada et al. found that in human umbilical vein endothelial 
cells (HUVECs), UA causes a decrease in the expression of E-selectin 
via the inhibition of NF-κB translocation to the nucleus [61]. Santos 
et al. found that UA causes decrease in histamine release, inhibition 
of prostaglandin, and production of leukotrienes [62]. Prasad et al. 
investigated chemoresistant human pancreatic cancer and found that 
UA sensitizes pancreatic cancer cells to gemcitabine [63]. They used 
AsPC-1, MIA PaCa-2, and Panc-28 cells as well as nude mice implanted 
with Panc-28 cells for in vitro and in vivo studies to show the anti-
proliferative and proapoptotic properties of UA [63]. Moreover, UA 
has the ability to regulate proteins related to proliferation, metastasis, 
and angiogenesis by inactivating NF-κB and STAT3 signaling pathways 
responsible for inflammation [63]. A study conducted by Suh et al. 
using mouse macrophage RAW264.7 cells found that the expressions 
of inducible nitric oxide (iNOS) and cyclooxygenase (COX-2) were 
diminished with the inhibition of NF-κB as a result of UA pretreatment 
[64]. Similarly, another study on human mammary epithelial cells 
showed that treatment of UA suppresses the amount of COX-2 protein 
induced by TPA (12-o-tetra decanoylphorbol-13-acetate) and inhibits 
the synthesis of PGE2 (prostaglandin E2) in 184B5/HER cells [65]. 
Furthermore, Kowalczyk et al. discovered that UA is potentially effective 
in preventing skin tumor formation and that it decreases inflammatory 
signaling by downregulating COX-2 and IL-6 expression in a mouse 
model [66]. Another study on skin tumorigenesis by Huang et al. 
discovered that rosemary extract (which contains a substantial quantity 
of UA) when applied to the skin, inhibits TPA-induced inflammation 
and tumorigenesis in mice in a dose-dependent manner [67].

Autophagy 

Autophagy is an evolutionarily conserved cellular process first 
observed in yeast and is characterized by the degradation of cellular 
content into by-products that are reused in other physiological 
processes for cell survival. However, excess autophagy is also linked to 
autophagic cell death. Autophagy is found to be closely associated with 
tumorigenesis, and excessive autophagic degradation of the cellular 
components in cancer cells can induce cell death, eventually preventing 
neoplasia [68-70]. Junco et al. revealed that UA synergizes with other 
therapeutic drugs to attenuate the viability of melanoma cells by 
inhibiting excessive autophagy. Paradoxically, the level of LC3II was 
found to be increased, indicating an accumulation of autophagosomes. 
However, UA inhibits the pro-autophagic proteins Beclin-1 and p62, 
which shows that UA decreases cell viability of melanoma (i.e., B16F10 
and A375 cells) cells in combination with resveratrol and chloroquine 
[71]. Another investigation involving malignant glioma (U87MG) cells 
by Shen et al. revealed that UA triggers G1 phase cell cycle arrest and 
induces autophagy characterized by the generation of acidic vesicular 
organelles, an increase in the levels of autophagolysosomes and LC3-
II. In addition, UA causes ER-stress and an increase in intracellular 
calcium accompanied by ROS production, indicating that ER stress 
leads to the process of autophagy [72]. In a study of cervical cancer 
(TC-1) cells, cell death due to the induction of autophagy was observed 
instead of apoptosis, which is customarily triggered. Furthermore, the 
inhibition of autophagy by wortmannin and by silencing the ATG5 
gene with siRNA reduced the expression of LC3II and increased the 
viability of UA-treated TC-1 cells [73]. Zhao et al. found that treatment 
of UA on breast cancer (MCF-7) cells induced both ER stress as well 

as autophagy. The ER stress caused by autophagy protected the cells 
from UA-induced apoptosis by the upregulation of MCL-1 mediated 
through EIF2AK3 (eukaryotic translation initiation factor 2-α kinase 
3). Moreover, the activation of MAPK1/3 was the contributing factor 
for the protection of cells via UA-induced autophagy [74]. Similarly, a 
study in apoptosis-resistant colorectal cancer (HCT15) cells indicated 
that UA induces cell death of HCT15 by activating an apoptotic 
pathway and modulating autophagy through the c-jun-N-terminal 
kinase (JNK) pathway [75]. Furthermore, Shin et al. reported that UA 
induces apoptosis and autophagy, including a G1 phase cell cycle arrest 
in prostate cancer (PC3) cells. The inhibition of autophagy with the help 
of 3-methyladenine or Beclin-1/Atg5 small interfering RNA increases 
UA-induced apoptosis, suggesting that autophagy acts as a cell survival 
mechanism. Hence, the combination of an autophagy inhibitor and UA 
could be a potential novel approach for cancer therapy [76]. Therefore, 
UA-induced autophagy in conjunction with apoptosis-based therapies 
is an emerging strategy for cancer therapy [77,78].

Conclusion 
This review attempts to summarize the therapeutic potential of 

UA in carcinogenesis both in vivo and in vitro. Natural compounds, 
UA, have been proven to be effective in treating cancer or preventing 
its development. UA can affect multiple molecular signaling pathways 
linked to human carcinogenesis, apoptosis, inflammation, oxidative 
stress, angiogenesis, metastasis, autophagy, and proliferation. 
UA’s synergistic effect with other therapeutic medications, such as 
chemotherapy and radiotherapy, can be a very effective approach 
to cure cancer. UA has a great safety and efficacy profile, but due to 
its limited water solubility and low bioavailability, it has not yet been 
successfully employed in clinical practice. Therefore, further extensive 
laboratory investigation and clinical trials are required to identify novel 
cellular target proteins and pathways involved in the therapeutic action 
of UA.
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