
Open Access

Sinha, J Biomet Biostat 2012, S1
DOI: 10.4172/2155-6180.S1-008

Open Access

      
Research Article

J Biomet Biostat                                              ISSN:2155-6180 JBMBS, an open access journal

*Corresponding author: Sanjoy K. Sinha, School of Mathematics and Statistics, 
Carleton University, Ottawa, ON, K1S 5B6 Canada, E-mail: sinha@math.carleton.ca

Received July 07, 2012; Accepted August 29, 2012; Published September 03, 
2012

Citation: Sinha SK (2012) The Use of Score Tests for Frailty Variance Components 
in Recurrent Event Data. J Biomet Biostat S1:008. doi:10.4172/2155-6180.S1-008

Copyright: © 2012 Sinha SK. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

The Use of Score Tests for Frailty Variance Components in Recurrent 
Event Data
Sanjoy K. Sinha*

School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada

Abstract
In the analysis of recurrent event data, frailties are commonly used to model the dependence structure among 

repeated event times within an individual. Often it is of interest to test whether the variance component in a frailty 
model is zero. It is well-known that the usual asymptotic mixtures of chi-square distributions of the score statistics for 
testing constrained variance components do not necessarily hold. In this paper, we propose and explore a stochastic 
permutation score test based on randomly permuting the indices associated with the individuals of a survival model. An 
empirical study suggests that the proposed score test has approximately the correct level of significance and is more 
powerful than the asymptotic score test based on the mixture of chi-square distributions. The proposed test is illustrated 
using two sets of actual recurrence failure time data obtained from clinical experiments.

Keywords: Failure time data; Frailty; Maximum likelihood;
Permutation test; Proportional hazards model; Score test; Variance 
component

Introduction
In many applications of survival data, often the survival times 

are not independent. Such data can arise when different individuals 
share some common feature or when we observe recurrent event times 
within an individual. Frailties may be used to model the dependence 
structure in such survival data. A frailty can also be used to describe 
an unobservable genetic effect if individuals are in sibling groups or an 
environmental effect if individuals are grouped by households. Some 
experiments lead to repeated event times within an individual, and in 
such cases, frailties can be used to model the association among the 
repeated outcomes.

Frailties can also be used to model survival data in the presence of 
unobserved heterogeneity. For univariate (independent) failure times, 
these may be used to describe the effects of unobserved covariates in 
a proportional hazards model. For multivariate (dependent) failure 
times, these may be used to model the dependence structure among 
the multivariate observations, where it is usually assumed that given 
the frailty the multivariate failure times are conditionally independent. 
Frailty models are extensions of the Cox regression models [1], and 
provide an alternative way of modelling survival data where the hazard 
function is not monotonic, or where the hazards are not proportional. 
Frailties are also used to model survival times for grouped individuals, 
such as twins or family members, and recurrence survival times for 
the same individual. It is usually assumed that the frailties are random 
observations from a probability distribution with mean zero, but 
with an unknown variance component that needs to be estimated. A 
number of authors studied frailty models for describing heterogeneity 
in survival data, which include McGilchrist and Aisbett [2]; Klein [3]; 
McGilchrist [4]; Aalen [5,6]; Hougaard [7]; Klein and Moeschberger 
[8]; and Hougaard [9].

Often we are interested in testing whether the individuals 
in recurrent event data or groups in clustered survival data are 
homogeneous for given explanatory variables, or equivalently, whether 
the variance component in a frailty model is zero. In this paper, we 
investigate a score test for testing the homogeneity of the individuals 
(or groups). The score statistic is derived from a Taylor series 
expansion of the likelihood function about the mean of the frailty. The 

development of the test procedure is computationally less intensive as 
compared to the full likelihood ratio test in that it only requires the 
calculation of the score statistic under the null hypothesis of no frailty. 
It is well-known that for finite samples, the usual one-sided score tests 
based on mixtures of chi-squares often result in incorrect estimates of 
the level of significance (see, for example, Shephard and Harvey [10]; 
Shephard [11]; Pinheiro and Bates [12]; Crainiceanu, Ruppert and 
Vogelsang [13]; Crainiceanu and Ruppert [14]; Fitzmaurice, Lipsitz 
and Ibrahim [15]; and Sinha [16]). As a remedy, here we propose 
and explore a permutation test that approximates the p-value of the 
one-sided score test for the variance component. The proposed test 
provides approximately the correct level of significance under the null 
hypothesis even for small samples, and is also more powerful than tests 
based on mixtures of chi-square distributions.

