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Introduction 
Thin film flow is one of important natural phenomena. Its 

enormous usages and application in the expanse of industries, 
engineering and technology in a last few years clarify its importance 
in nature. The analysis of thin film flow of practical applications is a 
challenging interplay between fluid mechanics and fluid dynamic. 
Wire and fibre coating is one of its important applications. Extrusion 
of polymer and metal, processing of food stuff, continuous casting, 
plastic sheets drawing, and fluidization of reactor, exchanges, and 
chemical processing equipment are some of its common applications. 
Keeping in view such a countless applications researcher did a lot of 
work on it. Wang [1] was the main researcher to investigate liquid film 
on a time dependent stretching sheet. The similar work was further 
improved by Ushah and Sridharan [2]. The heat transmission effect 
on liquid film analysis on horizontal sheet was studied by Liu and 
Andersson [3]. In their work they used numerical methods to obtain 
the solution and also discuss the confined flow parameters. Aziz et al. 
[4] perceived the consequence of inner heat production of a thin liquid 
film flow on a time dependent stretched sheet. Recently Tawade et al. 
[5] examined thin liquid flow over an un-steady stretched sheet with 
thermal radiation, in the presence of magnetic field using RK-Fehlberg 
and Newton-Raphson schemes for solution of non-linear equations.

Thin fluid film flow of Non-Newtonian liquid increases in many 
life geographies which is used mostly in cylindrical shapes. Several 
researcher [6-9] investigated Power law fluid by using different cases 
in unsteady stretching surface. Megahe [10] and Abolbashari et al. [11] 
scrutinized thin film flow of Caisson fluid flows and heat transmission 
in the existence of inconsistence heat flux and viscid dissipation with 
slip velocity. Recently Qasim et al. [12] deliberates the Nano-fluid thin 
film on a time dependent stretched surface taking the Buongiorno’s 
model.

Walter’s B fluid is one of the important subclasses of non-

Newtonian fluids. Several researchers investigated Walter’s B fluid 
with effect of heat and MHD. Very less study is available on it in the 
form of thin films flow in cylinder. Hussain and Ullah [13] examined 
boundary layer flow using Walter’s B fluid on a stretched cylinder with 
temperature reliant viscosity. Manjunatha et al. [14] studied thermal 
dusty fluid flow over a permeable stretched cylinder in the occurrence 
of non-uniform source or sink. Hayat et al. [15] investigated axi-
symmetric third order liquid flow on a stretching cylinder within the 
effect of MHD. Qasim et al. [16] considered the MHD Boundary Layer 
having Slip condition Flow under Heat Transition of the Ferrofluid 
on a Stretching Cylinder with a suggested Heat Flux. Sheikholeslami 
[17] studied the consequence of constant value of suction of Nano-
fluid flows and heat transition over a stretched pipe. Manjunatha et 
al. [18] studied the radiation influence and heat transmission of MHD 
Dusty Fluid flow over a Stretched Cylinder Surrounded in a Porous 
Medium in the occurrence of Heat Sources. Abdulhameed et al. [19] 
considered the oscillating and heat transmission and association 
of different pressure waveforms in a circular cylinder. Mahdy [20] 
examined heat transmission of a Casson fluid flow over a stretched 
cylinder while considering dufour and soret effects. Abdul Hakeem et 
al. [21] observed the influence of heat radioactivity of Walter’s B fluid 
on a stretched surface with non-uniform heat source/sink and flexible 
deformation. Pandey et al. [22] deliberate the Features of Walter’s B 
Visco-Elastic Nano-fluid Layer and Heat transition.

In the field of engineering most of mathematical problems are 
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Abstract
The main objective of this work is to study the performance of the boundary layer flow considering non-Newtonian 

