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Abstract
Interferon is essential in human defense against influenza virus. The non-structural gene segment (NS) of 

influenza virus has a critical role in counteracting human interferon-mediated antiviral responses. The second wave 
of 1918 H1N1 Spanish influenza pandemic was characterized by an enhanced mortality and a W-shaped mortality 
age distribution. In contrast to the U-shaped mortality-age distribution that targeted the very young and elderly during 
the first wave, young adult population were also affected during the second wave. The NS of the 1918 H1N1 Spanish 
influenza virus (1918PV) isolated during the second wave contributes to the virulence of 1918PV. This unique NS of 
1918PV is able to inhibit human interferon production at both the pre-transcriptional and post-transcriptional level and 
induce cytokine dysregulation. The NS of 1918PV has entered the swine population in 1918 and re-emerged in the 
2009 novel H1N1 influenza A pandemic virus (2009PV). Both seasonal and pandemic novel H1N1 influenza A viruses 
produced a W-shaped mortality age distribution. Information from the 2009 novel H1N1 Influenza A pandemic may 
help to reconstruct the mysterious surge in mortality during the second wave in the 1918 H1N1 Spanish influenza 
A pandemic. The W-shaped mortality-age distribution of 2009PV indicates the importance of a universal influenza 
vaccination policy for public protection. The high incidence of cytokine dysregulation and Streptococcus pneumoniae 
co-infection in hospitalized patients reflects the importance of pneumococcal vaccination and the development of 
immunomodulating agents that can control influenza-induced cytokine dysregulation.
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Introduction
In 2009, 2009PV emerged in Mexico from swine population causing 

widespread human infection characterized by cytokine dysregulation 
and acute critical respiratory illness in young and relatively healthy 
individuals [1,2]. The high demand for extracorporeal membrane 
oxygenation (ECMO) therapy in these young critically ill patients 
made ECMO therapy an important consideration in future pandemic 
planning [3,4]. Novel H1N1 influenza pandemic has a W-shaped 
mortality-age distribution during the first wave [5,6]. The Centers 
for Disease Control and Prevention estimated that 77% of the novel 
H1N1 influenza related deaths in the United States were between 18 
and 65 years of age during the first wave [7]. In 2010, the Advisory 
Committee on Immunization Practices (ACIP) first recommended 
annual influenza vaccination for all persons aged ≥6 months in the 
United States [8]. In spite of the universal vaccination policy for 
seasonal influenza [9], more than 60% of hospitalizations and death 
for laboratory-confirmed influenza during 2013–14 influenza seasons 
in the United States occurred among persons aged 18–64 years, and 
the majority is attributed to 2009PV. No significant antigenic changes 
in circulating 2009PV strains compared with vaccine strains have been 
detected since 2009. Bacterial co-infection especially with Streptococcus 
pneumoniae, Streptococcus pyogenes, or Staphylococcus aureus has 
been reported in critically ill patients [10,11]. This observed W-shaped 
mortality-age distribution of the 2009PV infection may help to 
reconstruct the event in the 1918 H1N1 Spanish influenza pandemic 
and demonstrate the need for the consolidation of current universal 
influenza vaccination policy in the United States for public safety. The 
high level of Streptococcus pneumoniae co-infection in these young 
individuals reflects the value of current pneumococcal vaccination 
program among individual aged 18 to 64 years who are at risk of 
pneumococcal disease. The high incidence of cytokine dysregulation 
in these hospitalized patients indicates further medical research should 
be directed towards the development of immunomodulating agents 
that can selectively suppress detrimental influenza-induced cytokine 
dysregulation without hindering protective anti-viral response of the 
host.

The Deadly Second Wave of 1918 H1N1 Spanish 
Influenza A Pandemic

Since the inception of historical records in the sixteenth 
century, cycles of pandemic and seasonal influenza had resulted in 
significant human morbidity and mortality [12]. In the last century, 
human pandemic influenza viruses namely 1918 H1N1 “Spanish” 
(1918PV), 1957 H2N2 “Asian” (H2N2PV), and 1968 H3N2 “Hong 
Kong” (H3N2PV) killed 40 million, 2 million, and 1 million people, 
respectively [13]. Pandemics can present in waves with peaks typically 
lasting several months associated with a greater number of cases and 
increased in mortality separated by troughs during which the number 
of cases is greatly diminished. During each wave the new influenza 
subtype undergo adaptation to human host or reassortment with other 
influenza viruses. The pandemic virus can sometimes re-emerge in 
a more pathological forms resulting in increased mortality in future 
waves [14]. In 1918, 1918PV emerged with the ability to spread among 
humans. The first wave of the 1918 H1N1 Spanish influenza pandemic 
had a mortality comparable to the usual seasonal influenza with a 
U-shaped mortality-age distribution that involved the very young and 
elderly. However, the second wave of the 1918 H1N1 Spanish influenza 
pandemic had a dramatic surge in mortality and a W-shaped mortality-
age distribution that involved young adults with a distinct peak of death 
in individuals between 20 and 40 years of age [15] (Figure 1). 
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Type I alpha/beta interferons (IFN-α/β), encoded by a single 
interferon-beta (IFN-β) and 13 homologous interferon-alpha (IFN-α) 
genes in humans, represent an essential element of host defense 
against influenza virus infection. IFN-β plays an important role in the 
defense against influenza A virus that cannot be compensated for by 
IFN-α [16,17]. The non-structural protein 1 (NS1) encoded by the NS 
of influenza virus is critical in counteracting the interferon-mediated 
antiviral responses of the host [18]. Wilson Smith, Christopher 
Andrews, and Patrick Laidrow first isolated human influenza virus 
in 1933 [19]. However, it was not until 1997 that the genome of the 
1918 H1N1 Spanish influenza virus was isolated from archived samples 
of the 1918 H1N1 Spanish influenza pandemic’s second wave [20]. 
Analysis of individual gene segments showed that the NS contributed 
to the virulence of the 1918PV [21-23]. The virulence of 1918PV was 
related to the ability of its NS to disrupt the innate immune response, 
induce potent cytokine dysregulation, and block the transcription of 
certain lipid-based proinflammatory mediators that function as part 
of the host antiviral response [24,25]. NS1 protein encoded by the NS 
gene of 1918PV can inhibit human inducible pre-transcriptional IFN-β 
production [26] and post-transcriptional maturation and nuclear 
export of host interferon-related mRNAs (IFN-α/β) via optimal binding 
to human 30-kDa subunit of cleavage and polyadenylation specificity 
factor (CPSF30) [18,27]. The intense innate immune suppression led 
to an enhanced viral replication, increased viral load and cytokine 
dysregulation with early and excessive infiltration of macrophages and 
neutrophils in the lungs in 1918PV infection [28-31]. 1918PV infection 
was uniformly lethal in mice at low doses and produced severe lung 
pathology. In ferrets, 1918PV caused severe clinical disease and lung 
pathology with necrotizing bronchiolitis and alveolitis [32]. 

The H1N1 influenza virus circulated in humans from 1918 to 
1957. During this period, there was substantial antigenic drift of H1N1 
influenza virus from the original 1918PV strain. The H1N1 influenza 
virus with the same antigenic strain of the 1950s re-emerged in 1977 as 
seasonal H1N1 influenza virus with the usual characteristics of a low 
mortality and U-shaped mortality-age distribution. The NS of H1N1 
viruses in 1940-1957 and 1977-1990 had lost the ability to suppress 
pre-transcriptional IFN-β production [26]. The seasonal H1N1 virus 
emerged after 1977 caused little disease in mice and ferret model [32].