The paper is organized as follows. Section “The Score Test” describes 
the proposed score statistic for testing the variance component in a frailty 
model. It also describes the permutation method for approximating 
the p-value of the score test. Section “Illustrative Example” presents 
an example using a survival model with a shared frailty for recurrent 
event data, and illustrates the calculation of the score statistic for 
testing the variance component of the frailty term. Section “Simulation 
Study” presents results from a simulation study that was carried out to 
investigate the finite-sample properties of the proposed permutation 
score test as well as the asymptotic score test based on the mixture of 
chi-square distributions. Section “Applications” provides applications 
of the proposed test with two sets of actual recurrence failure time data 
obtained from clinical experiments. Section “Discussion” concludes 
the paper with some discussion.

The Score Test
Suppose, we observe recurrent event data from N individuals, 
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where the ith individual has ni repeated event times. Let Tij denote the jth 
event time for the ith individual and δij denote the censoring information 
(δij = 0 if Tij is right-censored; δij = 1 otherwise). We assume that the 
censoring is non-informative. Let xij= (xij1,..., xijp)’ denote the vector 
of explanatory variables associated with the (i,j)th event. Suppose, 
conditional on the frailty ui, the hazard rate for the jth event is of the 
form:

0( ) ( )exp( )ij ij ih t h t x uβ′= +                                                    (1)

where 0 0h (t ) h (t ; )θ=  is a baseline hazard function depending on 
a vector of unknown parameters θ and β   is a vector of unknown 
regression coefficients. We assume that the frailties uis are independent 
and follow a normal distribution with mean 0 and variance component 

2
uσ . As the hazard rates within an individual share the same frailty, the 

event times within an individual are not independent. However, in the 
limit as 2 0uσ → , they tend to be independent.

Given the data {(tij,δij);i=1,...,N;j=1,...,ni}, the marginal likelihood of 
the model parameters may be expressed in the form: 
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where ( | ) { ( )} ( )ij

ij i ij ij ij ijg t u h t S tδ=  with ( )ijS t  being the survivor 
function for the (i,j)th event at time t, fij(t), is also the corresponding 
density function at time t, and 

iuE  denotes the expectation with respect 
to the distribution of the frailty ui.

Similarly to Cox [17] (see also, Dean [18]), we expand the term 
*( | ) ( | )ij i i ij

g t u g t u≡∏  in (2) using a Taylor series expansion about 

( ) 0
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marginal likelihood for the ith individual as 
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where ( )
i
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k u ia E u= .

To test the homogeneity of individuals, we set the null hypothesis 
that there is no difference in event times between individuals for the 
given explanatory variables, whereas the alternative hypothesis is that 
the event times for a given individual share a common frailty. This is 
equivalent to testing the null hypothesis 2

0 : 0uH σ = , against the one-
sided alternative hypothesis 2

0 : 0uH σ > . The score test for testing the 
null is based on the score function 
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where ( , )γ β θ′ ′ ′= and *( )iS γ  is the score function of 2
uσ  for the ith 

individual evaluated as 2 0uσ = :
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with 0 0( ) ( ; )H t H t θ≡  being the baseline cumulative hazard function at 
time t, depending on the parameters θ.

The score statistic is defined as a function of 0 ( )U U γ≡  , where 
( , )γ β θ′ ′ ′=  

  are the ML estimators of the nuisance parameters 
( , )γ β θ′ ′ ′= under 2

0 : 0uH σ = . An approximate variance of the score 
function U(γ) can be derived from the observed Fisher information 
matrix:
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For calculating the Fisher information I(γ), after some algebra, we 
can show that for the ith individual, 

