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Abstract
Emerging epidemiological evidence suggests that T2DM may be associated with an increased risk of certain 

cancers. However, the underlying molecular mechanism linked these two diseases remains largely unknown. SHP2, a 
non-receptor protein tyrosine phosphatase encoded by pro-oncogene PTPN11, has been reported involved in insulin 
resistance through PI3K/Akt/mOTR signaling and has also been considered to play a vital role in carcinogenesis via 
Ras/Erk pathways. Based on our previous studies, we hypothesize that SHP2 may present a key molecule linked both 
T2DM and cancers through both Ras/Erk and PI3K/AKT/mTOR signaling pathways. We believe that the comprehensive 
and detailed investigation of SHP2 may provide a new insight into the underlying molecular mechanism linked both 
T2DM and cancers, thereby facilitating the process to discover novel therapeutic targets to prevent and treat cancers.
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Background
Type 2 Diabetes Mellitus (T2DM) is a common disorder, which 

is characterized by high blood glucose concentration in the context 
of insulin resistance and/or relative insulin deficiency. Increasing 
epidemiological evidence suggests that T2DM may be associated with 
an increased risk of certain cancers including pancreatic [1], hepatic 
[2], lung [3], colorectal [4], breast [5], bladder [6], gastric [7] and 
endometrial [8] cancers. These results suggest that the comprehensive 
investigation of the mechanisms responsible for DM to facilitate 
occurrence of cancer may provide us new potential therapeutic 
targets. However, the current studies have been mainly focused on the 
relationship between DM and cancers, and the molecular mechanism 
linked these two diseases remains largely unknown.

Abnormal protein tyrosine phosphorylation underlies various 
diseases of deregulated growth and differentiation, including cancer 
[9-11]. Src-homology 2 domain-containing phosphatase (SHP2) is 
a non-receptor protein tyrosine phosphatase encoded by the first 
identified proto-oncogene PTPN11. Genetic and biochemical studies 
in recent years have suggested that SHP2 plays a broad role not only in 
cell proliferation [12], survival [13], and differentiation [14], but also 
in development [15,16] and tumorigenesis [17-19] of malignancies 
via Ras/Erk [20], PI3K/Akt [21] and other signaling pathways. In 
accordance to a recent study [18], our previous studies [22-24] have 
demonstrated that SHP2 plays a crucial role in breast oncogenesis. 
Recently, we have also found for the first time that SHP2 is widely 
expressed by lung cancer cells, and that the high expression of SHP2 may 
promote the invasion and metastasis of NSCLC through angiogenesis 
and the lymphatic system [25,26]. As T2DM has also been considered 
as a risk factor of many kinds of cancers, we begin to speculate whether 
SHP2 plays a role in the pathogenesis of T2DM? If so, should SHP2 be 
a potential target linked both T2DM and cancers?

Under this speculation, we have performed a systematic search on 
the literature data base. It is generally accepted that insulin resistance 
is due to defective insulin signaling and thus results in the progression 
of T2DM, but details remain largely unknown. In recent years, 
several clinical studies [27-30] have declared that metformin, which 
is considered as a first-line treatment modality for T2DM, reduces 
incidence of neoplastic diseases in T2DM patients, as compared to 
other anti-diabetic agents. Studies [31,32] have showed that metformin 
inhibits the mammalian Target Of Rapamycin Complex 1 (mTORC1), 
a molecule downstream of PI3K/Akt, resulting in decreased cancer cell 

proliferation. These new encouraging experimental data support that 
the crucial involvement of PI3K/Akt/mTOR signaling pathway in the 
insulin resistance and progression of diabetes. Besides, Bifulco [33] 
showed that glucose regulated insulin signaling via the IRS1/MAPK 
pathway and mitogenesis by modulating the activity and subcellular 
localization of the SHP2 tyrosine phosphatase. Using a mouse model, 
Princen found that insulin resistance and impaired glucose uptake 
existed in SHP2-deficient mice [34]. Further studies [35-39] suggest that 
SHP2 recruited by Insulin Receptor Substrate-1 (IRS-1), acts as a signal 
coordinator in pancreatic beta-cells and controlled insulin biosynthesis 
to maintain glucose homeostasis through Akt and Erk pathways. These 
abovementioned results strongly suggest that SHP2, recruited by IRS-
1, may present a key molecule involved in both T2DM and cancers via 
both Ras/Erk and PI3K/Akt/mTOR signaling pathways.