The W-shaped Mortality-age Distribution of 2009 Novel 
H1N1 Influenza A Pandemic

Although the NS contributes to the virulence of 1918PV, whether 
it can induce the W-shaped mortality age distribution of the second 
wave of 1918 H1N1 Spanish influenza pandemic remains unresolved 
in the absence of human data. New information gained from the 2009 
novel H1N1 pandemic may help to reconstruct the probable event in 
1918 H1N1 Spanish influenza pandemic. 1918PV entered the swine 
population in 1918. The early classical swine H1N1 influenza virus 
caused severe clinical disease and lung pathology with necrotizing 
bronchiolitis and alveolitis in ferrets and mice similar to the 1918PV 
[32]. The NS of the 1918PV that had entered the swine population in 
1918 re-emerged in the 2009PV [33]. 2009PV causes severe pathological 
lesions in the lungs while human seasonal H1N1 virus usually infected 
cells of the upper respiratory tract system. The assessment of human 
sera from different age groups suggests that infection with human 
H1N1 viruses antigenically closely related to viruses circulating in 1918 
confers neutralizing antibody activity to 2009PV [34]. 2009PV produced 
an enhanced mortality with a W-shaped mortality-age distribution 
that involved the young population [5-7]. Although globally there were 
only an estimated 201,200 respiratory and 83,300 cardiovascular deaths 

associated with 2009PV pandemic during the first 12 months, 65% of 
these influenza-related respiratory and cardiovascular deaths were 
between 18 and 65 years of age [35]. 

Adaptation in pigs had led to several changes of the NS1 protein 
in the 2009PV as compared with the original 1918PV. The mutations 
include a K217E substitution that abolished binding to host Crk/CrkL 
signalling adapters, and a C-terminal truncation that deleted the PDZ 
binding motif. Both mutations have no major effect on replication, 
virulence, or transmissibility of the 2009PV [36,37]. However the 
truncated NS of 2009PV had retained the unique capacity to suppress 
human pre-transcriptional IFN-β production similar to the original 
1918PV [26]. The NS1 protein of 2009PV re-emerged from the swine 
population has suboptimal binding to human CPSF30. Inefficient 
binding of the NS1 protein of 2009PV to human CPSF30 to inhibit 
IFN-α/β production at the post-transcriptional level may account for 
the suboptimal interferon antagonistic response and reduced mortality 
of 2009PV infection compared with the original 1918PV[27] The NS of 
influenza virus is able to inhibit innate and adaptive immunity [38-40]. 
The suppression of innate and adaptive immunity [41,42] has led to an 
enhanced viral replication and a delayed viral clearance and resulted in 
an increased viral load in 2009PV infection [43-46]. 

The 2009PV induced an early and sustained hyperactive pro-

Figure 1: (a) Schematic diagram showing the W-shaped mortality-age 
distribution of combined influenza and pneumonia mortality of 1918 H1N1 
Spanish influenza pandemic (solid line) in contrast with the U-shaped mortality-
age distribution of seasonal influenza in the interpandemic years 1911-1917 
(dashed line) in the United States. (b) Schematic diagram explaining the surge 
in mortality in the second wave of 1918 H1N1 Spanish influenza pandemic: 
The 1918PV with ability to spread among human host was introduced in 1918 
in the first wave. The first wave of 1918 H1N1 Spanish influenza pandemic 
had a mortality comparable to the usual seasonal influenza with a U-shaped 
mortality-age distribution. Reassortment of an NS with ability to suppress 
human innate immune response and induce potent cytokine storm through 
the inhibition of inducible IFN- production at both the pre-transcriptional 
and post-transcriptional level into the 1918PV after the first wave had led to 
a dramatic surge in mortality and a W-shaped mortality-age distribution that 
involved young adults with a distinct peak of death between 20 and 40 years 
of age in the second wave of the 1918 H1N1 Spanish influenza pandemic as 
shown in diagram 1a.
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inflammatory response and blocked the transcription of certain 
lipid-based proinflammatory mediators that function as part of the 
host antiviral response similar to 1918PV [47]. Adult patients with 
severe 2009PV pneumonia showed sustained hyper-activation of the 
innate pro-inflammatory cytokines (IL-6, CXCL8/IL-8, CCL2/MCP-
1, and sTNFR-1), and markedly suppressed adaptive related cytokines 
(CXCL10/IP-10, CXCL9/MIG, and IL-17A). Patients who died five 
days after disease onset showed high viral load and undetectable IL-17 
levels in serum. The suppression of adaptive immunity resulted in a 
delayed viral clearance, which in turn led to further sustained activation 
of the pro-inflammatory response. Elevated proinflammatory 
cytokines interleukin-6 (IL-6) predicted critical illness requiring ICU 
admission [48,49]. IL6 was a biomarker for severe disease in young 
adults below 18 years of age [50]. In children, high level of IL-6 was 
associated with mortality. Nonsurvivors were immunosuppressed with 
leukopenia and markedly reduced tumor necrosis factor-α (TNF-α) 
production capacity. A TNF-α response of less than 250 pg/mL was 
highly predictive of death and longer duration of ICU stay [51]. 

Bacterial co-infection was associated with adverse outcomes in 
hospitalized adult patient with 2009PV infection [52]. 41% of the deaths 
of 2009PV infection had bacterial co-infection and Streptoccoccus 
pneumoniae was the most common organism identified [53]. Most 
of the severe infection of 2009PV accompanied by pneumonia and 
increased mortality were between 15 and 44 years old [5,54]. Young 
patients in this age range and without any underlying disease had 
impaired immune responses for Streptococcus pneumoniae after 
2009PV infection due to defective cytokine response with suppressed 
TNF-α production and alteration of adaptive immunity [55]. In 
contrast to previous seasonal influenza seasons, pediatric deaths 
related to 2009PV were less likely to have a bacterial co-infection 
with methicillin resistant Staphylococus aureus (MRSA). Many had 
bacterial co-infections with Streptococcus pneumoniae, as has been 
found in other studies [56,57]. 

Pathogenesis of the W-shaped Mortality Distribution 
of 1918 Spanish Influenza Pandemic and 2009 Novel 
H1N1 Pandemic: The Interplay of A Potent Innate 
Immune Suppressing NS, Heavy Viral Load, Cytokine 
Dysregulation and Bacterial Co-infection