Walter’s B fluid over the surface of an unstable cylinder to protect the surface of the cylinder from external heating 
and cooling. The Soret and Dufour properties with heat and mass transmission have been encountered in the flow 
field. Using the appropriate similarity transformations the leading PDE’s for the flow field have been altered into high 
ordered non-linear coupled ODE’s. Series solutions of the subsequent problem are computed by using controlling 
procedure homotopy analysis method. The properties of the included physical parameters in the problem, like 
Reynolds number, Walter’s B fluid parameter, Prandtl number, Schmidt numbers, Dufour and Soret numbers have 
been illustrated. The behavior of Skin friction, Sherwood number and local Nusselt number have been described 
numerically for the dynamic constraints of the problem and the comparison of these physical parameters have been 
displayed with the experimental consequences in the existent literature. The optimal convergence of the applied 
method has been patterned by plotting h-curves. Finally, the results, obtained from HAM, have been justified through 
numerical (ND-Solve) method and tabulated comparison.
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complex in nature and the exact solution is almost very difficult or even 
not possible. So Numerical and Analytical methods are used to find the 
approximate solution. In these methods Homotopy Analysis Method 
is one of the important and popular techniques for the solution of 
such type of problems. It is an auxiliary method and its foremost 
advantage is to apply on the differential equations which are nonlinear 
without discretization and linearization. Liao [23-30] investigated this 
technique for the answer of non-linear equations and successfully 
proved that this method is rapidly convergent to the approximated 
solutions. Apart from this, this method provides series solutions in the 
form of single variable functions. Finding solution with this method 
is important because it involves all the physical parameters of the 
problem and we can easily discuss its behaviour. The authors [31-34] 
used this procedure to answer highly non-linear and coupled equations 
due to it fast convergence. 

As it is already mentioned that most of the published work related 
to thin films are available about viscous fluids in Cartesian systems, 
where very less literature is available on the non-Newtonian fluids in 
Cylindrical system. The advancement of research in the field of thin 
films and its application in industry and technology is the need of the 
existing era. Therefore, the determination of existing research is based 
on the study of non-Newtonian thin film flow in cylindrical system. So, 
for this aim Walter’s B fluid flow is considered [35]. HAM is used for 
the solution modelled equations which are nonlinear and coupled. The 
effect of modelled parameters has been studied graphically [36].

Problem Formulation
Consider the steady axi-symmetric and incompressible flow of 

Walter’s B fluid in a stretched cylinder having radius a alongside axial 
direction, where z is alongside cylinder and r is along to radial direction. 
The temperature at the cylinder surface is represented by Tb and the 
concentration is symbolized by Cb respectively. The stretching velocity 
of the cylinder is 2 ,wW cz=  in which c>0 represented the stretched 
constant, the size of the cylinder condenses but the outside radius of 

the pipe are taken fixed. 
2

( )b r
nf
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 is 

the temperature and concentration fields, in which Tb,Cb is the initial 
temperature and concentration and Tγ,Cγ is the reference temperature 
and concentration respectively. Viscous dissipation and the body 
forces are neglected in the flow field. Also, supposition is made that the 
base fluid and the nanometer size particle exist in thermal equilibrium, 
dominate the deficiency of slip.

Considering these suppositions in cylindrical coordinates (γ,z), 
the mass of conservation equation, the conservation of momentum 
equation, energy and concentration equations can be identified as:
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The applicable Boundary Constrains for the flow pattern are taken as: 

, , ,  at 
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Taking u(γ,z)and w(γ,z) are the velocities components, ρ indicates 
the density of the fluid, k0 indicates the thermal conductivity, p is 
the pressure, α represents the thermal diffusivity, T denotes the local 
temperature, σ indicates thickness of the fluid film, Cp is mentioned 
for specific heat, Cs is used for concentration susceptibility, D indicates 
the mass diffusivity, C symbolizes concentration field, where is Tm 
represents the mean temperature of the fluid.

Familiarising the succeeding similarity transformations:

( ) ( )
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The prime identifies the derivative w.r.t the similarity variable 
ζ, c>0 indicates stretching constraint, a specifies exterior radius of 
cylinder where the exterior radius is represented by b. ( ), ( ), ( )f ς ς ςΘ Φ
Indicate the non-dimensional velocity profile, temperature gradient 
and concentration field. 

Using the similarity transformation i.e., eqn. (7) in eqns. (1-6), 
justifies the mass of conservation equation automatically and the left 
over equations are transformed to non-linear ordinary differential 
scheme as: 
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The non-dimensional boundary condition of the problem are:
(1) 0, '(1) 1, ( ) 0,
(1) 1, ( ) 0, (1) 1, ( ) 0.
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The equivalent boundary condition for the system of equation are:
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Where [0,1]ρ ∈  is the embedding constraint, , ,f Θ Φ  
are the 

axillary constraints use for the convergence of the results. For ρ=0 and 
ρ=1 we get:
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Expand the non-dimensional velocity, temperature and 
concentration fields ( ; ), ( ; ), ( ; )f ς ρ ς ρ ς ρΘ Φ by Taylor’s series when.
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The axillary parameter , ,f Θ Φ    are designated in a fashion that 
the series in eqn. (25) converges at 1ρ = injecting 1ρ =  in eqn. (25), we 
achieve:
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The thϖ - order system for eqn. (8-10) are the following:
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The consistent boundary conditions are:
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The physical non-dimensional parameter after simplification:

Where,
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The Skin friction value, local Nusselt number and Sherwood 
number can be expressed for the given flow problem as:
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The non-dimensional forms for the above mentioned physical 
properties are:
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2
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=  is the local Reynolds number.