The Hypothesis
 Epidemiological evidence suggests that T2DM is a risk factor of 

lung cancer. Studies focused on the common signal pathway shared 
by both T2DM and cancers may provide us new potential therapeutic 
targets. SHP2 plays a vital role in both insulin resistance and cancers 
through PI3K/Akt/mOTR and Ras/Erk pathways respectively. We 
speculate that SHP2 may present a key target linked both T2DM and 
cancers: on one hand, the high expression or activation of SHP2 results 
in excessive tyrosine dephosphorylation on IRS-1/2, which is a key part 
of insulin resistance. On the other hand, overactivation of SHP2 can 
sequentially activate PI3K/Akt/mTOR and Ras/Erk pathways, while 
both pathways are generally accepted to be closely associated with 
tumorigenesis and progression of cancers. The role of SHP2 involved 
in T2DM and cancers are schematically described in Figure 1. Further 
investigation of SHP2 may provide a new insight into the underlying 
molecular mechanism linked both T2DM and cancers, thus help 
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to discover new potential therapeutic targets in the prevention and 
treatment of cancers.

Evaluation of the Hypothesis
The role of PI3K/Akt/mTOR signaling pathway in T2DM

It has been generally accepted that the understanding of insulin 
resistance is the key to the prevention and treatment of T2DM. 
However, the mechanism underlying insulin resistance is not entirely 
clear. Large number of studies in recent years has established the 
central role of PI3K/Akt/mTOR signaling in numerous cellular 
processes including metabolism, growth, survival, and motility. As a 
ser/thr protein kinase, Akt could enhance the phosphorylation of IRS-
1/2 and hamper the insulin-induced signal transdution. Um et al. [40] 
reported that mTOR–raptor complex, also called mammalian Target 
of Rapamycin Complex 1 (mTORC1), and its downstream target 
S6 Kinase 1 (S6K1) mediate nutrient-induced insulin resistance by 
down regulating insulin receptor substrate proteins with subsequent 
reduction in Akt phosphorylation. Fraenke et al. [41] and Xie et 
al. [42] also demonstrated that mTOR played a critical role in beta-
cell adaptation to hyperglycemia. Chronic inhibition of mTOR with 
rapamycin augments insulin resistance, beta cell dysfunction, and 
death. These data strongly suggest that aberrant activation PI3K/AKT/
mTOR pathway plays a vital role in pathogenesis and progression of 
T2DM [43,44].

The role of Ras/Erk signaling pathway in cancers

The Ras family of GTPases (HRas, NRas and KRas) comprises of 
proteins that are highly conserved across species and play key roles in 
numerous basic cellular functions, including control of proliferation, 
differentiation, and apoptosis. Under normal physiological conditions, 
Ras/Erk activation is transient. However, excessive or sustained 
activation of Ras/Erk signaling pathway has been found in patients 
with a wide variety of cancers [45-47], suggesting the significant role 
of the Ras/Erk signaling pathway in cancer initiation and promotion. 
So far, several different mechanisms have been explored to account for 
the abnormal activation of Ras signaling pathways in tumorigenesis, 
including mutations in Ras, loss of GAP proteins, overexpression of 

RTKs (such as EGFR), and also abnormal phosphorylation of tyrosine 
phosphatase upstream of Ras/Erk [48]. Besides, there is a cross-talk 
and complex feedback loop between Ras/Erk and PI3K/Akt/mTOR 
pathways [49,50], thus combined inhibition of these two pathways has 
been suggested as a therapeutic strategy in treatment of cancers [51,52]. 