Seasonal and pandemic influenza are an important cause of 
morbidity and mortality among the very young and elderly in both 
healthy population and in patients with chronic medical conditions 
and altered immune response [58]. H2N2 and H3N2 pandemics and 
seasonal influenza epidemics in the past century had a U-shaped 
mortality curves with most of the influenza-related deaths being the 
result of the exacerbation of an underlying condition or secondary to 
bacterial co-infections among the very young and the elderly [59]. The 
synergistic role of bacterial co-infection in enhancing the mortality 
of influenza infection has been known and documented for nearly a 
century [60]. Individual at the extremes of ages are more susceptible 
to bacterial co-infection after influenza infection due to bacterial 
colonization, immune dysfunction and co-morbidities [61,62]. The 
human upper respiratory tract of infants and children is the reservoir 
of a diverse community of potential pathogens such as Streptococcus 
pneumonia, Haemophilus influenza and Staphylococus aureus [63-65] 
which predispose these young individuals to invasive disease after an 
influenza infections [66-69]. Oral colonization by respiratory pathogens 
[70-73] and changes in pulmonary reserve, decreased mucociliary 
transport, decreased cough reflex, decreased elasticity of alveoli 
and poorer ventilation—all of which lead to diminished cough and 

airway patency—cause older adults to be more susceptible to bacterial 
pneumonia, especially after an influenza infection [74]. It has been 
estimated that persons who are 65 years and older account for more 
than 80% of all pneumonia- and influenza-related deaths. Most of the 
excess mortality caused by influenza and/or pneumonia is attributed 
to elderly with high-risk conditions [75]. Influenza increases clinical 
pneumococcal disease incidence in elderly patients. An additive effect 
was observed in reducing the need for hospital admission for influenza 
and pneumonia [76] and the prevention of all-cause mortality with 
influenza and pneumococcal vaccines given together in elderly people, 
including in those with underlying chronic disease [77]. Hence apart 
from underlying co-morbidities, bacterial co-infection has a major 
contribution to the enhanced mortality in the extremes of age and the 
U-shaped mortality age distribution during influenza seasons [78]. 

In the United States between 1911 to 1918, curves of influenza 
mortality by age at death are typically U-shaped, reflecting high mortality 
in the very young and elderly with low mortality at all ages in between 
[15]. The 1918 to 1919 pandemic and succeeding winter epidemic 
recurrences in 1919 and 1920 instead produced a W-shaped mortality 
curves, which featured a third mortality peak in healthy young adults 
between 20 to 40 years of age that accounted for approximately half of 
the total influenza deaths, including the majority of excess influenza 
deaths. Perhaps the most puzzling mystery of the 1918 pandemic 
is how to explain that extraordinary excess influenza mortality in 
persons between 20 to 40 years of age which was responsible for the 
W-shaped mortality age distribution during the pandemic. Although 
animal studies using the 1918PV regenerated from archived samples 
collected from patients who succumbed during the 1918 H1N1 Spanish 
influenza pandemic’s second wave suggested the important role of 
cytokine dysregulation in the pathogenesis, historical data and autopsy 
series indicate that almost all deaths resulted from secondary bacterial 
bronchopneumonia and that frank acute respiratory distress (ARDS)-
like syndromes in the absence of bacterial pneumonia, and thus, 
conceivably attributable to primary viral pneumonia and/or cytokine 
storms, have been uncommon causes of death. Many of these patients 
have acute aggressive bronchopneumonia featuring tracheobronchial 
epithelial necrosis [79]. The major bacteria identified in the pandemic 
were Streptococcus pneumoniae, Streptococcus pyogenes, and, less 
commonly, Staphylococcus aureus and Haemophilus influenza [80]. 

An intact interferon response plays an important role in 
determining the pathogenicity, tissue restriction and systemic 
dissemination of influenza infection. Mice that are unable to mount 
an interferon response due to disruption of the STAT1 gene are 100-
fold more sensitive to lethal infection with influenza virus and develop 
fulminant systemic disease after influenza virus infection [81,82]. The 
NS1 protein encoded by the NS of influenza virus plays a critical role 
in inhibiting interferon-mediated antiviral responses. Influenza A virus 
lacking the NS1 protein encoding gene can only replicate in interferon-
deficient systems [83,84]. Influenza A and B virus mutants containing 
a NS with “weak” anti-interferon activity are highly attenuated [85-88]. 
There is one single IFN-β and 13 homologous IFN-α genes in humans. 
IFN-β plays an important role in the defense against influenza A virus 
that cannot be compensated for by IFN-α. The unique NS of 1918PV 
is able to inhibit interferon production at both pre-transcriptional 
[26] and post-transcriptional level [18,27]. In contrast to other human 
influenza viruses in the last century, the NS1 protein of the 1918PV 
and 2009PV binds to retinoid-inducible gene 1 (RIG-I) to inhibit the 
downstream activation of interferon regulatory factor 3 (IRF3) and 
the subsequent production of IFN-β at the pre-transcriptional level 
[26,89-92]. In common with the other human influenza in the last 
century, the NS1 protein of 1918PV inhibit type I interferon (IFN-α/β) 
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production at the post-transcriptional level through optimal binding 
of the C-terminal effector domain to CPSF30. Subsequently, newly 
synthesized host cellular mRNAs including interferon and interferon-
stimulated genes are unable to export from the nucleus after infection 
due to inhibition of 3’ cleavage and polyadenylation. This results in 
the establishment of an influenza virus-specific translational system 
that selectively translates viral and not host mRNAs [18,27,93-96]. 
The intense innate suppression conferred by the NS allows 1918PV to 
replicate at a rate over 200 fold than that of seasonal H1N1 [31]. This 
allowed 1918PV to replicate swiftly at the “stealth phase” and attain 
high steady-state titers in the lungs within 48 hours after infection to 
induce direct cytopathic damages and cytokine dysregulation [97]. The 
NS mediated delay of interferon induction contributed to the virulence 
of 1918PV by influencing the spread to and replication efficiency of 
1918PV in the lower respiratory tract [24]. 2009PV also demonstrated 
an enhanced replication in the lower respiratory tract and led to virus-
associated diffuse alveolar damage in nonhuman primate model [34,98]. 
A comparison of the pathology of 1918PV 2009PV and seasonal H3N2 
virus infection showed that 1918PV and 2009PV infect the mucosal 
epithelial cells of the airways, alveolar macrophages, and pneumocytes, 
whereas seasonal influenza H3N2 mainly infects mucosal epithelial cells 
of the larger airways [99]. The above evidences underlies the important 
role of an innate immune response suppressing NS in the production of 
severe pneumonia in the host through enhanced tropism of 1918PV to 
tissue of the lower respiratory tract and an increased viral load which is 
pivotal to cytokine dysregulation, pulmonary damage and mortality in 
influenza infection [100-102]. 1918PV showed an enhanced virulence 
in non-human primate [103,104]. The pathogenicity of the NS of 
1918PV to human cell is species specific. The species specificity of NS 
was first discovered during testing of the individual gene segments of 
the 1918PV in mice. The NS gene that is virulent to human cells [21-
23] is less virulent than the corresponding wild-type control virus in 
mice [105]. 2009PV which induces a potent cytokine dysregulation and 
produces an enhanced mortality and a mortality-age distribution that 
involved young adults in humans, only causes modest disease in ferrets 
[105],[106] and asymptomatic infection in pathogen free miniature 
pigs [34]. The asymptomatic infection of 2009PV in pathogen free 
miniature pig explains why there was no detectable outbreak of 2009PV 
infection in the swine population before the virus surfaced in humans.