Solution by HAM
The boundary condition in eqn. (11), are answered approximately 

by Homotopy Analysis Method (HAM). The solutions enclose the 
auxiliary parameters 



 which is used to stabilise and adjust the 
convergence of solutions eqns. (8-10).

The initial solutions are chosen as follow:
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are selected in the below given form:
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The basic idea for HAM solution is defined in eqns. (23-30), where 
is the Zeroth-order system for eqn. (8-10) as:
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ρ
ρ
≤
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HAM Solution Convergence
The convergence of eqn. (27), exclusively can be influenced by 

the auxiliary constraints ,   and f Θ Φ  

. It is a selection in a manner 
which controls and converge the series answer Figure 1. The possibility 

segments of  are plotted -curves of (1),   (1) and  (1)f ′′ ′ ′Θ Φ  for 

20th order approximated HAM solution. The effective region of   is
0.7 0.1, 1.2 0.1 and 1.2 0.1.f Θ Φ− < < − − < < − − < < −    The convergence 

of the HAM method through -curves for velocity profile, temperature 
gradient and concentration field has been presented in Figures 2-4 
respectively.

Results and Discussion 
The performance of various physical constraints, enclosed in 

the flow field, like Reynolds quantities, Walter’s B fluid parameter, 
Dufour number, Schmidt numbers, Soret number and Prandtl 
number on a non-dimensional velocity profile, temperature gradient 
and concentration field have been presented through graphs. The 
association of HAM approximation with Numerical method (ND-
Solve Method) has been shown through graphs and tables. Figures 
2-4 show the -curves of ( ), ( ), ( )f ς ς ςΘ Φ for the 20th-order probable 
HAM solution. Figure 5 and 6 shows that the convergent region for the 
problem shrinks when the value of Schmidt number and Soret number 
are increased. Figure 7 displays the velocity drop for the Walter’s B 
fluid parameter A. The transport rate is decreased by increasing the 
value of A, and as a result the boundary-layer thickness is decreased. 
It is observed that thickness of the boundary-layer and velocity field 

reduce by rising of Walter’s B fluid parameter A. Whereas the elastic 
stress constraint rises with the thermal boundary layer thickness. 
While momentum boundary-layer thickness is decreased by increasing 
the values of A, consequence that the velocity field at the surface 

                           a

 δ

      δ
     B0

  V                     r

     u
w

           z

           
           b

Figure 1: The physical configureureuration of the modelled problems.

Figure 2: Represents the graph of f -for (1)f ′′ , when Pr=1.0,Sr=0.6, β=1.4, 
Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 3: The graph of  -curve (1).′Θ  when Pr=1.0,Sr=0.6, β=1.4, Sc=0.6, 
Re=1.0, A=0.7, Du=0.5.

Figure 4: The graph of (1).′Φ -curve (1).′Φ when Pr=1.0,Sr=0.6, β=1.4, Sc=0.6, 
Re=1.0, A=0.7, Du=0.5.
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drops when Walter’s B fluid parameter A is increased. The velocity 
distribution and rate of change of velocity field for several numbers of 
the Reynolds are specified in Figures 10 and 11. It is mentioned that the 
Reynolds quantity characterises the comparative consequence of the 

of the cylinder increases. Figure 8 illustrates that Walter’s B fluid 
constraint has the same effect on the velocity rate of change ( )f ς′ . 
Figure 9 presents the effect of temperature gradient for several values 
of Walter’s B fluid constraint A and it is detected that temperature 

Figure 5: The graph of  -curve (1).′Φ for various value of Sc Pr=1.0,Sr=0.6, 
β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 8: Graphical representation of rate of change velocity '( )f ς for 
different numbers of A, when. =-0.3, Pr=1.0,Sr=0.6, β=1.4, Sc=0.6, Re=1.0, 
Du=0.5

Figure 6: The graph of  -curve (1).′ for various value of Sr Pr=1.0,Sr=0.6, 
β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 9: Changes in Temperature gradient ( )ςΘ  for diverse measures of 
A, when. =-0.3, Pr=1.0,Sr=0.6, β=1.4, Sc=0.6, Re=1.0, Du=0.5

Figure 7: Graphical demonstration of non-dimensional velocity ( )f ς for 
different numbers of A, when. =-0.3, Pr=1.0,Sr=0.6, β=1.4, Sc=0.6, Re=1.0, 
Du=0.5.