Shp2 is upstream of Ras and PI3K pathways and plays a 
important role in both insulin resistance and carcinogenesis

SHP2, a ubiquitous tyrosine phosphatase, is thought to be 
inactive by forming intramolecular folding without stimulations, 
whereas it becomes active when the N-terminal SH2 domains bind to 
phosphorylated molecules, including Grb2-associated binder (Gab), 
IRS-1 and etc., by forming an open conformation. Shp2 was reported 
to be a modulator that prolongs the activation of Erk [18,20,22], which 
suggests its role in carcinogenesis and development of several kinds 
of malignancies. Furthermore, Lima et al. [36] reported that insulin-
induced IRS-1/SHP2 complex was associated with insulin resistance 
and played a role in the control of AKT phosphorylation in an 
animal model. Princen et al. [34] demonstrated that SHP2 deficiency 
led to up regulation of PI3K/Akt pathways and insulin resistance in 
cardiomyocytes. Zhang et al. [39] also reported that SHP2 acted as 
a signal coordinator in beta-cells, orchestrating multiple pathways 
including PI3K/Akt and Ras/Erk to control insulin biosynthesis to 
maintain glucose homeostasis. Besides, a recent review focusing on 
insulin resistance also highlighted the role and therapeutic potential 
of SHP2 in the control of insulin action and glucose metabolism [53]. 

Taken together, these abovementioned results strongly prompt us 
to consider that: on one hand, SHP2 is involved in carcinogenesis and 
development of cancers mainly through Ras/Erk pathway. On the other 
hand, SHP2 also plays a significant role in insulin resistance of T2DM 
via PI3K/Akt/mTOR pathway. Importantly, Ras/Erk pathway can have 
a cross-talk with PI3K/Akt/mTOR one. Based on these findings, we 
conclude that SHP2 might present a key molecule linked both T2DM 
and cancers.

To verify our hypothesis, the following issues will be carefully 
and comprehensively addressed for some certain cancer such as lung 
cancer:

Insulin

Insulin receptor

Insulin resistance/DM Cell proliferation/tumorigenesis

Tyr dephosphorylation
Ser/Thr phosphorylation




Figure 1: The role of SHP2 involved in T2DM and cancers are schematically.
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1)	 Animal model (mouse) for T2DM should be firstly established.

2)	 Inhibition of SHP2 to test the activation of PI3K/AKT/mTOR 
and Ras/Erk between T2DM and T2DM-SHP2low groups.

3)	 Xenograft tumor experiments to compare the tumor formation 
between T2DM and T2DM-SHP2low groups (non-small cell 
lung cancer A549 cell line will used) in order to examine the 
involvement of the activation of PI3K/AKT/mTOR and Ras/
Erk.

4)	 Large-scale prospective study should be performed to test the 
expression of SHP2 in T2DM patients and the relationship 
between SHP2 expression and incidence of lung cancer. 
According to our speculation, these T2DM patients who have 
higher expression of SHP2 may also be suffered from higher 
risk of lung cancer.

Consequences of the Hypothesis and Discussion
Although a growing number of epidemiological studies suggest 

that T2DM may be associated with an increased risk of certain cancers, 
no paper up to date, to our knowledge, has elucidated the underlying 
mechanism linked both T2DM and cancers. In the present paper, we 
assume that SHP2 may present a key molecule linked both T2DM 
and cancers via regulating Ras/Erk and PI3K/AKT/mTOR signaling 
pathway. Further and comprehensive investigation of SHP2 may 
provide a new insight into the molecular mechanism linked both 
T2DM and cancers, thus help us to discover new potential therapeutic 
targets in the prevention and treatment of cancers. Although some 
questions have not been explained completely, there are still enough 
evidence for us to hypothesize that SHP2 may be a key target linked 
T2DM and cancers and a potential target for the intervention and 
potential therapy for cancers. 
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