2

2 2

00
1

log ( , )
( )exp( )

i

u

n
i u

ij ij ij ij
j

L
H t x x x

σ

γ σ
β

β β =
=

∂ ′ ′= −
′∂ ∂ ∑ ,

2

2 2
0

0
1

( )log ( , )
exp( )

i

u

n
iji u

ij ij
j

H tL
x x

σ

γ σ
β

θ β θ=
=

∂∂ ′ ′= −
′∂ ∂ ∂∑ ,

2

2 22 2
0 0

0
1

log ( ) ( )log ( , )
exp( )

i

u

n
ij iji u

ij ij
j

h t H tL
x

σ

γ σ
δ β

θ θ θ θ θ θ=
=

 ∂ ∂∂  ′= − ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ,

2

2 2

02 0
1

0
1 1

log ( , )
( )exp( )

1( )exp( )
2

i

u

i i

n
i u

ij ij ij
ju

n n

ij ij ij
j j

L
H t x x

H t x

σ

γ σ
β

β σ

δ β

=
=

= =

 ∂  ′= − 
∂ ∂   

  ′− + 
  

∑

∑ ∑
,

2

2 2
0

2 0
1

0
1 1

( )log ( , )
exp( )

1( )exp( )
2

i

u

i i

n
iji u

ij
ju

n n

ij ij ij
j j

H tL
x

H t x

σ

γ σ
β

θ σ θ

δ β

=
=

= =

∂ ∂  ′= − 
∂ ∂ ∂  

  ′− + 
  

∑

∑ ∑

and 

2

2 2

2 2 0
1 1 1

2

1 1 1 1

log ( , )
( ) ( )

( )

1 1( ) 1 ( ) ( )
2 4

i i i

u

i i i i

n n n
i u

ij ij ij ij ij
j j ju

n n n n

ij ij ij ij ij ij ij
j j j j

L
H t H t

H t H t H t

σ

γ σ
δ

σ

δ

=
= = =

= = = =

  ∂   = − −  
∂     

      − + + −   
      

∑ ∑ ∑

∑ ∑ ∑ ∑

where 0( ) ( )exp( )ij ijH t H t x β′= .

Advances in Markov Chain Monte Carlo 
Methods and Survival Analysis



Citation: Sinha SK (2012) The Use of Score Tests for Frailty Variance Components in Recurrent Event Data. J Biomet Biostat S1:008. doi:10.4172/2155-
6180.S1-008

Page 3 of 6

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journal

The variance of the score function U(γ) may be approximated from 

1( )D I I I Iσσ σγ γγ γσγ −= − .                                                                      (6)

To test the null H0 against the one-sided alternative H1, following 
Silvapulle and Silvapulle [19], we use a score statistic in the form 

2 2
0 0

0 0

( )
inf : 0

U U
T

D D
δ

δ
 − = − > 
  

,                                                       (7)

where 0 ( )D D γ=  . The development of this statistic is motivated 
by the fact that in the limit as N→∞, it becomes the likelihood ratio 
statistic (see Silvapulle and Silvapulle [19], for details). For positive 2ˆ

uσ
, the score at zero is positive, and the infimum in (7) becomes zero in 
{δ>0}. But when 2ˆ

uσ  is negative, the score at zero is also negative, and 
so the infimum in (7) is attained at δ=0 and the statistic T becomes 
zero. As noted by Verbeke and Molenberghs [20], there should be valid 
models for sufficiently small but negative values of 2ˆ

uσ , even under a 
constrained setting.

As we noted earlier, under the null 2
0 : 0uH σ = , the score statistic T 

for the one-sided test 2
0 : 0uH σ >  does not follow the usual chi-square 

distribution, since the value of 2ˆ
uσ  under H0 is on the boundary of the 

parameter space. As the number of individuals N tends to ∞, T has 
the mixture distribution: 2 2

0 10.5 0.5χ χ+ , where 2
0χ  has a point mass 

at 0 and 2
1χ  has a chi-square distribution with one degree of freedom. 

However, for finite values of N, this mixture of chi-squares may lead to 
incorrect level of significance. In the case of a linear mixed model with 
a fixed intercept and a random group (or cluster) effect, Crainiceanu 
and Ruppert [14] showed that for fixed N and in →∞ , the likelihood 
ratio statistic has a mixture distribution in the form 2 2

0 1(1 )N Nα χ α χ− +
, where αN is determined by the group size N. However, for survival 
models with frailties, the appropriate mixture of chi-squares may not 
be straightforward to obtain.

