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Introduction
Consider the standard multiple linear regression model;

Y X e= + , (1)

where Y is an ( 1)n× vector of responses, X is an ( )n p×  matrix of the 
explanatory variables of full rank p, β  is a ( 1)p×  vector of unknown 
regression coefficients, and finally, 2~ (0, )e N Iσ  is an ( 1)n×  vector of 
error terms. 

The OLS estimator is often used to estimate the regression 
coefficients β  as:

1ˆ ( )X X X Yβ −′ ′= .  (2)

The standard assumption in the linear regression analysis is that 
all the explanatory variables are linearly independent. When this 
assumption is violated, the problem of multicollinearity enters into the 
data and it inflates the variance of an ordinary least squares estimator of 
the regression coefficient. Obtaining the estimators for multicollinear 
data is an important problem in the literature. In fact, when the problem 
of multicollinearity is present in the measurement error ridden data, 
then an important issue is how to obtain the consistent estimators 
of regression coefficients. One of the most popular estimator for 
combating multicollinearity is the ridge estimator, originally proposed 
by Hoerl et al. [1]. They suggested a small positive number (k>0) to be 
added to the diagonal elements of the X X′  matrix from the multiple 
regression and the resulting estimators are obtained as:

1ˆ( ) ( ) ,k X X k I X Yβ −′ ′= +  (3)

which is known as a ridge regression estimator. For a positive 
value of k, this estimator provides a smaller MSE compared to the OLS 
estimator, i.e.,

ˆ ˆ( ( )) ( )MSE k MSEβ β< .

Most of the later efforts in this area have concentrated on estimating 
the value of the ridge parameter k. Many different techniques for 
estimating k have been proposed by different researchers, for example, 
Hoerl et al. [1], Hoerl et al. [2] Dempster et al. [3], Gibbons [4], Kibria 
[5], Khalaf et al. [6], Alkhamisi et al. [7], Khalaf [8] and Khalaf [9].

The plan of the paper is as follows: in Section 2, we present different 

methods for estimating the parameter of ridge regression together with 
our proposed estimators. A simulation study has been conducted in 
Section 3. The simulation results are discussed in Section 4. In Section 
5 we give a brief summary and conclusions.

The Proposed Ridge Regression Parameter
In case of ordinary ridge regression, many researchers have 

suggested different ways of estimating the ridge parameter. Hoerl et 
al. [1] showed, by letting 

maxβ  denote the maximum of the iβ , that 
choosing;

2

2
max

ˆˆ
ˆHKk σ
β

= ,              (4)

implies that ˆ ˆ( ( )) ( )MSE k MSEβ β< . The ridge estimator using ˆ
HKk  will 

be denoted by HK.

Hoerl et al. [2] suggested that, the value of k is chosen small 
enough, for which the MSE of ridge estimator is less than the MSE of 
OLS estimator. They showed, through simulation, that the use of the 
ridge with biasing parameter given by:

2ˆˆ ,ˆ ˆHKB

p
k

σ
β β

=
′

(5) 

has a probability greater than 0.50 of producing estimator with a 
smaller MSE than the OLS estimator, where 2σ̂  is the usual estimator 

of 2σ , defined by 2
ˆ ˆ( ) ( )ˆ

1
Y X Y X

n p
β β

σ
′− −

=
− −

. The ridge estimator using Eq. 

(5) will be denoted by HKB.

The purpose of this study is to modify the approaches of estimating 
k mentioned in Hoerl and Kennard [1] and Hoerl et al. [2] given in 
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Abstract
In a multiple regression analysis, it is usually difficult to interpret the estimator of the individual coefficients if the 

explanatory variables are highly inter-correlated. Such a problem is often referred to as the multicollinearity problem. 
There exist several ways to solve this problem. One such way is ridge regression. Two approaches of estimating the 
shrinkage ridge parameter k are proposed. Comparison is made with other ridge-type estimators. To investigate the 
performance of our proposed methods with the traditional ordinary least squares (OLS) and the other approaches 
for estimating the parameters of the ridge regression model, we calculate the mean squares error (MSE) using the 
simulation techniques. Results of the simulation study shows that the suggested ridge regression outperforms both the 
OLS estimator and the other ridge-type estimators in all of the different situations evaluated in this paper.
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where β̂  is the estimator of β  obtained from the OLS or the other 
different ridge parameters, and R equals 5000 which corresponds to the 
number of replications used in the situation.

