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A theory for morphology engineering of solid compounds 
(ATMESC) that may cause a breakthrough in materials science 
and engineering is introduced. The ability of zinc oxide (ZnO), and 
expected similar behaviour of cuprous oxide (Cu2O) and other binary 
compounds that exhibit (d10) orbitals to experience morphology 
transition when react with phosphomolybdic acid (PMA), has initiated 
the idea of the ability of other solid chemical compounds to acquire 
polar surfaces to experience morphology transition under certain 
conditions. Facts, predictions and some experimental evidences are 
discussed which support the theory.

Abdelmohsen theory for morphology transition engineering 
(ATMTE) has paved the way towards a general theory that may govern 
the morphology transition of nearly all solid compounds under specific 
conditions [1]. The morphology transition of zinc oxide was explained 
physically by attributing the inducing of polarity to the repulsion force 
between electron clouds of surface ions and polyoxometalates anions 
(POMs anions) which induces relaxation of outer surface atoms [1,2]. 
The contribution of chemical etching was considered and supported 
by the ability of molybdates to form intermediate compounds 
like Zn-molybdates (ZM) or/and Zn phosphomolybdate (ZMP) 
(pigments) when react with zinc cations. Intermediate compound 
mechanism (ICM) was supposed which may involve dissolution and 
re-crystallization of zinc oxide to facilitate solid-state fusion [1-3].

From a point of view of a chemist, the concept of materials 
engineering [4] was expanded to include “controlling and designing 
the oriented structures of materials by rescaling their dimensions 
[5-7] or varying their external morphologies [8-10], favorably with 
functionalization [11-13], decoration [14-17], doping [18-21] or 
mixing [22,23] with other materials to attend the synergistic effect 
[24-26] which enhance their properties”. There are two main methods 
used for nanofabrication; Top-down and bottom-up approaches. The 
bottom-up approach is recommended than the top-down approach, 
because the former can produce structures with homogenous chemical 
composition, and better short- and long-range ordering [1]. Figure 
1 shows schematically the engineering of nanomaterials by different 
approaches.

The morphology evolution of zinc oxide (ZnO) from nanorods 
to hybrid nanoplatelets has initiated the idea of postulating a theory 
(ATMTE) that was expected to govern binary compounds especially 
those have similar physico-chemical properties to that of zinc oxide 
[1]. ATMTE states that “Binary compounds especially amphoteric/
diamagnetic pure and doped metal-oxides like (ZnO, Cu2O) that 
have appropriate energy difference between their LUMO (acid site/
cation) and HOMO (base site/anion), may experience morphology 
transition to various dimensions (1D, 2D and 3D) when reacts 
with polyoxometalates under specific conditions, with a possibility 
to manipulate their surface catalytic properties” [1]. ATMTE has 
expected similar behviour for all binary compounds that acquire (d10) 
electronic configuration. This expectation still need more evidences as 

some binary compounds that exhibit (d10) like ZnS, and CdS have not 
responses to PMA at the same condition that was applied to ZnO to 
experience morphology transition [2]. We still believe in this prediction, 
and suppose that specific conditions like high PMA concentrations and 
high temperature may induce their surface polarity. More criticism 
was pointed towards ATMTE and their supposed mechanism [2]; for 
instance ATMTE has not predicted the morphology of engineered 
structures, has not mentioned the ability of Zn(OH)2 to experience 
morphology transition, has not controlled thickness of nanoplatelets, 
and has not predicted the ability of phosphomolybdic acid to react with 
ZnO forming intermediate compounds like Zn-molybdates (ZM) or/
and Zn-phosphomolybdate (ZMP). Moreover, they have not achieved 
complete morphology transition of the starting materials, and they 
have not sinter the final product that may enhance their physico-
chemical properties [1]. Further progress in work lead to postulation of 
a series of morphology engineering rules (MERs) that manipulates the 
dimension and morphology of the engineered structures [2].

On the basis of all reported articles and a wide survey, we conclude 
that inducing surface polarity (creating dangling bonds) is the key 
factor for morphology transition engineering [1,2,27,28]. At specific 
conditions, this step is followed by stabilization process that can be 
achieved by fusion, reconstruction or adsorption of charged species [29-
41]. Dangling bond can be defined as “An extremely reactive chemical 
bond that can be created chemically, physically or mechanically on the 
surface layer of solid compound” [27,42-49]. Atoms with few bonding 
partners acquire dangling bonds pointing outward and are known as 
immobilized atoms.