To approximate the distribution of the score statistic, we propose 
a permutation method. The proposed permutation score test provides 
approximately the correct level of significance under the null, even for 
small samples. To obtain an approximate p-value of the score test based 
on the permutation method, we adopt the following algorithm: 

1. For given survival data, obtain estimates γ of the nuisance 
parameters γ under the null hypothesis 2

0 : 0uH σ = . Using 
equations (4)-(7), compute the observed value of the score 
statistic T, denoted by Tobs.

2. Hold the number of events ni fixed for the ith individual, and 
then permute the individual indices of the given data at random. 
Compute the score statistic T based on the permutation sample. 
Produce a series of test statistics (T1,...,TR) for R permutation 
samples by repeating this step a large number of times R.

3. The approximate p-value of the stochastic permutation score 
test is determined by the proportion of permutation samples 
with r

obsT T≥ . 

Note that Fitzmaurice, Lipsitz and Ibrahim [15] used a similar 
permutation method to approximate the p-value of a likelihood ratio 
test for testing the variance components in multilevel generalized 
linear mixed models. Here, we adopt the permutation method to 
approximate the p-value of the proposed score test for testing a frailty 
variance component in recurrent event data.

We have described the score test for a frailty variance component in 

the framework of recurrent event data. This approach can also be used 
for testing the significance of frailties in clustered survival data. We 
may encounter such clustered data when different individuals share 
some common characteristics. For example, in a multicenter clinical 
experiment, the survival times of patients from the same center may be 
more similar as compared to those from different centers. This could 
be due to different health care services provided to the patients in the 
different centers. Here, we can treat the centers as clusters and describe 
the homogeneity of survival times of the patients within a center using 
a shared frailty model.

Illustrative Example: A Proportional Hazards Model 
with a Shared Frailty

Consider a simple two-level exponential hazards model with two 
covariates xij1 and xij2, and with a single frailty ui: 

0 1 1 2 2( ) ( )exp( ), 1,..., ; 1,...,ij ij ij ih t h t x x u i N j nβ β= + + = = ,                    (8)

where h0(t)=λ is the baseline hazard function, and the frailties ui are 
assumed to be independently and normally distributed with mean zero 
and unknown variance component 2

uσ . Model (8) may be rewritten in 
the form 

0 1 1 2 2( ) exp( ) exp( )ij ij ij i ij ih t x x u x uβ β β β′= + + + = + ,

where 0 logβ λ= , 1 2(1, , )ij ij ijx x x ′=  represents the vector of covariates, 
and 0 1 2( , , )β β β β ′=  represents the vector of unknown regression 
coefficients.

For model (8), the score function (4) takes the form 
2
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Also, for the Fisher information matrix, we have under 2
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The score statistic T takes the form (7) with the score 
function 0 ( )U U β=   and the variance function 0 ( )D D β=  , where 

1( )D I I I Iσσ σβ ββ βσβ −= −  and β  is the ML estimator of β under
2

0 : 0uH σ = . We performed a simulation study to investigate the 
empirical properties of the proposed permutation score test for the 
variance component in (8). Details are provided in the next section.

Simulation Study
To study the finite-sample properties of the proposed permutation 

test, we ran a series of simulations. The “true” event times yij with 
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frailties were generated from the hazards model (8) with the values 
of the regression coefficients being fixed at 0 log( ) log(0.08)β λ= =
, 1 0.5β =  and 2 0.25β = − . For each combination of N=50, 100, 200 
individuals and n=2, 10, 50 repeated event times within individuals, we 
performed a simulation study based on 1000 replicates of data sets. The 
censoring times cij were assumed to be independently and identically 
distributed exponential random variables with mean *1/ 1/ 0.08λ =
, and the censoring mechanism was assumed to be non-informative. 
The observed data were {(tij,δij);i=1,...,N;j=1,...,n}, where tij=min(yij,cij) 
and δij=I(yij < cij).

The value of the frailty variance component 2
uσ  in (8) was set 

to zero when investigating the empirical level of significance of the 
proposed test. We compared the p-value of the permutation test 
to the asymptotic p-value obtained by the (0.5, 0.5) mixture of chi-
square distributions. The permutation p-value was based on B=1000 
permutation samples, and the empirical level of the test was obtained 
as the proportion of samples for which the estimated p-values were less 
than the nominal level α=0.05.