The Simulation Results
Ridge estimators are constructed with the aim of having smaller 

MSE than the MSE of the OLS estimator. Improvement, if any, can 
therefore be studied by looking at the amount of the MSE. These MSEs 
are reported in Tables 1 and 2. The results of our simulation study 
indicate that ridge estimators outperform OLS estimator in all cases 
and the suggested estimators KI 1  and KI 2  performed very well in 
this study. They appear to offer an opportunity for large reduction in 
MSE, especially when the sample size and the correlation between the 
explanatory variables are high (Table 1).

equations (4) and (5), to suggest the following two estimators:

1

, 1
ˆ

, 1
2

HK HKB if the sum
k

HK HKB if the sum


 + <= 
 + >


                                                        (6)

2

, 1
ˆ

, 1

HK HKB if the sum
k

HK HKB if the sum
p




+ <
= 
 + >


                                                         (7)

where p denotes the number of parameters (excluding the intercept). 
The ridge estimators using 1̂k  and 

2k̂  will be denoted by KI1 and KI2, 
respectively.

The performance of these proposed estimators will be then 
compared with the traditional OLS estimation and those of HK and 
HKB estimators in terms of MSE. This will mainly be done by means of 
simulations under conditions where the sample size n, the number of 
the explanatory variables p and the strength of correlations between the 
explanatory variables are varied.

The Simulation Study
This section consists of a brief description of how the data is 

generated together with a discussion about the different factors varied 
in the simulation study. Also the criteria for judging the performance 
of the different estimation methods are presented.

The design of the experiment

Following McDonald et al. [10], the explanatory variables are 
generated by

1
2 2(1 ) , 1,2,..., 1,2,...,ij ij ipx z z i n j pρ ρ= − + = =

where ijz  are independent standard normal pseudo-random 
numbers, and ρ  is specified so that the correlation between any two 
explanatory variables is given by 2.ρ  Four different sets of correlation 
are considered, corresponding to ρ = 0.60, 0.90, 0.94 and 0.98. 
The explanatory variables are then standardized so that X X′  is in 
correlation form.

Observations on the dependent variable are determined by

0 1 1 ... , 1,2,...,i i p ip iy x x e i nβ β β= + + + + =

Where 0β  is taken to be identically zero. Four values of 2σ  are 
considered which are 0.8, 0.9, 0.95 and 0.99. Then the dependent 
variable is standardized so that X y′  is the vector of correlation of 
dependent variable with each explanatory variable. In this experiment, 
we choose p = 7 and 10 for n = 15, 25, 80 and 200. Then the experiment 
is replicated 5000 times by generating new error terms.

Judging the performance of the estimators

To investigate the performance of the different proposed ridge 
regression estimators and the OLS method, we calculate the MSE using 
the following equation:

1

ˆ ˆ( ) ( )
,

R

i i
iMSE

R

β β β β
=

′− −
=
∑

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 8.61 4.20 2.74 1.76 1.94
25 1.064 0.975 0.783 0.769 0.811
80 0.2517 0.2479 0.2347 0.2350 0.2386
200 0.0937 0.0932 0.0913 0.0914 0.0920

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 35.88 12.72 7.70 2.46 2.63
25 4.188 3.058 1.830 1.466 1.582
80 1.012 0.937 0.718 0.709 0.751

200 0.3793 0.3688 0.3251 0.3287 0.3408

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 65.873 21.228 14.814 3.0203 3.1189
25 7.4153 4.6495 2.6701 1.7583 1.8506
80 1.7701 1.5495 1.0626 0.9965 1.0601

200 0.6507 0.6189 0.5043 0.5066 0.5330

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 218.62 63.98 46.10 4.37 4.39
25 23.351 10.661 6.373 2.388 2.410
80 5.451 3.788 2.167 1.5789 1.6223
200 2.102 1.777 1.154 1.039 1.087