Dangling bond can be described as an immobilized free radical, as 
they are very similar to free radicals, except since they are immobilized 
in a solid, they are somewhat less reactive than free radicals [50]. 
Evidences to our theory are the ability of particles exhibiting dangling 
bonds to fuse with each other [1], they can react with any materials 
they are exposed to, such as water vapor, oxygen, hydrogen, charged 
species…etc. [51-56], in addition, they can reconstruct and terminate 
the surface when two neighboring dangling bonds bind together [57-
63]. Moreover, atomically precise quantum states, self-directed growth 
of molecular nanostructures and atomic metal wires were successfully 



Citation: Abdelmohsen AH (2017) Theory for Morphology Engineering of Solid Compounds (ATMESC): Facts, Predictions and Experimental 
Evidences. J Material Sci Eng 6: 377. doi: 10.4172/2169-0022.1000377

Page 2 of 8

Volume 6 • Issue 5 • 1000377J Material Sci Eng, an open access journal
ISSN: 2169-0022 

fabricated on silicon using their dangling bonds [64-66]. Whatever 
the way by which the dangling bonds react, they tend to minimize the 
surface Gibbs free energy to attain stability [44,67,68].

Creating dangling bonds can take place by various ways. Firstly, 
we suppose chemical etching by etching-agents [69-71] like acids (e.g. 
phosphomolybdic acids (PMA) and reduced PMA) [1]. PMA has been 
used successfully to induce the polarity of ZnO and it is expected to 
induce the polarity of (Zn(OH)2) which has Surface chemistry similar 
to that of ZnO. POMs are expected to induce the polarity of other 
zinc compounds, besides other metal oxides. Chemical reagents may 
induce the surface polarity physically as in case of zinc oxide (ZnO) 
when react with PMA [1]. This case also involves reaction of etching-
agents with solid forming intermediate compounds (ZM and/or ZMP) 
as shown in Figure 2 [2]. Electronegativity may play role in the ability 
of metal oxides to acquire polar surfaces chemically [1]. Moreover, 
organic layers that are used for functionalization and passivation of Si 
surfaces create dangling bonds at intermediate step of reaction [72,73]. 
To sum up, morphology transition by chemical inducing of polarity 
was successfully used for engineering 1D, 2D and 3D nanostructures 
and ultra-thin sheets (~30 nm) at room temperature and low 
concentration of PMA [1,2]. Secondly, it’s a fact that; the simplest way 
to introduce dangling bonds physically is to create a vacancy as in case 
of semiconductors. For instance, pure covalent materials can acquire 
dangling bonds on their surfaces by removal of the central atom [27]. 

This leads to rupture of four covalent bonds, i.e. the creation of four 
dangling bonds as shown schematically in Figure 3b. It is supposed that 
surface bombardment by particles/ions may be used for this reason. 
Imaginary set-up for physical inducing of polarity is shown in Figure 3a.

Dangling bonds can be also induced by light as in case of 
amorphous silica [74-80]. Moreover, physical etching of other solid 
compounds rather than covalent compounds may create dangling 
bonds on their surfaces. We suppose that some charged species like 
(O2-) or molecules can bind nanoparticles together which cause fusion 
and morphology transition as shown in Figure 3c [65]. Furthermore, 
ability of engineering quantum layers (atomic wires) [66] that may 
be followed by engineering of multi-atomic layers may support the 
validity of this theory (ATMESC) as shown in Figure 3c.

Thirdly, breaking large particles mechanically creates particles 
with polar surface. In other words, solid compounds under mechanical 
force experience bond cleavage which leads to smaller particles with 
polar surfaces [28,81-89]. Ball milling of metal oxides (e.g. ZnO) is 
expected to induce the surface polarity as shown in Figure 4. Inert 
atmosphere condition is supposed in case of solid compounds that 
are etched physically or mechanically to avoid reconstruction [57-59] 
or adsorption of charged species [51,52]. This approach may be used 
for minimizing size before applying chemical or physical treatment 
to induce polarity (e.g., milling commercial ZnO (microscale) before 

Figure 1: Engineering of nanomaterials by different approaches (a) bottom-up approach, (b and c) top-down approach.
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immersing in PMA solution to induce morphology transition) [1,2]. 
Milling can be used directly for morphology transition without further 
treatment, by dividing bulk particles to small structures [82,84].