Table 1 presents the estimated levels of significance of the two score 
tests. We note from the results that the level of the permutation test 
is generally much closer to the nominal 0.05 level of significance, as 
compared to the level based on the mixture of chi-square distributions. 
For the latter case, the levels get closer to the nominal 0.05 level only 
when the number of events n and the number of individuals N increase. 
The permutation test roughly provides the correct level of significance 
in each of the simulation configurations considered. Also, the 
approximate 95% normal confidence intervals of the true levels, based 
on the estimated standard errors, suggest that the empirical levels of 
the permutation tests are not significantly different from the nominal 
0.05 level, whereas most of the levels from the asymptotic score tests are 
significantly different.

We also investigated the powers of the two score tests using the 
same simulation configurations as above. The empirical powers were 
calculated under the alternative hypothesis 2

1 : 0.25uH σ = . We used 
1000 simulation replications for each simulation configuration, and 
also used 1000 permutation samples to find the permutation p-value of 
the score test. Table 2 presents the empirical powers of the two tests. It 
is clear that the proposed permutation test is generally more powerful 
than the test based on the mixture of chi-square distributions for the 
simulation configurations considered. For N=200 and n=2, however, 
the score test based on the asymptotic mixture appears to be more 
powerful than the permutation test. But it should be noted that the 
empirical powers of the asymptotic score test may not be reliable here 
as the test provides incorrect level of significance for the given sample 
size.

The results from the simulation study demonstrate that the 
proposed permutation test generally has the correct level of significance 
and is also more powerful than the asymptotic test based on the mixture 
of chi-square distributions.

Applications
Bladder cancer data

Wei, Lin and Weissfeld [21] presented and analyzed some tumor 
recurrence data obtained from a bladder cancer study conducted 
by the Veterans Administration Cooperative Urological Research 
Group (see Byar [22] for details). In this study, all patients entering 
the trial had superficial bladder tumors. After removing these tumors 
transurethrally, patients were randomly assigned to one of three 
treatments: placebo, thiotepa and pyridoxine. During the study, many 
patients had multiple recurrences of tumors, and new tumors were 
removed at each visit. Due to the sparseness of the data, only the first 
four recurrence times were reported. One of the analyses considered 
by Byar [22] and Wei, Lin and Weissfeld [21] was based on the tumor 
recurrence times from patients in the two groups placebo and thiotepa.

Here, we revisit the tumor recurrence data, where we consider 
modelling the recurrence time of a patient measured from the removal 
of old tumors at a given visit until the recurrence of new tumors. The 
recurrence time Tij represents the number of months from a given visit 
until the next jth tumor recurrence for the ith patient (i=1,…,85; j=1, 
…,4). As before, δij represents the censoring information (δij=0 if Tij 
is right-censored; δij=1 otherwise). The covariates considered in the 
study are: TREATi=1 if the ith patient is in the thiotepa group and 0 
otherwise; NUMBERi=number of initial tumors for the ith patient; and 
SIZEi=size of the largest initial tumor for the ith patient. We consider a 
proportional hazards model with a shared frailty in the form 

0 1 2 3( ) exp( ),ij i i i ih t TREAT NUMBER SIZE uβ β β β= + + + +            (10)

for i=1,…,85;j=1,…,4, where t is the time from the beginning of the 
jth recurrence interval and ui is the random effect (frailty) for the ith 
patient, assumed to be independently and normally distributed with 
mean 0 and variance component 2

uσ . 

The null hypothesis to be tested is that there is no difference in 
recurrence times between subjects for the given explanatory variables 
( 2

0 : 0uH σ = ), against the alternative that the recurrence times for the 
same individual share the same frailty ( 2

1 : 0uH σ > ). To perform the 
proposed score test, we first fit the model under the null 2

0 : 0uH σ =  
using the maximum likelihood method. The score statistic produced a 
value of 12.001. Here, the permutation test based on 10000 permutation 
samples produced a p-value of 0.0005. The usual (0.5, 0.5) mixture of 
chi-squares also produced a small p-value of 0.00027, as expected. 
Clearly, both methods indicate strong evidence against the null, that is, 
there is significant difference in recurrence times between subjects for 

 Individuals Number of events (n)
 N Test 2 10 50

50 Permutation 0.046 (0.0066) 0.047 (0.0067) 0.052 (0.0070)

Mixture 0.005 (0.0022) 0.009 (0.0030) 0.016 (0.0040)

100 Permutation 0.045 (0.0066) 0.040 (0.0062) 0.052 (0.0070)

Mixture 0.011 (0.0033) 0.019 (0.0043) 0.027 (0.0051)

200 Permutation 0.048 (0.0068) 0.052 (0.0070) 0.050 (0.0069)

Mixture 0.015 (0.0038) 0.026 (0.0050) 0.031 (0.0055)

Table 1: Empirical level of significance of the score test for a frailty model (standard 
error in parenthesis).