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 6.8406 3.5983 2.3898 1.5982 1.7575
25 0.8384 0.7839 0.6537 0.6477 0.6789
80 0.1962 0.1938 0.1851 0.1854 0.1878

200 0.0741 0.0738 0.0726 0.0727 0.0731

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 27.622 10.530 6.556 2.364 2.526
25 3.340 2.566 1.583 1.342 1.456
80 0.7973 0.7512 0.6008 0.5988 0.6307
200 0.2998 0.2934 0.2654 0.2686 0.2771
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2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 47.988 16.688 10.105 2.680 2.805
25 5.773 3.915 2.268 1.645 1.755
80 1.3607 1.2231 0.8749 0.8433 0.8977
200 0.5184 0.4978 0.4182 0.4223 0.4427

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 158.08 49.069 31.913 4.064 4.102
25 18.470 8.957 5.164 2.215 2.250
80 4.364 3.193 1.864 1.453 1.507
200 1.6500 1.4402 0.9722 0.9059 0.9551

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 6.440 3.459 2.228 1.539 1.690
25 0.7611 0.7140 0.6001 0.5955 0.6229
80 0.1765 0.1745 0.1676 0.1678 0.1698
200 0.0659 0.0657 0.0646 0.0647 0.0651

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 26.715 10.069 6.155 2.219 2.383
25 3.049 2.386 1.489 1.293 1.407
80 0.7101 0.6728 0.5464 0.5474 0.5761
200 0.2645 0.2594 0.2367 0.2395 0.2466

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 44.747 14.785 9.448 2.656 2.783
25 5.184 3.587 2.097 1.567 1.673
80 1.2181 1.1079 0.8093 0.7888 0.8403
200 0.4629 0.4463 0.3803 0.3841 0.4012

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 150.20 44.75 30.23 3.92 3.97
25 16.983 8.301 4.901 2.175 2.213
80 3.896 2.923 1.726 1.384 1.438
200 1.4606 1.2923 0.8920 0.8437 0.8918

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 5.848 3.082 1.985 1.436 1.590
25 0.7038 0.6658 0.5655 0.5622 0.5860
80 0.1639 0.1622 0.1559 0.1562 0.1581
200 0.0620 0.0618 0.0609 0.0610 0.0613

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 23.002 9.022 5.371 2.153 2.339
25 2.750 2.196 1.383 1.221 1.326
80 0.6726 0.6394 0.5243 0.5256 0.5521
200 0.2439 0.2395 0.2198 0.2225 0.2288

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 38.996 13.866 8.865 2.532 2.675
25 4.918 3.444 2.021 1.536 1.648
80 1.1318 1.0341 0.7638 0.7490 0.7986
200 0.4228 0.4089 0.3521 0.3563 0.3718

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 132.45 41.75 27.32 3.72 3.77
25 15.685 7.873 4.621 2.162 2.206
80 3.702 2.825 1.686 1.362 1.415

200 1.3698 1.2222 0.8535 0.8128 0.8583

Table 1: Estimated MSE when p = 7.

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 6.5313 4.2852 2.4810 2.0218 2.2595
25 1.9391 1.7640 1.2815 1.2552 1.3536
80 0.3799 0.3751 0.3504 0.3513 0.3578

200 0.1412 0.1406 0.1370 0.1372 0.1382

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 27.1747 12.4955 6.2813 3.0539 3.2615
25 7.7115 5.5316 2.8908 2.2409 2.4154
80 1.5642 1.4634 1.0591 1.0417 1.1066

200 0.5785 0.5647 0.4834 0.4884 0.5090

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 46.8813 20.0779 9.6678 3.5778 3.7064
25 13.3331 8.2681 4.1480 2.6650 2.7821
80 2.7026 2.4034 1.5277 1.4297 1.5126

200 1.0056 0.9615 0.7435 0.7435 0.7848

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 152.1745 53.8533 28.0708 5.4931 5.5123
25 42.4797 19.5072 10.2101 3.8327 3.8562
80 8.6617 6.2425 3.2356 2.3936 2.4296

