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Introduction
The study of organic electroluminescence (EL) materials is now a 

rapidly developing field of material science due to promising practical 
applications [1]. In spite of the impressing achievement of the last 
decade, the problem of searching for new effective organic luminescent 
materials of different emission colours is still topical. Recently, 
many electronic and optical-electronic devices consisting of organic 
materials have been demonstrated; organic light emitting devices 
(OLEDs) require lower energy input, have a wider viewing angle with 
improved colour contrast, and can be made much thinner. The use of 
π-conjugated organic compounds as electroluminescent materials in 
organic light-emitting devices (OLEDs) was originally introduced by 
Van Slyke over two decades ago [2,3]. Since then, the development of 
new π-conjugated compounds especially small molecules with superior 
physical, optical, thermal, and electrochemical properties has become 
one of the most reviving research areas [4]. Although many fluorescent 
blue emitters have been reported, such as anthracene derivatives, 
phenylene derivatives, pyrene derivatives, fluorene derivatives, 
carbazolederivaties, triarylamine derivatives, and phosphorescent 
iridium complexes, there is still a clear need for further improvements 
in terms of efficiency and colour purity compared to red and green 
emitters [5].

A new type of luminescent compounds based on Oligomers and 
azaindolyl groups were prepared by Hong et al. [5]. The presence of 
4-azainole moieties at the end group of oligopyrrole greatly enhanced the 
photoluminescence by increasing the intrinsic stiffness of the polymer
backbone; weaken intermolecular interaction [6-8]. The emission
spectrum of a conjugated polymer depends basically on its π-π*band gap, 
which can be tailored using different structures. In this paper, we present
a theoretical study of four new organic electroluminescent material (I-
IV) based on (4-azaindolyl) oligopyrrole. We investigated theoretically, 
the effect of increasing pyrrole ring on 4-azainole moieties on the 
structural and optical-electronic properties of the compounds. Then, 
bridging effect was studied by bridging two central pyrrole rings with 
electron withdrawing 2-carboxylpropenoic acid group[C=C(CO2H) 2].

The chemical structures of the materials studied are shown in Figure 1.
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Abstract
The electronic properties of four new organic compounds (I-IV) were studied theoretically for application as 

hole-transporting materials in electroluminescent (EL) devices. We investigated theoretically, the effect of increasing 
number of pyrrole rings between 4-azainole end moieties. The time dependent density functional theory (TD-DFT/
B3LYP/6-31G(d)) calculated energy gap (E-gap) of the studied compounds decreases in the order of I>II>III>IV; 
the significant reduction of E-gap of compound IV with 2.7 eV compared to 4.27 eV of compound II is due to the 
bridging effect of C=C(CO2H)2 which remove the steric effect, caused by high dihedral angle between two central 
pyrrole rings in the non-bridged II. Compound IV possess low-lying lowest occupied molecular orbital(LUMO) energy 
levels and low lying highest occupied molecular orbital (HOMO) energy levels, may be promising candidate for hole 
transporting and bright blue to red emitting layer in organic light emitting device (OLED) fabrication.
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Figure 1: Chemical structures of the studied compounds.
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the π-conjugation length of the oligopyrrole units of the compounds 
(1-3) and these values are in perfect accordance with those estimated 
from the electronic transition data [10-12].

The distribution of the highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital (LUMO) of studied 
compounds was also investigated at the DFT/B3LYP/ 6-31G (d) level 
for the geometry optimizations. The iso-density surface plot of HOMO 
and LUMO were exhibited above in Figure 2, it is seen from the figure 
that the electron density of HOMO is mainly localized on the pyrrolyl 
moieties while the electron density of LUMO is mainly on the 4-azaindole 
backbone except compound VI, where is localized on pyrrolyl groups 
with contribution from 2-carboxylpropenioc acid substituent group. 
The electron transition from the ground state to the excited state will be 

Computational Method
Quantum chemical calculation of the ground state molecular 

structures of (I-IV) were performed using the Spartan'14 program 
package on HP 2000 inter (R) core (TM) i3-3110 (M) CPU @ 
2.40 GHz processor machine (computer) having 6.00 GB installed 
memory (RAM) and 750 GB hard disc. The molecules were drawn 
with SPARTAN' 14 graphical user interface (GUI) and the energy 
minimization conducted using MMFFaq (Merck Molecular Force 
Field). MMFFaq, Molecular Mechanics Conformational Distribution 
gave rise to different conformers for each of the studied compounds 
with their corresponding energies. The most stable conformer (i.e. 
conformer with the lowest energy) obtained for each compounds were 
submitted into SPARTAN' 14 for energy optimization. The influence of 
increasing number of pyrrole rings on the opto-electronic properties of 
all the studied compounds were fully optimized at Density Functional 
Theory (Becke’s Three Parameter Hybrid Functional using the Lee, Yang 
and Parr Correlation Functional-B3LYP) [8]. The basis sets: 6-31G (d) 
and EDF2 were used for all atoms. We have also examined HOMO and 
LUMO energies levels; the energy gap is evaluated as the difference 
between the HOMO and LUMO energies. The electronic transition 
properties, which include the maximum excitation wavelength (λabs

max), 
excitation energy, relative intensities (oscillating strength), molecular 
orbitals character and coefficient of the compounds, were studied using 
Time Dependent Density Functional Theory (TD-DFT) [9].