Individuals Number of events (n)
 N Test 2 10 50
50 Permutation 0.168 (0.0118) 0.988 (0.0034) 1.000 (0.0000)

Mixture 0.126 (0.0105) 0.976 (0.0048) 1.000 (0.0000)
100 Permutation 0.273 (0.0141) 1.000 (0.0000) 1.000 (0.0000)

Mixture 0.257 (0.0138) 1.000 (0.0000) 1.000 (0.0000)
200 Permutation 0.457 (0.0158) 1.000 (0.0000) 1.000 (0.0000)

Mixture 0.572 (0.0156) 1.000 (0.0000) 1.000 (0.0000)

Table 2: Empirical power of the score test for a frailty model (standard error in 
parenthesis).
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the given explanatory variables. As 2
uσ  is significant, we fit the above 

hazards model with the frailty. The maximum likelihood estimates of 
the model parameters, and their corresponding approximate standard 
errors are shown in Table 3. Here, the treatment thiotepa appears to 
decrease the risk of recurrence of tumors, whereas this risk is increased 
by a large number of initial tumors.

Note, that as we compute the score statistics under the null 
hypothesis of no frailties, the permutation score test does not require 
much computation time even with a large number of permutation 
samples. For the above example, we found the permutation p-value of 
the score test based on 10000 permutation samples in about 4 minutes 
and 50 seconds using the R package on a 64-bit Operating System with 
AMD Turion(tm) II P540 Dual-Core Processor 2.40 GHz and with 
4.00 GB RAM.

Kidney data

McGilchrist and Aisbett [2] published some recurrence data, and 
studied the recurrence of infection in kidney patients who were using a 
portable dialysis machine. The infection in patients occurs at the point 
of insertion of the catheter. When the infection occurs, the catheter 
must be removed, the infection cleared up, and then the catheter 
reinserted. Recurrence times are measured from insertion until the 
next infection. When the catheter is removed for other reasons, there 
is right censoring of the data. Also, the final recurrence time may be 
censored as each patient is followed for a predetermined number of 
recurrence times. The covariates considered in the study are: AGE, and 
binary indicators for FEMALE as well as disease types GN, AN and 
PKD.

We revisit the kidney data, and consider a proportional hazards 
model with a shared frailty in the form 

0 1 2

3 4 5

( ) exp(
),

ij ij i

i i i i

h t AGE FEMALE
GN AN PKD u

β β β
β β β

= + + +

+ + +
                                   (11)

for i=1,…,38;j=1,2, where t is the time from the beginning of the jth 
recurrence interval and ui is the ith patient effect (frailty), assumed to 
be independently and normally distributed with mean 0 and variance 
component 2

uσ .

Here, we are interested in testing if there is any significant difference 
in recurrence times between subjects for the given explanatory variables 
or, equivalently, if the recurrence times for the same individual share 
the same frailty. Initially, we conducted the score test based on a subset 
of the data with a fewer number of patients by considering the last 25 
individuals (patients 14–38 in Table 1 of McGilchrist and Aisbett [2]) 
in order to investigate the performance of the two score tests under a 
small sample. The value of the score statistic is obtained as 0.0594. The 
asymptotic p-value based on the mixture of chi-squares provides a value 
of 0.4038, whereas the permutation test based on 10000 permutation 
samples produced a smaller p-value value of 0.0469. Clearly, unlike 
the asymptotic score test, the permutation method indicates that 
there is significant difference at 5% level in recurrence times between 
subjects for the given explanatory variables. This suggests that for small 
samples, the two test procedures can provide different conclusions, 
and the proposed permutation test may be preferable to the asymptotic 
score test in such a case.