Early cytokine dysregulation is a common feature in 1918PV 
[30,107] and 2009PV [48,49,108,109] infection. As a major transcription 
factor for antiviral and immune stimulatory activities, nuclear factor 
kappa-B (NF-κB) play an important role in the induction of interferon 
and other pro-inflammatory molecules such as IL-6 upon cellular 
responses against a virus infection [110,111]. Influenza A virus, being 
a small RNA virus with relatively small coding capacity and protected 
by the anti-interferon activity of its NS, has taken advantage of the 
host NFκB activation pathway [112] to enhance the synthesis of viral 
ribonucleic acid [113] and nuclear export of viral ribonucleoprotein 
(vRNP) complexes [114] and during the process leads to apoptosis of 
the host cell [115-117] and induces cytokine dysregulation [118,119]. 
The cytopathic damage and cytokine dysregulation result in an 
enhanced morbidity and mortality [120]. Either mechanism of tissue 
damage may predominate in individual patient [121]. NFκB activation 
is a prerequisite for influenza infection [122] and influenza-induced 
cytokine dysregulation [118,119,123,124]. The lack of hypercytokinemia 
in NF-κB-deficient mice during influenza infection confirms the 
central role of NF-κB in cytokine dysregulation [118]. Immune 
suppression conferred by the NS lead to an enhanced viral replication 
and an increased in viral load in 1918PV [28,29,31] and 2009PV [43-
46] infection. The accumulation of endosomal haemagglutinin (HA) 

[125] and viral dsRNA [126] during an enhanced viral replication may 
in turn, activate NFκB to induce cytokine dysregulation [119,123,126] 
ROS acts as the second messenger in inducers of influenza-induced 
NF-κB activation [119,127-129]. HA activates NFκB through the 
production of reactive oxygen species via endoplasmic reticulum 
overload (ER-overload) [127,130-133]. Toll-like receptor 3 (TLR3) is 
expressed both intracellularly and on the cell surface of respiratory 
epithelial cells [134]. Influenza dsRNA inside the endosome activates 
NF-kB through upregulation of the TLR3 expression [135,136]. Stable 
influenza dsRNA released from dying influenza virus-infected cells 
[137] binds to TLR3 on the epithelial cell surface to activate NF-kB 
[138]. ROS enhances TLR3 induced NFκB activation in reaction to 
viral dsRNA in airway epithelial cells [139]. Apart from the activation 
of NF-κB via the TLR3 signal pathway, dsRNA is able to active 
NLRP3 inflammasome signal pathway. dsRNA can elicit an enhanced 
antigen-specific Th1-polarized immune response and dampened Th17 
response [140], a feature of the cytokine dysregulation of 2009PV 
infection [49]. NF-κB-induced IL-6–STAT3 signaling pathway is an 
important pro-inflammatory response after influenza A infection 
[141]. Level of IL-6 correlated with the magnitude of influenza virus 
replication and cell damage in human tracheal epithelium [142] and 
is a prognostic biomarkers for progression to respiratory failure and 
mortality in influenza A infection [48-50,143]. Anti-oxidants are able 
to suppress NFκB-induced IL-6 production in influenza infection 
[144-146]. Inflammasome activation is important in the development 
of both innate [147] and adaptive immune responses [148,149] during 
influenza infection. An intact body commensal microbiota regulates 
immune defense against respiratory tract influenza A virus infection by 
priming basal levels of pro-IL-1β and pro-IL-18 at steady state.[150].
Influenza viruses activate inflammasome to induce interleukin-1β(IL-
1β) and interleukin-18 (IL-18) production [151-153] through M2 
protein expression [154] under the regulation of the N-terminal region 
of the NS1 protein that does not involved in RNA-binding activity [155-
158]. On the other hand, the N-terminal RNA-binding domain of the 
NS1 protein restricts the production of the mature form of IL-1β and 
IL-18 through the inhibition of caspase-1-dependent post-translational 
processing of pro-IL-1β and pro-IL-18 to repress PKR-dependent 
apoptosis [159]. In spite of the suppression by the N-terminal RNA-
binding domain of the NS1 protein, active IL-1β is secreted into 
bronchoalveolar lavage of mice infected with influenza virus in a 
dose-dependent manner through the caspase-1 dependent pathway 
[160-164]. 1918PV up-regulates inflammasome early after infection 
and produces early cytopathic damage of the respiratory epithelium 
and cytokine dysregulation [104]. Both IL6 and IL-1β are up-regulated 
in 2009PV infection. IL-6 was significantly correlated with specific 
clinical findings, such as severity of respiratory compromise and fever. 
No correlation was found between IL-1β expression and final outcome 
[165]. HA [166] and dsRNA [167-169] can also induce IL-1β and IL-18 
through NLRP3 inflammasome activation. The M2 protein, HA and 
dsRNA accumulated during rapid viral replication may account for 
induction of IL-1β and IL-18 level during 1918PV because the 1918PV 
has been found to have a replication rate that is greater than 200-fold 
of seasonal H1N1 virus [31]. NLRP3 inflammasome activation in 
influenza infection is ROS dependent [[170-172]. Influenza induced 
M2-dependent IL-1β production can be inhibited by anti-oxidants 
[173].The hypersecretion of IL-18 induced by inflammasome activation 
may lead to the development of acute respiratory distress syndrome 
[174], multiple organ failure [175] and haemophagocytic syndrome 
[176,177]. Pathological evidence of haemophagocytic syndrome was a 
common finding in patient died of 1918PV infection [176]. 2009PV-
induced haemophagocytic syndrome [179-182] is a major contribution 
to mortality in human 2009PV infection [183].
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1918PV and 2009PV have an enhanced tropism to cells of the lower 
respiratory tract. Severe tracheobronchial/alveolar epithelial necrosis 
was a prominent feature in patients died of 1918PV infection. 1918PV, 
protected from the anti-interferon activities by its NS, produce a heavy 
viral load and induce cytokine dysregulation in humans. The accumulated 
HA and dsDNA resulting from an enhanced viral replication induce 
caspase 3-dependent apoptosis of the tracheobronchial tree through the 
NF-κB-IL-6 activation pathway. 1918PV up-regulates inflammasome 
early after infection and produces severe apoptosis of the respiratory 
epithelium as early as 12 hours after infection [104]. Hence, heavy 
viral load, IL6 hypersecretion, early inflammasome activation and 
enhanced tissue tropism to cells of the lower respiratory tract due to the 
presence of a potent innate immune suppressing NS may contribute 
to the severe mucosal damage of 1918PV infection. The NS-induced 
adaptive innate immune suppression predisposed these patients with 
severe tracheobronchial epithelial necrosis to bacterial co-infection, 
in particular Streptococcus pneumoniae. Upon introduction of 
1918PV into humans in 1918, exceptionally high mortality was seen 
during the first 2 years that this subtype circulated, primarily due to 
bacterial pneumonia. Thereafter, the overall mortality rate declined, 
but excess mortality continued to be seen. H1N1 viruses reentered the 
population in 1976 as seasonal H1N1. The NS of seasonal H1N1 viruses 
had lost the ability to suppress pre-transcriptional IFN-β production 
[26] and induce necrotizing bronchiolitis and alveolitis [28] as the 
original 1918PV. Very little excess mortality has occurred during 
years where seasonal H1N1 viruses were the predominant circulating 
strain, and the relative contribution of bacterial superinfections to 
excess mortality has declined [184]. The NS of 1918PV entered the 
swine population in 1918 and emerged in 2009PV [29]. The NS of 
2009PV has retained the ability suppress pre-transcriptional IFN-β 
production [26] and induce cytokine dysregulation as the original 
1918PV [29,185]. Severe tracheitis, necrotizing bronchiolitis, alveolitis 
and haemophagocytic syndrome are common post-mortem finding 
in patient with fatal 2009PV infection [186,187]. 2009PV have altered 
the epidemiology of invasive pneumococcal disease and shifted the age 
distribution to healthy young adults 20–39 years of age, the age group 
that has a distinct peak of death in 1918 Spanish Influenza pandemic 
and contributed to the W-shaped mortality age distribution of the 
1918PV. A high proportion of hospital admission during the first wave 
of 2009 novel H1N1 influenza pandemic due to invasive pneumococcal 
disease among 20–39 years of age required admission to intensive care 
unit. 2009PV has also led to invasive pneumococcal disease among 
persons 18–64 years of age with an increased prevalence of underlying 
conditions [188].With this new information from 1918PV and 2009PV, 
we may be able to reconstruct the probable events in the 1918 H1N1 
Spanish influenza pandemic.