Figure 10: Graphical demonstration of non-dimensional velocity ( )f ς for 
different numbers of Re, when =-0.3, Sr=0.6, β=1.4, Sc=0.6, Pr=1.0, A=0.7, 
Du=0.5.
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which plays a vital role in heat and mass transmission procedures. 
When the Schmidt quantity is improved alternatively decreases the 
classes of concentration field and boundary-layer thickness and 
a small growth in the fluid temperature. Figure 23 represents the 

inertia force against the viscous force and due to inertia the velocity is 
decreased. Actually the Reynolds quantity is the proportion of inertial 
and viscous forces. So in the Reynolds quantity the inertial force 
plays the central role as compared to viscous force. Therefore for by 
increasing larger Reynolds number the velocity decreases to zero and 
the flow degeneration is very slow. The same behaviour can be observed 
in Figures 12 and 13 for the temperature gradient and concentration 
profile i.e., temperature and concentration profile increase when Re 
increases. The reason for that bigger Reynolds number implies that 
inertial force exists as an overpowering agent in opposing the viscous 
force. Thin film constraint shows a special role in the fluid flow. From 
plot 14, it appears that the velocity profile reduces with larger values of 
film thickness parameter Figure 14. The more thick is the fluid film the 
more resistance offers in the flow and leads to retard the movement of 
the liquid. By increasing values of film thickness parameter the mass 
of fluid growths and as a result boundary layer thickness is decreased 
which causes retardation in the flow motion which is inversely related 
to the mass of the fluid. The thin film parameter plays a vital role in 
temperature distribution. Temperature reduces with larger magnitudes 
of thin film parameter which is observable in plot. 15. Heat is absorbed 
in the fluid film size, therefore, temperature of the fluid falls down as 
a result cooling effect is produced Figure 15. It is a fact that in non-
Newtonian liquids the concentration is comparatively greater than that 
of the Newtonian liquids. The concentration is strongly dependent on 
film size parameter. The Concentration profile rises up with increasing 
values of thin film parameter as exhibited by Figure 16. The reason is 
that the film thickness has direct relation with viscosity and thermal 
conductivity which increase the concentration. The ratio of the 
momentum and thermal diffusivities represented the Prandtl quantity. 
In Figure 17 it is deliberated that the temperature gradient is a reducing 
function of Pr quantity. The temperature filed at the face of the cylinder 
attained some negative values for various numbers of Pr, i.e., heat is 
continuously transported from the surface of the cylinder to the fluid. 
Fluids that’s having inferior Prandtl numbers holding upper thermal 
conductivities, so by this phenomenon heat are transferred from the 
sheet surface quicker with-in fluids with greater Prandtl quantity Pr. 
While in Figure 18 the concentration field displays a poor performance 
beside Prandtl values Pr because of the weakening of boundary layer. The 
consequence of the Dufour number of the heat and mass transference 
rate at the surface of the cylinder is demonstrated in Figures 19 and 20. 
Figure 19 shows the influence of Dufour quantity on the temperature 
field which reveals that Heat transfer is directly proportional to 
Dufour number. Actually, the Dufour Number is the proportion of the 
concentrations difference to temperature difference. When the Dufour 
Number Du increases then concentration automatically increases 
consequently temperature falls down. Figure 20 is prepared for the 
effect of Du number on Concentration. Since Du defines the ratio of the 
concentrations difference to temperature difference. By increasing Du, 
the viscosity improves and as a result the concentration increases and 
plotted that heat transmission rate reduces while the mass transmission 
rate rises with the increase of Dufour number. The same effects is 
observed for heat and mass transmission rates over Soret number. i.e., 
Figure 21 deliberates the effect of Soret number Sγ over temperature 
gradient. It is seen that the heat transference rate increases with the 
rise of Soret number Sγ. The cause is that Soret number shows the 
proportion of the temperatures difference to concentrations difference. 
This parameter exhibits that when Sγ increases the temperature also 
increases. It means that the Soret number reductions the rate of heat 
transmission. Figure 22 displays the contribution of Sγ in concentration. 
The Schmidt number is defined as the proportion of the viscid 
boundary films thickness and concentration boundary films thickness, 

Figure 11: Graphical representation of rate of change of velocity '( )f ς for 
different numbers of Re, when =-0.3, Sr=0.6, β=1.4, Sc=0.6, Pr=1.0, A=0.7, 
Du=0.5

Figure 12: Changes in Temperature gradient ( )ςΘ  for diverse measures 
of Re, when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, A=0.7, Du=0.5.