In the next step, we performed the score test based on the recurrence 
times for all 38 patients. The score statistic produced a small value of 

0.0339. The (0.5, 0.5) mixture of chi-squares produced a p-value of 
0.4270, whereas the permutation test based on 10000 permutation 
samples produced a p-value value of 0.4115. Both methods indicates 
no evidence against the null that the subject-specific frailty is 0. So, we 
consider fitting the above hazards model with no frailty. The maximum 
likelihood estimates of the model parameters, and their corresponding 
asymptotic standard errors are presented in Table 4. Here the FEMALE 
group and the disease type PKD appear to have higher risk of recurrence 
of infection in kidney patients.

Discussion
For testing the significance of a variance component in a frailty 

model, the proposed permutation score test provides a simple 
alternative to computing the asymptotic p-values of score tests based 
on the (0.5, 0.5) mixture of chi-square distributions. Our limited 
simulation study suggests that the permutation test has approximately 
the correct level of significance, and is also more powerful than tests 
based on the mixture of chi-square distributions under finite samples. 
The permutation score test is easy to implement and is also attractive in 
that it only requires estimation of the the fixed effects parameters under 
the null hypothesis of no shared frailty in the proportional hazards 
model.

We have discussed the permutation test for testing homogeneity of 
individuals in two-level survival data. This test can be easily extended 
to multilevel survival data with more than two levels. For testing 
homogeneity of groups at a given level, we can permute the indices 
corresponding to that level. For example, consider the bladder cancer 
study discussed in Section “Applications”. If the patients are nested 
within medical practices, then we can test for homogeneity at the 
practice level by permuting the practices that the patients are assigned 
to, while the recurrence times would remain with the same patients for 
a given practice.

Note that Sinha [16] studied a parametric bootstrap score test, 
based on random samples generated from the fitted model under 
the null, which approximates the p-value of a one-sided score test 
for variance components in generalized linear mixed models. This 

Coefficient Estimate SE z value

INTERCEPT –3.0478 0.5624 –5.42

TREAT –0.6265 0.3239 –1.93

NUMBER 0.2485 0.0867  2.87

SIZE –0.0176 0.1086 –0.16

2
uσ 0.9221 0.3441  2.68

Table 3: Analysis of bladder cancer data using a proportional hazards model with 
a shared frailty.

Coefficient Estimate SE z value

INTERCEPT 3.7055 0.4965  7.46

AGE –0.0019 0.0112 –0.17

FEMALE 1.6118 0.3329  4.84

GN –0.0580 0.4048 –0.14

AN –0.5181 0.3911 –1.33

PKD 1.3264 0.5698  2.33

Table 4: Analysis of kidney data using a proportional hazards model with a shared 
frailty.
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parametric bootstrap procedure, however, may not be directly 
applicable to survival data, since the development of the test procedure 
is complicated by the fact that the survival times are often censored.

Acknowledgements 

This research was partially supported by a grant from the Natural Sciences 
and Engineering Research Council of Canada.

References

1. Cox DR (1972) Regression models and life tables. J R Stat Soc Series B 
(Methodological) 34: 187–220.

2. McGilchrist CA, Aisbett CW (1991) Regression with frailty in survival analysis. 
Biometrics 47: 461–466.

3. Klein JP (1992) Semiparametric estimation of random effects using the Cox 
model based on the EM algorithm. Biometrics 48: 795–806.

4. McGilchrist CA (1993) REML estimation for survival models with frailty. 
Biometrics 49: 221–225.

5. Aalen OO (1994) Effects of frailty in survival analysis. Stat Methods Med Res 
3: 227–243.

6. Aalen OO (1998) Frailty models. In Statistical Analysis of Medical data: New 
Developments (Eds. Everitt BS and Dunn G), Arnold, London.

7. Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1: 255–
273.

8. Klein JP, Moeschberger ML (2003) Survival Analysis: Techniques for Censored 
and Truncated Data. Springer, New York.

9. Hougaard P (2000) Analysis of Multivariate Survival data. Springer, New York.

10. Shephard NG, Harvey AC (1990) On the probability of estimating a deterministic 
component in the local level model. J Time Ser Anal 11: 339–347.

11. Shephard N (1993) Maximum likelihood estimation of regression models with 
stochastic trend components. J Am Stat Assoc 88: 590–595.

12. Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-Plus. Springer-
Verlag, New York.

13. Crainiceanu CM, Ruppert D, Vogelsang TJ (2002) Probability that the MLE of 
a variance component is zero with applications to likelihood ratio tests 1-21. 

14. Crainiceanu CM, Ruppert D (2004) Likelihood ratio tests in linear mixed models 
with one variance component. J R Stat Soc Series B (Stat Methodol) 66: 165–
185.

15. Fitzmaurice GM, Lipsitz SR, Ibrahim JG (2007) A note on permutation tests for 
variance components in multilevel generalized linear mixed models. Biometrics 
63: 942–946.

16. Sinha SK (2009) Bootstrap tests for variance components in generalized linear 
mixed models. Can J Stat 37: 219–234.

17. Cox DR (1983) Some remarks on overdispersion. Biometrika 70: 269–274.

18. Dean CB (1992) Testing for overdispersion in Poisson and binomial regression 
models. J Am Stat Assoc 87: 451–-457.

19. Silvapulle MJ, Silvapulle P (1995) A score test against one-sided alternatives. 
J Am Stat Assoc 90: 342–349.

20. Verbeke G, Molenberghs G (2003) The use of score tests for inference on 
variance components. Biometrics 59: 254–262.

21. Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate 
incomplete failure time data by modeling marginal distributions. J Am Stat 
Assoc 84: 1065–1073.

22. Byar DP (1980) The veterans administration study of chemoprophylaxis for 
recurrent stage I bladder tumors: comparisons of placebo, pyridoxine, and 
topical thiotepa. In Bladder Tumors and Other Topics in Urological Oncology, 
eds. M. Pavone-Macaluso, P. H. Smith, and F. Edsmyn. Plenum, New York 
363–370.

This article was originally published in a special issue, Advances in Markov 
Chain Monte Carlo Methods and Survival Analysis handled by Editor(s). 
Dr. Faming Liang, Texas A&M University, USA; Dr. Nengjun Yi, University 
of Alabama at Birmingham, USA; Dr. Wenqing He, University of Western 
Ontario, Canada; Dr. Liuquan Sun, Institute of Applied Mathematics, Academy 
of Mathematics and Systems Science, China

Advances in Markov Chain Monte Carlo 
Methods and Survival Analysis

http://www.stat.rutgers.edu/home/rebecka/Stat687/cox.pdf
http://www.ncbi.nlm.nih.gov/pubmed/1912255
http://www.ncbi.nlm.nih.gov/pubmed/1420842
http://www.ncbi.nlm.nih.gov/pubmed/8513103
http://www.ncbi.nlm.nih.gov/pubmed/8513103
http://www.ncbi.nlm.nih.gov/pubmed/7820293
http://www.ncbi.nlm.nih.gov/pubmed/9385105
http://books.google.co.in/books/about/Survival_Analysis.html?id=jS2Cy0lezJIC
http://books.google.co.in/books/about/Analysis_of_Multivariate_Survival_Data.html?id=lWDaNHRQNBcC&redir_esc=y
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9892.1990.tb00062.x/abstract
http://www.jstor.org/discover/10.2307/2290340?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21101154568201
http://books.google.co.in/books/about/Mixed_Effects_Models_in_S_and_S_Plus.html?id=N3WeyHFbHLQC&redir_esc=y
http://legacy.orie.cornell.edu/davidr/papers/probzero01.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2004.00438.x/abstract
http://www.ncbi.nlm.nih.gov/pubmed/17403100
http://onlinelibrary.wiley.com/doi/10.1002/cjs.10012/abstract
http://www.jstor.org/discover/10.2307/2335966?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21101154568201
http://www.jstor.org/discover/10.2307/2290276?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21101154568201
http://www.jstor.org/discover/10.2307/2291159?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21101154568201
http://www.ncbi.nlm.nih.gov/pubmed/12926710
http://www.jstor.org/discover/10.2307/2290084?uid=3738256&uid=2129&uid=2&uid=70&uid=4&sid=21101154568201

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	The Score Test
	Illustrative Example: A Proportional Hazards Modelwith a Shared Frailty
	Simulation Study
	Applications
	Bladder cancer data
	Kidney data

	Discussion
	Acknowledgements
	Table 1
	Table 2
	Table 3
	Table 4
	References