Reconstruction of the 1918 H1N1 Spanish Influenza 
Pandemic

1918PV which killed 40 million people worldwide was 
characterized by an enhanced mortality and a W-shaped mortality 
age distribution during the second wave in contrast to the U-shaped 
mortality-age distribution of pandemic H2N2 and H3N2 and 
epidemic seasonal influenza in the last decades. Most of these people 
who succumbed to 1918PV infection had pathological evidence of 
extensive mucosal damage of the tracheobronchial/alveolar tree and 
secondary bacterial co-infection. The unique NS of the 1918PV of 
the second wave is able to block interferon production at both pre-
transcriptional and post-transcriptional level and induce cytokine 
dysregulation. We hypothesized that 1918PV with the ability to spread 

among human host was introduced in 1918 in the first wave. The 
first wave of 1918 H1N1 Spanish influenza pandemic had a mortality 
comparable to the usual seasonal influenza with a U-shaped mortality-
age distribution. Reassortment of an NS with ability to induce potent 
cytokine dysregulation and suppress human innate immune response 
at both the pre-transcriptional and post-transcriptional level into the 
1918PV after the first wave led to an enhanced viral replication and 
viral tropism to tissue of the lower respiratory tract. The enhanced viral 
replication and the subsequent heavy viral load led to an endosomal 
accumulation of HA and dsDNA which in turn, activate the NFκB-
IL6 and inflammasome signaling pathway via the production of 
ROS through ER-overload. ROS also enhances TLR3 induced NFκB 
activation in reaction to viral dsRNA in endosome and in airway 
epithelial cells. The enhanced tropism to tissue of the lower respiratory 
tract, high viral load, hypersecretion of IL6 and early inflammasome 
activation induce extensive damage of the epithelium of the 
tracheobronchial tree and predisposed otherwise healthy human host 
to bacterial co-infection. Under the intense adaptive innate immune 
suppression of the NS, bacterial co-infection led to a dramatic surge 
in mortality in healthy young adults between 20 and 40 years of age. 
In couple with the usual U-shaped mortality distribution among the 
very young and elderly, the enhanced mortality among young adults 
between 20 and 40 years of age produced a W-shaped mortality-age 
distribution in the second wave of the 1918 H1N1 Spanish influenza 
pandemic. The enhanced mortality of bacterial co-infection among the 
young adults persisted in the first 2 years after the introduction of this 
unique NS into 1918PV. This resulted in a higher mortality during the 
third wave compared with the first wave (Figure 1b). The hypothesis 
outlines the contributing role of a potent innate immune suppressing 
NS of influenza viruses in producing cytokine dysregulation, bacterial 
co-infection and an enhanced mortality. It also explains why there 
is no major change in histopathology of fatal influenza pneumonias 
between pandemic and seasonal influenza as documented over the 
past 120 years [189] probably because the cytopathic damage, cytokine 
dysregulation and enhanced mortality are resulting from an increased 
viral load, a reflection of the severity of the underlying influenza virus 
infection that finally lead to the death of the patients.

Implication on the Importance of A Universal Influenza 
Vaccination Policy

There is a difference in seasonal influenza vaccination recommendation 
between the World Health Organization (WHO) and the ACIP of the 
United States. WHO recommends influenza vaccination for the very 
young and elderly and at risk groups such as patients with chronic 
medical conditions, pregnant women and healthcare workers [190].
ACIP recommended annual influenza vaccination for all persons aged ≥6 
months in the United States since 2010 [8]. Pandemic influenza viruses 
containing an NS capable of suppressing inducible interferon production 
at either the pre-transcriptional (2009PV) [26,27] or post-transcriptional 
level (H2N2 and H3N2) [27] produced a mortality of less than 0.1% 
[15,31]. The 1918PV which suppressed inducible interferon production at 
both the pre-transcriptional [26,27] and post-transcriptional levels [18,27] 
led to a mortality of 2.5% [15] (Figure 2). If 2009PV were to acquire the 
amino acid structure essential for optimal binding to human CPSF30 
during transmission in humans, the virulence of seasonal novel 
H1N1 influenza virus may escalate [27]. The W-shaped mortality-age 
distribution of seasonal novel H1N1 influenza virus and its potential 
for increased virulence after optimal adaptation to humans underscores 
the importance of the consolidation of the current universal vaccination 
policy for all persons 6 months and older in the United States [8,9]. 
The WHO should work towards a universal vaccination policy as 
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recommended by ACIP for public protection. The potential increase in 
virulence of H3N2 after the reassortment of the NS of 2009PV during 
transmission in humans should be monitored.

Implication on The Importance of Pneumococal 
Vaccination and Smoking Cessation Campaign 

Pneumococcal vaccination program for persons at an increased 
risk of pneumococcal pneumonia and smoking cessation campaign 
should be consolidated to reduce the risk of Streptococcal pneumoniae 
co-infection in anticipation of an enhanced virulence of novel H1N1 
influenza A virus after its NS1 protein can better adapt to human 
CPSF30 protein and in preparation of an H5N1/H7N9 avian influenza 
pandemic. During the influenza pandemics of 1918, 1957, and 1968, 
a bacterial etiology exists in as many as 50% to 95% of patients with 
fatal or life-threatening pneumonia. Streptococcus pneumoniae is the 
most common vaccine preventable organism in bacterial co-infection 
during these pandecmics [191-193]. Streptococcal pneumoniae co-
infection is correlated with the severity of 2009PV infection [194]
and was the most common organism identified in patients who died 
of 2009PV associated bacterial co-infection [53,195]. Streptococcus 
pneumoniae and influenza virus mutually potentiate the proliferation 
of each other through viral-bacterial synergistic interaction [196,197]. 
Influenza virus infection predisposes to Streptococcus pneumoniae 
co-infection by opening neuraminidase site for the attachment of 
Streptococcus pneumoniae [198,199] and impairing the host defenses 
against Streptococcus pneumoniae [200-203]. Highly pathogenic H5 
and H7 avian influenza viruses possess polybasic amino acid motif at 
the haemagglutinin (HA)-cleavage site that allows cleavage activation 
via proteases produced during bacterial co-infection. These bacterial 
proteases could activate haemagglutinin (HA) directly or indirectly 
through the plasminogen/plasmin system to facilitate viral replication 
and enhance the pathogenicity of these plasmin-sensitive avian 
influenza virus strains [204-207] (Figure 3). This underscores the 
importance of pneumococcal vaccination for persons at increased risk 
of pneumococcal pneumonia during pandemic situation [208-210].
Current pneumococcal vaccination program should be expanded to 
include healthy young adults without underlying disease in the age 
range 20 to 40 because they have been shown to have impairments of 
the immune responses for Streptococcus pneumoniae after novel H1N1 

infection due to defective cytokine response and alteration of adaptive 
immunity [55,188]. Pneumococcal vaccination to smoker should be 
emphasized because cigarette smoking activates platelet-activating 
factor receptor that allowed attachment of Streptococcus pneumoniae 
to lower airway cells [211-213]. Apart from increasing chance of 
invasive pneumococcal disease, tobacco smoke-induced oxidant stress 
and suppression of innate immunity are mechanistic factors leading to 
increases viral replication and increases severity of respiratory disease 
with influenza [214-217]. Smoking is the strongest independent risk 
factor for invasive pneumococcal disease among immunocompetent, 
nonelderly adults [218]. Smoking also increase influenza-associated 
mortality risks among elders [219].This is of particular importance in 
China where tobacco smoking is highly prevalent [220,221].

