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Mini Review

Theranostic Viral Nanoparticles for Autoimmune 
Diseases

Abstract
Viral Nanoparticles (VNPs) as theranostic tools are a rapidly growing aspect of these particular types of nanoparticles. Among their multiple possible applications, 
their contribution in the field of autoimmune diseases has recently emerged, since they can increase the sensitivity of detection of autoantibody levels significantly 
allowing early diagnosis, prognosis and, consequently, the development of specific therapies. Based on the promising results obtained using nanoparticles derived 
from Turnip Mosaic Virus (TuMV) in an animal model of Inflammatory Bowel Disease (IBD), this mini review discusses the possibilities of development of this VNP 
as a power tool for diagnosis in immune-mediated diseases.
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Introduction

Theranostic VNPs (Viral Nano Particles)

An important goal of current biomedical research is to develop good 
theranostic tools, amenable not only for good diagnostic practices but 
also for providing assistance to directed therapies. Nano biotechnology 
has supported many of these developments over recent years, ranging 
from nano devices or nano materials to individual nanoparticles of a great 
biotechnological interest [1-6]. Within the large collection of available 
nanoparticles, viral nanoparticles (VNPs) offer some specific characteristics 
turning them as an attractive tool for biomedical-related areas, including 
immunology. VNPs derive from the naturally occurring nanoparticles 
called virions, the encapsidated form of viruses [7-10]. Thus, VNPs offer a 
biocompatible and biodegradable nanoparticle option since they are mostly 
made of proteins [11]. In addition, a large diversity of virions usable as 
nanoparticles exists, all the way from small icosahedral ones with diameters 
of few nanometers to elongated flexuous particles which can be almost one-
micron long. In any case, the viral capsid can be seen as a derivatizable 
scaffold, a multiway process including the genetic fusion of peptides or 
proteins [12-17], the chemical conjugation [18-20] or the encapsidation [21] 
of different kinds of molecules and amino acid residues.Combinations of 
derivatizing strategies are also possible, giving rise to multifunctionalization 
[20].

Biosafety is a central issue in biomedical-related biotechnologies. This 
also applies to VNPs, so their selection and design must take this into 
account. VNPs derived from plant viruses appear as an attractive alternative 
source since they are not pathogens of humans or higher animals [22-25]. 
In addition to this, the possibility of generating non-infectious Virus-Like 
Particles (VLPs), and a relatively easy and inexpensive scale-up, make of 
plant VNPs a good platform for theranostic developments [9,26-29]. Good 

examples of plant-derived VNPs are those developed from Turnip mosaic 
virus (TuMV), a flexuous elongated potyvirus. This virus has given rise to 
several VNPs, both derived from virions and from VLPs, which have shown to 
form a multi-functionalizable platform with different biomedical applications 
[15-17,20,30]. One of these implies their use for antibody sensing through 
the multimeric presentation of antigens on the particle external surface; 
such that a single particle can display up to approximately 2000 antigen 
copies [15-17]. This system allows to increase the sensitivity significantly 
with respect to conventional assays for autoantibody detection such as 
Enzyme-Linked ImmunoSorbent Assay (ELISA) and Immunofluorescence 
Assay (IFA), and it can be applied as a diagnostic tool in those pathologies 
associated to alterations in antibody levels.

The Relevance of Antibody and Autoanti-
body Sensing

Antibody sensing by highly sensitive tools allow an early prognosis, 
diagnosis and specific therapeutic approaches as well as the association of 
antibody levels and the pathological stage in different types of pathologies. 
VNPs as theranostic tool can be applicable to diseases that course with 
alterations in the antibody levels such as inflammatory and infectious 
diseases and cancer. This would be especially useful in pathologies in 
which change in antibody levels are subtle as occurs in autoimmune 
diseases [31-35] that course with an immune response directed towards 
self-molecules, the autoantigens, producing antibodies against them, the 
so-called autoantibodies.

It is known that many autoimmune diseases are caused by loss of 
immunologic self tolerance that generates chronic inflammation [33]. A 
precise and sensitive detection of autoantibodies in autoimmune diseases 
would help significantly in the understanding of the underlying mechanisms 
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of the inflammatory processes as well as in the prognosis, diagnosis and 
the most suitable treatment. However, conventional antibody detection 
systems such as ELISA and IFA are not sensitive enough for the detection 
of very low levels of autoantibodies, which are extremely low during the first 
stages of these diseases [36-41].