200 3.2246 2.7729 1.6640 1.5011 1.5472

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 5.1583 3.5488 2.0914 1.7885 2.0080
25 1.5015 1.3916 1.0632 1.0496 1.1219
80 0.3079 0.3048 0.2883 0.2887 0.2929

200 0.1129 0.1125 0.1102 0.1103 0.1110



Citation: Ghadban AK, Iguernane M (2015) The Traditional Ordinary Least Squares Estimator under Collinearity. J Biom Biostat 6: 264. 
doi:10.4172/2155-6180.1000264

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 4 of 5

Volume 6 • Issue 5 • 1000264

If we focus on the values of 2σ , ρ  and the sample size n, we find 
that among the ridge estimators considered, KI 1  is the best followed 
by HKB and KI 2 .

In comparing Tables 1 and 2 which involve p = 7 and p = 10, 
respectively, we find that the MSEs are lowest for Table 1. This is to say 
that the ridge estimators are more helpful when high multicollinearity 
exists and the number of explanatory is not large.

Conclusions
In this article, we introduce two alternatives ridge estimators and 

study their performance using simulation techniques. Comparisons are 
made with other ridge type estimators evaluated elsewhere. The results 
from the simulation study show that the sample size, the correlation 
between the independent variables and the number of explanatory 
variables are important factors for the performance of the different 
estimation methods. In most of the cases, the MSE decreases when the 
first two factors increase.

The result also shows that, with respect to MSE criteria, the proposed 
ridge regression methods out performs both the OLS estimator and the 
estimators of Hoerl et al. [1] and Hoerl et al. [2] in all cases investigated. 
The use of the proposed estimators is recommended since it reduces 
the MSE substantially in all of the different situations investigated in 
this paper.

References

1. Hoerl AE, Kennard RW (1970) Ridge Regression: Biased Estimation for non-
orthogonal Problems. Technometrics 12: 55-67.

2. Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge Regression: Some 
Simulation. Communications in Statistics - Theory and Methods 4: 105-124.

3. Dempster AP, Schatzoff M, Wermuth N (1977) A simulation study of alternatives 
to ordinary least squares. J Amer Statist Assoc 72: 77-91.

4. Gibbons DG (1981) A simulation study of some ridge estimators. Journal of the 
American Statistical Association 76: 131-139.

5. Kibria BMG (2003) Performance of some New Ridge Regression Estimators. 

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 21.5841 10.4375 5.2976 2.8178 3.0594
25 6.0798 4.5944 2.4765 2.0355 2.2102
80 1.2484 1.1829 0.8924 0.8857 0.9376
200 0.4509 0.4427 0.3907 0.3949 0.4091

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 36.5916 15.8731 8.0752 3.3272 3.4763
25 10.5081 6.9777 3.5163 2.4477 2.5894
80 2.1424 1.9455 1.2911 1.2373 1.3161
200 0.7777 0.7505 0.6040 0.6075 0.6392

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 121.9148 44.9126 23.0672 5.0840 5.1219
25 34.4905 16.7414 8.4861 3.5828 3.6167
80 6.9268 5.2124 2.7602 2.1686 2.2207
200 2.5272 2.2342 1.3946 1.2931 1.3449

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 4.8443 3.3635 1.9976 1.7168 1.9370
25 1.3692 1.2774 0.9866 0.9745 1.0372
80 0.2727 0.2702 0.2568 0.2572 0.2608
200 0.1016 0.1014 0.0997 0.0998 0.1003

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 19.1460 9.6208 4.7720 2.6614 2.9010
25 5.4160 4.2002 2.2972 1.9271 2.0963
80 1.1199 1.0674 0.8218 0.8220 0.8708
200 0.4083 0.4015 0.3579 0.3621 0.3745

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 32.4676 14.0097 7.1604 3.1164 3.2841
25 9.5260 6.4257 3.2854 2.3640 2.5141
80 1.9154 1.7555 1.1939 1.1542 1.2284
200 0.6905 0.6690 0.5486 0.5540 0.5824