Implication on The Importance of The Development 
of Immunomodulatory Therapy to Control Influenza-
induced Cytokine Dysregulation 

Early cytokine dysregulation are associated with 1918PV [30], 
2009PV [48,49], H5N1 [222,223] and H7N9 [224-226] infection. 
Annual influenza vaccination program and currently approved 
antiviral medications that are directed against the mutable targets 
of influenza viruses cannot directly prevent cytokine dysregulation. 
Since the adaptive cellular immunity and the associated cytokine 
responses are impaired/downregulated in 2009PV pneumonia, further 
immunosuppressive is unlikely beneficial and may even be harmful [49]. 
Early use of glucocorticoids was a risk factor for critical disease and death 
from 2009PV infection [227,228]. Steroid therapy for the treatment of 
cytokine dysregulation of human H7N9/H5N1 avian influenza infection 
adds to the complications of superinfection, hyperglycaemia and the 
development of drug resistant mutants without improving survival 
[229-231]. Hence, future research on immunomodulating therapy 
for severe influenza infection should consider medications that can 
selectively suppress the host pro-inflammatory response but maintain 
the host anti-viral activity intact. Like all viruses, the influenza virus 
largely relies on host cell factors and physiological processes to induce 
cytokine dysregulation and death of the host. Research focused on 
these non-mutable key steps in the pathogenesis of influenza-induced 

The Anti-interferon Activity of the NS1 protein of Human Influenza Viruses and the Mortality of Human 

Influenza Viruses during Pandemic
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Figure 2: Table showing the anti-interferon activity of the NS1 protein of 
human influenza viruses and the mortality of human influenza viruses during 
pandemic. 1918PV and 2009PV are able to inhibit pre-transcriptional IFN- 
production. H2N2, H3N2 and 1918PV are able to inhibit post-transcriptional 
maturation and nuclear export of host interferon-related mRNAs (IFN-α/β) via 
optimal binding to the human 30-kDa subunit of cleavage and polyadenylation 
specificity factor (CPSF30).

Figure 3: Schematic diagram outlining the mechanisms of viral-bacterial 
synergistic interaction in bacterial co-infection during influenza pneumonia: 
Influenza viruses open neuraminidase site for the attachment of bacteria 
and predispose to bacterial co-infection. Bacterial infection amplifies viral 
proliferation by producing extracellular proteases for cleavage activation of 
influenza haemagglutinin. Influenza viruses with a potent innate immune 
response suppressing NS (e.g. as 1918PV, H5N1 and H7N9) produce a 
heavy viral load and induce cytokine dysregulation. This results in extensive 
pulmonary epithelial damage and predisposes to secondary bacterial infection.
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cytokine dysregulation inside the host may be novel targets for future 
therapeutic strategies against these rapidly mutating viruses. They 
may also have a complementary role to those anti-viral medications 
and vaccines under development that are directed against the mutable 
targets of influenza viruses. Immunomodulatory agents that has been 
proposed for influenza management may include N-acetylcysteine 
(NAC), macrolides, cyclooxygenase-2 inhibitors (COX-2 inhibitors), 
mesalazine, paracetamol, statins, peroxisome proliferator-activated 
receptor agonists, high dose intravenous gammaglobulin (IVIG), 
AMP-activated protein kinase agonists and high mobility group box 
1 antagonists [232,233]. Many of these medications are approved by 
the Food and Drug Administration (FDA) for the treatment of other 
diseases. They are available and stockpileable for immediate use. They 
are currently produced as inexpensive generics, global supplies are 
huge, and they would be available to treat patients in any country 
with a basic health care system on the first pandemic day. These 
immunomodulatory agents may represent a new approach to reduce 
mortality caused by seasonal and pandemic influenza [234]. 

In human influenza infection, the anti-viral and proinflammatory 
cytokine response are activated through different pathways. The 
induction of anti-viral response is through pre-transcriptional IFN-β 
production via the activation of RIG-I/IRF-3 signaling pathway while 
the induction of proinflammatory cytokine response is through 
endosomal TLR3/HA-induced ROS-dependent NF-κB activation 
[125,126,135,235]. (Figure 4) NFκB activation, a prerequisite for 
influenza infection and influenza-induced cytokine dysregulation, is 
dependent on ROS. ROS also plays an important role in inflammasome 
activation in influenza virus infection. Hence by targeting the ROS 
signaling, anti-oxidant can selectively suppress the proinflammatory 
response without jeopardizing the anti-viral activities in influenza 
viral infection (Figure 4). Inhibitors of NFκB activation such as IκB 
kinase complex inhibitors [236], proteasome inhibitors [237,238] and 
anti-oxidants [239-242] reduce viral replication, attenuate cytokine 
dysregulation and improve survival of mice with lethal influenza 
infection. Among anti-oxidants with therapeutic potential to severe 
influenza infection [243], NAC is able to inhibit inflammasome 
[244,245] and NFkB [246]activation during influenza infection. NAC, 
at an oral dose of 1g/Kg daily, improved the survival of mice against 
lethal influenza infection [247] and was synergistic with ribavirin [248] 
or oseltamivir[249] in protecting mice from lethal influenza infection 
with an end point survival of 92% and 100% respectively (Figure 6). 
NAC, at 100 mg/Kg continuous intravenous infusion daily, suppressed 
the fever and C-reactive protein concentration with corresponding 
clinical improvement in a patient with 2009 novel H1N1 influenza 
virus (2009PV) pneumonia [250]. NAC inhibits replication of H5N1 
and reduces H5N1-induced cytopathogenic effects, apoptosis and the 
pro-inflammatory cytokine production [246] at a serum concentration 
achievable with NAC infusion for the treatment of paracetamol 
overdose [251]. The inhibition of replication of influenza virus is strain 
dependent [252]. NAC enhances the development of influenza-specific 
CD8+ T cells, an important step in adaptive immunity for clearance 
of influenza virus [253,254]. Therefore, by targeting ROS-induced 
NF-κB activation, high dose NAC anti-oxidant therapy can inhibit 
viral replication, suppress cytokine dysregulation, and enhance the 
development of adaptive immunity during influenza infection. Given 
the poor oral availability of NAC in the range of 6% to 10% in humans, 
therapeutic dose of NAC for influenza infection can hardly be delivered 
by oral preparation [255]. NAC is a category B drug for pregnancy 
and is an affordable drug with a wide therapeutic window. NAC has 
an established safety profile even in high dose and prolonged use in 
humans[256-258]. With NAC’s safety profile, it is ethically justifiable to 

validate its role in the management of cytokine dysregulation of severe 
influenza infection with large scale human randomized controlled 
trials. Selenium, a co-enzyme of glutathione peroxidase is essential in 
glutathione synthesis. It is able to suppress the activation of NFκB and 
has been shown to reduce influenza-induced pathology. It may have a 
complementary role to the anti-oxidant action of N-acetylcysteine [259-
263]. The high selenium content of anti-influenza herbal mushrooms 
in traditional Chinese medicine may have contributed to their ability in 
protecting mice from lethal influenza infection [264].