A Case Study: Plant VNPs for Anti-HSP60 
Detection in the Intestinal Bowel Disease

A study has been recently conducted in order to assess the use of VNPs 
as a tool in the diagnosis of autoimmunity-related inflammatory pathologies, 
using an animal model of inflammatory bowel disease (IBD) [15]. The 
selected autoantigen was Heat Shock Protein 60 (Hsp60), a chaperonin 
involved in the regulation of inflammation that has already been described 
to play a key role in several inflammatory and/or autoimmune pathologies 
[42-46]. Since Hsp60 is a very large protein, it was chosen a 21-amino 
acid epitope which has been previously described as an autoantigen in 
multiple sclerosis to functionalize VNPs [47]. Results of the study showed 
that TuMV-derived VNPs functionalized with Hsp60 peptide were able to 
detect differences in Hsp60 autoantibody levels in the peripheral blood 
which were not detectable by the conventional ELISA assay by neither 
the free peptidic antigen, nor by the whole protein. They also showed that, 
in the IBD animal model, the higher levels of the autoantibodies against 
Hsp60 protein were observed in the previous non-pathological stage and 
diminished with the inflammation development evaluated by the weight 
loss and the increase of granulocyte levels in peripheral blood [15]. Thus, 
the high sensitivity achieved by these VNP tools allowed the detection of 
changes in autoantibody levels, not detectable by conventional assays 
such as ELISA opening venues for the study of unknown mechanisms in 
the regulation of the inflammation processes. These results indicate Hsp60 
autoantibody levels as a marker of a non-pathological physiological state 
involved in maintaining the immune homeostasis (‘immunomodulator’), also 
described as ‘immununculus’ (‘immune homunculus’) [48], proposed already 
for other molecules and autoantibodies [38]. These results support previous 
investigations which revealed that the administration of antibodies directed 
towards Hsp60 [42, 49], or the immunization with the protein itself [50-53] 
improves the symptomatology associated to autoimmune inflammatory 
pathologies, including studies involving Hsp60 in IBD [46].

The Importance of Highly Sensitive Tool 
for Autoantibody Sensing in Disease and 
Non-Disease Scenarios

Although autoantibodies are key biomarkers of autoimmune diseases, 
they are not exclusive of these pathologies, since they have also been 
found associated to other diseases such as cancer associated to the 
neoantigen generation [36]. In addition, they are also present in healthy 
individuals [38]. The presence of autoantibodies in disease and non-
disease scenarios and their age-associated changes highlight the need 
of deeper knowledge and understanding of the mechanisms governing 
their production and regulation which is difficulted by the great variability 
between different sensing methodologies and the insufficient sensitive of 
conventional methods for antibody detection in these scenarios with low 
levels of autoantibodies (first stages of the disease and healthy individuals) 
[31,37,39,54]. Also worth considering is the fact that there is not a universal 
autoantigen, each scenario goes associated to certain autoantigens, and 
vice versa. In summary, autoantibodies have been proposed not only as 
role players in the induction of inflammation but also as regulators of the 
inflammation such as the Hsp60 autoantibodies and the catalytic antibodies 
(abzymes) [34,38,54-57]. Highly sensitive procedures to assess the 
different autoantibody levels during the progression of the disease as pre-
clinical and clinical markers and their likely physiological role in healthy 
individuals are most needed [37-39].

Conclusion

VNPs show themselves as potent tools for the early diagnosis 
and prognosis of autoimmune pathologies, in which the extremely low 
autoantibody levels during the earliest stages hinder their detection. This 
diagnostic tool opens the door not only for the study of the role of the 
autoantibodies in the inflammation mechanisms improving the diagnosis, 
prognosis, and specific treatment but also the role of autoantibodies 
as homeostasis regulators. VNPs also have the potential of becoming 
treatment tools through immunization, a clear example of their theranostic 
potential. Taking all the previous considerations together, we believe that 
further technological VNP development in this area has the potential to 
provide a significant leap forward in autoimmunity.
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