After inducing the polarity of solid compounds, we suppose 
treating them in a certain medium for attaining stability by different 
ways (e.g., solution as a medium in presence of external cations, anions, 
chemical reagent to induce fusion process) [1,2]. Solid compounds with 
active sites like ZnO may catalyze deposition of molybdenum oxides 
over their surfaces, if they dispersed in POMs solution [1,2]. Other 
medium may be suggested that may keep dangling bonds without 
passivation. In-situ TEM analysis for these experiments is suggested 
to investigate the fusion of nanoparticles [90,91]. Properties of the 
dangling bonds may govern the feasibility of morphology transition 

process [92-94]. Under specific conditions, physical and mechanical 
treatment is enough for inducing morphology transition, i.e., we do 
not need further treatment as mentioned above. For instance, physical 
treatment of solid compounds by bombardment with highly energetic 
particles/rays is expected to cause ions redistribution which may 
cause morphology transition. In case of mechanical treatment, high-
energy ball milling cause also cations redistribution as reported here 
[95]. In addition, ZnO nanowires were engineered by ball milling and 
annealing methods [96].

Herein, on the basis of a theory for morphology transition 
engineering Theory (ATMTE) [1], suggestions, experimental studies 
and scientific facts; we introduce a new theory that may be applied 
to most of solid compounds; Abdelmohsen Theory for Morphology 

Figure 2: Creating dangling bonds (inducing surface polarity) chemically for zinc oxide; (a) physical explanation, (b) chemical explanation, and (c) fusion process.
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Engineering of Solid Compounds (ATMESC): which states that “Most 
solid compounds may experience morphology transition by inducing 
their surface polarity (creating dangling bonds); chemically, physically 
or mechanically. For instance, chemically we can induce polarity of 
amphoteric compounds which include diamagnetic cations (d10) within 
their structure (e.g., doped/pure ZnO or Cu2O and their hydroxides, 
compounds and composites) with a possibility to manipulate the 
engineered morphologies, and surface catalytic activity depending on the 
morphology engineering rules (MERs)”.

In order to simplify the idea, Figure 5a illustrates schematically the 
growth mechanism of nanoparticles by bottom-up approach [97,98]; 
starting by mixing the reactants under specific conditions, passing by 
nucleation of seeds to the formation of the active unstable state (AUS) 
(polar state) in which the particles still keep growth by binding their 
dangling bonds to other species. Particles may reconstruct to terminate 
growth in preferred orientation according to specific conditions and 
rules [1,99]. The final solid product will have terminated surfaces 
(no dangling bonds). The idea is to allow these solid compounds to 
acquire the surface properties of active unstable state (AUS). By this 
way, they will have the ability to fuse to each other, reconstruct to 
preferred morphologies, or adsorb charged species as shown in Figure 
5b. Immersing polar particles in ionic solution e.g., ZnO polar particles 

in ZnSO4 or ZnCl2 solution may have influence on the morphology of 
engineered structures as external cations will contribute to morphology 
engineering.

It is supposed that, there will be selection criteria for the materials 
to acquire dangling bonds by each suggested methods, such as size, 
and chemical composition. Hybrid and pure nanostructures (1D, 
2D, and 3D) of ZnO that were engineered by chemical method is 
expected to have potential use in catalysis, energy, biomedical and 
other applications; especially few and one-atom thick layer structures 
(Zn-oxidene) [1,2,100]. Moreover, many papers have been reported 
about morphology evolution and surface decoration and their effect 
on the physio-chemical properties of materials [101,102]. In addition, 
carbonaceous materials like graphene and carbon nanotubes may 
follow this theory (ATMESC) [82,103-105]. Progress in scientific 
research will facilitate the way to introduce more evidences for this 
theory. This theory is expected to be criticized, or corrected like most 
theories that have been suggested before [106,107].

Conclusions
The possibility for inducing surface polarity of solid compounds by 

various ways (chemically, physically, and mechanically) was introduced. 

Figure 3: Shows (a) experimental set-up for physical creation of dangling bonds, (b) top-view for etching surface atom of semiconductor (e.g. Silicon) to create four 
dangling bonds, and (c) supposed engineering processes for semiconductor nanoparticles by fabricating atomic wires on surface.
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This suggestion supports the theory (ATMESC) which paves the way 
to manipulate pure and doped (1D, 2D, and 3D) nanostructures that 
have potential applications in nearly all fields of science. This theory is 
expected to cause breakthrough in materials science and engineering 
if more experimental evidences are introduced. In addition, it will be 
used for explaining the morphology evolution phenomenons for nearly 
all solid compounds. 
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Figure 4: Shows (a) mechanical creation of dangling bonds (inducing polarity) by ball milling in inert atmosphere, and (b) bond cleavage of metal oxides particle 
(e.g. ZnO).

Figure 5: Shows (a) supposed growth mechanism of various nanostructures (metal oxides) in solution, and (b) inducing the polarity of solid stable compound.
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