The export of viral ribonucleoprotein (vRNP) complexes from the 
nucleus to the cytoplasm is a pivotal step necessary for the formation of 
progeny influenza virus particles [265].Caspase 3 activation is essential 
for nuclear vRNP export in influenza infection [115]. The influenza-
induced NFκB activation up-regulates the pro-apoptotic factors 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 
and Fas/FasL pathway and induces caspase 3-dependent apoptosis to 
facilitate the nuclear export of vRNP complexes to enhance influenza 
propagation [116]. Inhibition of NFκB activation by aspirin or COX-2 
inhibitor blocks caspase activation, prevents the nuclear export of vRNP 
complexes. and improves the survival of mice from lethal influenza 
infection [266,267]. Salicylate and aspirin inhibit NFκB activation 
by preventing the phosphorylation of IκBα and its subsequent 
degradation by ubiquitin-proteasome pathway [268,269]. Their role in 
the management of influenza has declined after the association with 
Reye’s syndrome with their use in children [270]. COX-2 inhibitors 
are being explored recently as an alternative immunomodulating 
agent for the treatment of severe influenza infection [271]. COX-
2 inhibitors are able to suppress H5N1 virus replication in human 
macrophages [272]. H5N1-induced pro-inflammatory markers 
such as IL-6 was suppressible with celecoxib (COX-2 inhibitor), and 
mesalazine (5-amino salicylic acid) [273]. 5-amino salicylic acid is a 

Figure 4: Schematic diagram showing the different activation pathway of 
pro-inflammatory and anti-viral activity in influenza infection: During the 
early phase of influenza infection, the induction of pro-inflammatory activity 
is through NFκB activation by toll-like receptor 3 (TLR3) stimulation via 
endosomal dsRNA and reactive oxygen species (ROS) production via 
haemagglutinin (HA)-induced endoplasmic reticulum overload (ER-overload) 
whereas the induction of early anti-viral activity is through the induction of 
pre-transcriptional interferon-β (IFN-β)  production via activation of cytosol 
interferon regulatory factor 3 (IRF3) by binding of retinoid-inducible gene I 
(RIG-I) by 5’PPP-containing single stranded RNA (5’PPP-ssRNA). Therefore, 
anti-oxidants COX-2 inhibitor and paracetamol by targeting the NFκB pathway 
can block the human pro-inflammatory activity without compromising the 
human antiviral response. Since gram positive and gram negative bacteria 
can activate NFκB through surface membrane toll like receptor 2 and 4 (TLR2/
TLR4) respectively [335-338] NAC is unable to block bacteria-induced NFκB 
activation.



Volume 5 • Issue 2 •1000245J Pulm Respir Med
ISSN: 2161-105X JPRM, an open access journal

Citation: Lai KY, Wing Yiu George NG, Cheng FF (2015)The W-Shaped Mortality-Age Distribution of Novel H1N1 Influenza Virus Helps Reconstruct 
the Second Wave of Pandemic 1918 Spanish Flu. J Pulm Respir Med 5: 245. doi:10.4172/2161-105X.1000245

Page 8 of 17

derivative of salicylic acid with anti-oxidant property for the treatment 
of inflammatory bowel disease [274]. Paracetamol has been shown 
to significantly decrease the infiltration of inflammatory cells into 
the airway spaces, reduced pulmonary immunopathology associated 
with acute infection and improved the overall lung function of mice, 
without adversely affecting the induction of virus-specific adaptive 

responses [275]. The role of paracetamol and COX-2 inhibitors in the 
management of influenza virus induced cytokine dysregulation should 
be confirmed by prospective randomized studies in humans (Figure 5).

Apart from control of cytokine dysregulation, reduction in viral 
load is pivotal to survival in influenza virus infection. Although 
blockage of NF-kB activation can abolish cytokine dysregulation, 
it is unable to prevent apoptosis of the host cells because influenza 
virus also induce extracellular Ca2+ influx, leading to mitochondrial 
dysfunction to induce host cell apoptosis [276,277]. Influenza virus-
induced accelerated extracellular Ca2+ influx are critical for influenza 
replication [278]. Early neuraminidase inhibitor therapy reduces viral 
load and improves survival in 2009PV and H5N1 infection in humans 
[279,280]. Patients receiving treatment within 48 hours after symptom 
onset of H5N1 infection have the best survival benefit with a mortality 
of 20%. The mortality of H5N1 was 76% in the absence of anti-viral 
therapy [281]. Neuraminidase inhibitors are complementary to NAC 
and COX-2 inhibitors in improving the survival of mice in lethal 
influenza infection probably by controlling the viral load and influenza-
induced apoptosis. A triple therapy with a combination of zanamivir, 
celecoxib (COX-2 inhibitor), and mesalazine reduce viral load and 
inflammatory marker and improve survival of mice with lethal H5N1 
avian influenza infection. Zanamivir alone reduced viral load but not 
inflammation and mortality. The survival benefits of adding celecoxib 
and mesalazine to zanamivir could be caused by their synergistic effects 
in reducing cytokine dysregulation [282].

Future Perspectives
Although no significant antigenic changes in circulating 2009PV 

strains compared with vaccine strains have been detected since 
2009, seasonal novel H1N1 influenza in 2013–14 influenza seasons 
produced an enhance mortality and W-shaped mortality age 
distribution [10,11,283,284]. Besides monitoring the antigenic drift in 
hemagglutinin and neuraminidase gene segment, the surveillance of 
NS mutation is also necessary to determine whether the NS1 protein 
adapatation of novel H1N1 influenza A virus to human CPSF30 may 
have contributed to the adverse clinical outcome of 2009PV infection 
in 2014. The virulence of H3N2 may increase if this potent innate 
immune suppressing NS of 2009PV is reassorted to seasonal H3N2 
during transmission in humans.

A potent innate suppressing NS capable of inhibiting human pre-
transcriptional IFN-β production has emerged in highly pathogenic 
H5N1 and low pathogenic H7N9 avian influenza viruses [26,285].
This had resulted in cytokine dysregulation [225,286-288] and an 
enhanced mortality [289,290] in human infections by these viruses. 
The H5N1 responsible for the human outbreak in 1997 (A/HK/97/
H5N1) produced a mortality of 33% [291]. A/HK/97/H5N1 contained 
an NS capable of suppressing constitutive IFN-β release [292] and 
inducible IFN-β production at the pre-transcriptional level [26]. The 
NS1 protein of A/HK/97/H5N1, which contains an L103 and I106 
structure, binds human CPSF30 to a significant, though not optimum 
extent [293]. Over 98% of the NS1 proteins of H5N1 isolated from 
humans after 2003 contain the F103 and M106 amino acid structures 
that bind optimally to human CPSF30 [294]. The mutation results in 
a 20-fold enhancement in virus replication in tissue culture and 250-
fold enhancement of virulence in mice [295,296]. Human infection 
with H5N1 after 2003 has a mortality of 55% [297]. This unique potent 
innate immune suppressing NS of influenza A/HK/97/H5N1 is also 
present in H9N2 [298,299] and H6N1 [300,301] avian influenza viruses 
endemic in China. Constitutive interferon-beta (IFN-β) and inducible 
type I interferon (IFN-α/β) are complementary in protection against 

Figure 5: Schematic diagram showing the induction of cytokine dysregulation 
in severe influenza virus infection. Human infection with influenza viruses 
with a NS capable of suppressing pre-transcriptional IRF-3-induced IFN-β 
production (1918PV, 2009PV, H5N1 and H7N9) allows these influenza 
viruses to proliferate rapidly during the stealth phase of influenza infection. 
This enhanced viral replication results in an accumulation of endosomal 
haemagglutinin (HA) and double-stranded RNA (dsRNA). The endosomal HA 
activates NF-κB via the production of ROS through endoplasmic reticulum 
overload (ER-overload). ROS enhances TLR3 induced NFκB activation in 
reaction to an accumulated endosomal viral dsRNA. Profound activation 
of NFκB by accumulated endosomal HA and dsRNA results in cytokine 
dysregulation. Since NFκB activation is a prerequisite for influenza-induced 
cytokine dysregulation, blockade of NF-κB activation by NAC, paracetamol 
and COX-2 inhibitors leads to suppression of cytokine dysregulation in 
influenza infection.