Results
Optical-electronic properties 

The electronic properties of all the studied compounds were 
obtained by DFT calculations at B3LYP/6-31G (d) and EDF2/6-31G 
(d) levels. Table 1, Figures 2 and 3 show the analysis of HOMO-LUMO 
energy gap of the studied compounds.

Highest occupied molecular orbital (HOMO) represents the ability 
to donate an electron and negative values of HOMO energy is taken 
as the ionization potential. Using Polarized basis set of B3LYP/6-31G 
(d), it was found that ionization potential gradually decreased with 
increasing of the π-conjugation system. The HOMO energy levels of 
these materials were in the range of -5.75 to -4.83 eV, matching well with 
most work function of indium tin oxide (ITO) electrode and favouring 
the injection and transport of holes. Their LUMO energy levels were 
in the range of-0.91 to -0.81 eV.The HOMO-LUMO energy gaps were 
calculated to be decreased from 4.84 eV to 4.02 eV with an increase in 

 E-LUM0 (eV) E-HOMO (eV) E-gap (eV)
Compound I (n=1)    
B3LYP/6-31G(d) -0.91 -5.75 4.84
EDF2/6-31G(d) -1 -5.57 4.57
Compound II (n=2)    
B3LYP/6-31G(d) -0.85 -5.12 4.27
EDF2/6-31G(d) -0.94 -4.98 4.04
Compound III (n=3)    
B3LYP/6-31G(d) -0.81 -4.83 4.02
EDF2/6-31G(d) -0.9 -4.70 3.8
Compound IV (n=2)    
Bridged with 
C=C(CO2H)2

   

B3LYP/6-31G(d) -2.46 -5.16 2.7
EDF2/6-31G(d) -2.56 -5.02 2.46
n: Number of pyrrole rings in the compound; eV: Electron volts; E-gap: LUMO-
HOMO; E: Energy

Table 1: Calculated HOMO (eV), LUMO (eV) and Energy gap (eV).

 
Figure 2: The contour plots of HOMO and LUMO orbital of the studied 
compounds using DFT/B3LYP/6-31G (d).

Figure 3: Sketch of B3LYP/6-31G(d) calculated energies of HOMO, LUMO 
levels of studied compounds.
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electron flowing from the pyrrolyl moieties to the azaindoly moieties. 
The electron density distribution of HOMO and LUMO suggests that 
the investigated compounds might possess beneficial electron injection 
and transport properties with the incorporation of electron withdrawing 
2-carboxylpropenoic acid group [13].

The calculated band gap (E-gap) of the studied compounds 
decreases in the order as follows:

I>II>III>IV. The significant reduction of E-gap of compound IV 
with 2.7 eV compared to 4.27 eV of compound II is due to the bridging 
effect of C=C(CO2H)2. This bridging effect causes a destabilization of 
both HOMO and LUMO levels; thus, producing the lowest value of 
the energy gap. The low HOMO energy level of compound IV with 
-5.16 eV suggests that the compound has high oxidation stability and 
potential application for charge transport material [14]. For organic 
polymeric chromophores, this energy gap ranges from 1.4 to 3.3 eV 
corresponding to light wavelength between 890-370 nm covering the 
visible region [15] (Table 2).

Absorption and emission properties
The absorption spectra of the studied compounds exhibited three 

absorption bands at 261-291 nm, 300-362 nm and 383-640 nm due 
to π-π* electronic transitions. The low-energy broad band at 383-
640 nm is assigned to an intra-molecular charge transfer band from 
the pyrrole ring to the two 4-azaindole backbone. The lowest-energy 
electronic transition HOMO → LUMO consists mostly of the intra-
molecular charge transfer and an average absorption band of 471 nm. 
Other two absorption bands occur around 339 nm and 276 nm mainly 
consisting ofHOMO-2 → LUMO vertical transitions and HOMO-
1 → LUMOvertical transitions respectively. The excitation energy, 
oscillator strength, coefficient and main configuration for most relevant 
absorption bands were listed in Table 2. The presence of the N-H group 
in the heterocyclic ring influences the excited electronic states. The first 
four vertical excitation energies are summarized. Only two electronic 
transitions from ground state (S0) to third excited electronic state (S3) 
have computed oscillator strength been higher than 0.5 while the other 
electronic transitions, with smaller oscillator strength have a negligible 
relevance in experimental works [16-19].

Conclusion
Conjugated oligomers and polymers have been studied in great 

details as electroluminescent materials for usage in organic light 
emitting devices (OLED). Azaindolyl oligomers-based materials have 
been investigated extensively because of the many attractive properties 
they possess. Compound IV is the least sterically hindered and may 
be promising candidate for hole transporting and bright blue to red 
emitting layer in organic light emitting device (OLED) fabrication.
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