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 106.6568 38.7463 20.5424 4.8432 4.8767
25 30.9499 15.4485 7.8942 3.4899 3.5305
80 6.1767 4.7439 2.5543 2.0581 2.1169
200 2.2575 2.0205 1.2931 1.2172 1.2730

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.6

15 4.2840 3.1024 1.8590 1.6290 1.8248
25 1.2607 1.1830 0.9290 0.9234 0.9818
80 0.2531 0.2510 0.2396 0.2400 0.2431
200 0.0927 0.0924 0.0909 0.0909 0.0914

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.9

15 17.4206 8.8620 4.4007 2.5474 2.7966
25 5.0021 3.9189 2.1558 1.8498 2.0298
80 1.0351 0.9899 0.7723 0.7738 0.8181

200 0.3760 0.3700 0.3317 0.3356 0.3469

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.94

15 29.8622 13.6424 6.7319 3.1074 3.2918
25 8.6360 5.9772 3.0399 2.2691 2.4267
80 1.7623 1.6261 1.1247 1.0960 1.1692

200 0.6306 0.6130 0.5108 0.5165 0.5419

2σ = 0.8

ρ n OLS HK HKB KI1 KI2

0.98

15 100.3572 36.5617 19.2035 4.6061 4.6499
25 28.1448 14.4566 7.2695 3.3876 3.4369
80 5.6109 4.3818 2.3663 1.9535 2.0138

200 2.1242 1.9125 1.2351 1.1687 1.2243

Table 2: Estimated MSE when p = 10.

http://math.arizona.edu/~hzhang/math574m/Read/Ridge.pdf
http://math.arizona.edu/~hzhang/math574m/Read/Ridge.pdf
http://www.tandfonline.com/doi/abs/10.1080/03610927508827232
http://www.tandfonline.com/doi/abs/10.1080/03610927508827232
http://www.jstor.org/stable/2286909?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2286909?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2287058?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2287058?seq=1#page_scan_tab_contents
http://www.tandfonline.com/doi/abs/10.1081/SAC-120017499


Citation: Ghadban AK, Iguernane M (2015) The Traditional Ordinary Least Squares Estimator under Collinearity. J Biom Biostat 6: 264. 
doi:10.4172/2155-6180.1000264

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 5 of 5

Volume 6 • Issue 5 • 1000264

Communication in Statistics-Theory and Methods 32: 419-435.

6. Khalaf G, Shukur G (2005) Choosing Ridge Parameters for Regression
Problems. Communication in Statistics - Theory and Methods 34: 1177-1182.

7. Alkhamisi M, Shukur G (2008) Developing Ridge Parameters for SUR Model.
Communication in Statistics-Theory and Methods 37: 544-564.

8. Khalaf G (2011) Ridge Regression: An Evaluation to some New Modifications. 
International Journal of Statistics and Analysis 1: 325-342.

9. Khalaf G (2013) A Comparison between Biased and Unbiased Estimators.
JMASM 12: 293-303.

10. McDonald GC, Galarneau DI (1975) A Monte Carlo evaluation of some ridge-
type estimators. J Amer Statist Assoc 70: 407-416.

http://www.tandfonline.com/doi/abs/10.1081/SAC-120017499
http://www.tandfonline.com/doi/abs/10.1081/STA-200056836
http://www.tandfonline.com/doi/abs/10.1081/STA-200056836
http://www.tandfonline.com/doi/abs/10.1080/03610920701469152
http://www.tandfonline.com/doi/abs/10.1080/03610920701469152
http://digitalcommons.wayne.edu/jmasm/vol12/iss2/17/
http://digitalcommons.wayne.edu/jmasm/vol12/iss2/17/
http://www.jstor.org/stable/2285832?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2285832?seq=1#page_scan_tab_contents

	Title
	Corresponding author
	Abstract 
	Keywords
	Introduction
	The Proposed Ridge Regression Parameter 
	The Simulation Study 
	The design of the experiment 
	Judging the performance of the estimators 

	The Simulation Results 
	Conclusions 
	Table 1
	Table 2
	References