Figure 6: Influenza viruses (1918PV, H5N1 and H7N9) with potent innate 
immune response suppressing NS induce a heavy viral load which in turn 
leads to direct cytopathic damage and an accumulation of endosomal 
haemagglutinin (HA) and double-stranded RNA (dsRNA). ROS then acts as the 
second messenger for both dsRNA and HA induced NFκB activation to induce 
cytokine dysregulation. The cytopathic damage and cytokine dysregulation 
result in an enhanced morbidity and mortality. Either mechanism of tissue 
damage may predominate in an individual patient. Neuraminidase inhibitors 
reduce viral load. Anti-oxidant at a dose that can suppress endosomal ROS 
reduces influenza-induced cytokine dysregulation. This may explain the 
synergistic action of neuraminidase inhibitor and high-dose NAC in reducing 
mortality in mice with lethal influenza infection.
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influenza infection. Low level of constitutively produced IFN-β is 
important to maintain immune cells in an activated state ready for a 
timely response for the production of inducible interferon to influenza 
infection [302-304].The suppression of both constitutive and inducible 
interferon at multiple levels may account for the enhanced mortality 
in human H5N1 infection [26,292,294] (Figure 7). The intense innate 
immune suppression conferred by this NS enhances tropism of H5N1 
for human tissues and allows H5N1 to invade and replicate in human 
tissues without the need for the avian sialic acid alpha-2,6-galactose 
receptor [305-308]. Introduction of the NS of H5N1 into the highly 
pathogenic H7N1 avian influenza virus enabled H7N1 to replicate 
efficiently in different human cell lines without prior adaptation. The 
enhanced viral replication and tissue tropism were attributed to a 
stronger suppression of IFN-β production and better binding efficiency 
of the NS1 protein to human CPSF30. This observation shows that 
the NS of H5N1 is able to increase the virulence and enhance the 
adaptation of avian influenza viruses to human hosts [309,310].This 
potent NS of H5N1 that had resided in H9N2 influenza viruses had 
reassorted into low pathogenic H7N9 avian influenza virus [311-
314], leading to a mortality of 33% during the first human outbreak of 
H7N9 in China in 2013 [315]. The NS1 protein of H7N9 exert potent 
inhibition of RIG-I-dependent upregulation of the IFN-β promotor in 
human cells and allow H7N9 to replicate efficiently in human alveolar 
tissue. Although NS1 protein of H7N9 can inhibit IFN-β at the pre-
transcriptional level, it has suboptimal binding to CPSF30 to allow 
it to block interferon production at the post-transcriptional level, a 
situation similar to A/HK/97/H5N1 in 1997 [316]. The presence of 
this human adapted potent innate immune suppressing NS in low 
pathogenic avian influenza viruses endemic in China may give rise 
to the emergence of highly lethal reassortant avian influenza viruses 
with pandemic potential through the poultry market in China [317].
Outbreak of human avian influenza virus infection in China and South 
East Asia usually occurs during the months around the Chinese New 
Year when poultry movement and sales grow exponentially [318-321].

There is an evidence for a protective effect of influenza 
immunization against bacterial infections, and vice versa of 
pneumococcal vaccination against influenza-associated pneumonia 
and lethality [322]. While antibiotics and vaccines will certainly reduce 
the rate of individual mortality, the factor contributing most to the 
relatively lower anticipated lethality of a pandemic with a 1918-like 
influenza virus in contemporary population is to reduce bacterial co-
infection, in particular Streptococcus pneumonia [323]. This can be 
achieved through vaccination policy and smoking cessation campaign. 
Pandemic preparedness plans against novel influenza viruses such 
as H5N1/H7N9 avian influenza viruses should consolidate existing 
pneumococcal vaccination program, in particular among persons 
aged 18–64 years who are at risk of pneumococcal disease [324]. 
Pneumococcal vaccination program should expand to include healthy 
young adults in between 20 to 40 years of age in anticipation of an 
W-shaped mortality distribution of 2009PV and H5N1 avian influenza 
viruses infection [54,188,325]. Smoking cessation campaign should be 
incorporated into national pandemic preparedness plans in countries 
where tobacco smoking is highly prevalent. The world should be 
working towards a tobacco free initiative on both national and global 
levels as promoted by the World Health Organization [326].

Cytokine dysregulation is a common feature in 1918PV, 2009PV, 
H5N1, and H7N9 infection and contributes to influenza-related 
mortality. In the event of a human H7N9/H5N1 avian influenza 
pandemic that carries a mortality of over 30%, more than 85% of 

the world’s population will not have meaningful access to pandemic 
vaccines or antiviral agents [327]. From the experience of the novel 
H1N1 pandemic, pandemic vaccines are unlikely to be available for 
effective prevention during the first wave of a pandemic [328,329], and 
non-pharmaceutical interventions such as quarantine and containment 
failed to contain the pandemic in the initial mitigation phase even in 
developed countries [330]. In combating such unprecedented global 
public-health crisis, additional rapidly activated intervention measures 
that may control influenza-induced cytokine dysregulation will be 
required if high mortality rate are to be avoided [331]. Research is 
urgently needed to determine whether alternative treatments that 
are inexpensive, can be stockpiled and would be available on the first 
pandemic day might be useful in managing the cytokine dysregulation 
of human H7N9/H5N1 avian influenza infection [332]. Since interferon-
induced transmembrane protein-3 dysfunction that predisposed an 
individual to cytokine dysregulation and an enhanced mortality in severe 
influenza infection such as H7N9/H5N1 avian influenza virus is more 
common in Han Chinese [226,333,334], medications that can effectively 
suppress cytokine dysregulation without impairing the human anti-viral 
response is urgently needed for strategic preparation of a H7N9/H5N1 
pandemic in China. By targeting the NFκB and inflammasome activation 
pathway, high dose NAC anti-oxidant therapy, paracetamol and COX-
2 inhibitors may have a complementary role to anti-viral agents in the 
management of influenza-induced cytokine dysregulation. If the efficacy 
of these agents against human H7N9/H5N1 avian influenza virus infection 
is confirmatory, the availability and affordability of these agents make 
them ideal medications in pandemic situation and for use in countries with 
limited resources. It may also signify a major breakthrough in the future 
management of all human influenza A induced cytokine dysregulation as 
these medications are directed against non-mutable determinants of the 
host common to the pathogenesis of all influenza A viruses.
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