Figure 13: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of Re, when  =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, 
A=0.7, Du=0.5.
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boundary layer reductions with growth of Schmidt number Sc. The 
convergence of the solutions is shown in the Table 1 and it is observed 
from the table that momentum equation converges to 13th order of 
approximations whereas temperature distribution equation converges 

effect of appropriate parameter Sc. The significance of the Schmidt 
number on the mass transmission rate is demonstrated in Figure 24. 
It is also shown that the mass transmission rate falls with the increase 
in Schmidt number. It is due to the reason that the concentration 

Figure 14: Graphical demonstration of non-dimensional velocity ( )f ς for 
different numbers of β, when.  =-0.3, Sr=0.6, Sc=0.6, Re=1.0, Pr=1, A=0.7, 
Du=0.5.

Figure 17: Changes in Temperature gradient ( )ςΘ  for diverse measures 
of Pr, when =-0.3, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 15: Changes in Temperature gradient ( )ςΘ  for diverse measures 
ofβ, when. =-0.3, Sr=0.6, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 18: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of Pr, when =-0.3, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, 
Du=0.5.

Figure 16: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of β, when =-0.3, Pr=1.0, Sr=0.6, Sc=0.6, Re=1.0, A=0.7, 
Du=0.5.

Figure 19: Changes in Temperature gradient ( )ςΘ  for diverse measures 
of Du, when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7.
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to 27th order of approximations and concentration equation converge 
up to 32nd order of approximations. Table 2 displays the performance 
of several implanted physical constraints on skin friction quantity. 
It is shown that skin friction quantity rises with the increase in fluid 

film thickness parameter and Reynolds number while decreases the 
performance for Walter’s B fluid constant. Table 3 is designed for the 
influence of various dynamic limitations on local Nusselt number. It is 
detected that the increase of Nusselt number is directly related to fluid 
film thickness parameter, Reynolds number and Prandtl number, while 
it is inversely related to Dufour number. Table 4 indicates the effect 
of included physical parameters on local Sherwood number and it is 
investigated that Sherwood number is increased for fluid film thickness 
parameter, Reynolds number and Schmidt number while decreases for 

Figure 20: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of Du, when  =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7.

Figure 23: Changes in Temperature gradient ( )ςΘ  for diverse measures of 
Sc, when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Re=1.0, A=0.7, Du=0.5.

Figure 21: Changes in Temperature gradient ( )ςΘ  for diverse measures 
ofSr, when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 24: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of Sc, when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Re=1.0, A=0.7, 
Du=0.5.

Figure 22: Deviations in concentration sketch ( )ςΦ  happen for different 
magnitudes of Sr, when =-0.3, Pr=1.0, β=1.4, Sc=0.6, Re=1.0, A=0.7, 
Du=0.5.

Order of 
approximations

(1)f ′′− (1)′−Θ (1)′−Φ

1 0.000882667 0.00112000 0.00032000
5 0.00108098 0.00251398 0.000664943

10 0.00108378 0.00269044 0.000691743
15 0.00108382 0.00270355 0.000692040
20 0.00108382 0.00270458 0.000691927
25 0.00108382 0.00270467 0.000691907
30 0.00108382 0.00270468 0.000691905
32 0.00108382 0.00270468 0.000691904
33 0.00108382 0.00270468 0.000691904

Table 1: Displays the HAM approximated solutions convergent, when =-0.4, 
Pr=0.7, Sr=0.2, β=1.1, Sc=0.2, Re=0.02, A=0.01, Du=0.2.
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Soret number. The association of HAM and numerical methods for 
the velocity profile, temperature gradient and concentration field are 
displayed in Figures 25-27 and Tables 5-7 and shown that these two 
methods has adjacent solutions. 

Conclusion
In the present work heat transmission distribution is examined 

analytically during thin film flow of a Walter’s B fluid on a stretched 
cylinder. Applying an appropriate similarity transformations on the 
major equations of the flow problem and has been converted to non-
linear ODEs. The obtained nonlinear equations are solved by HAM 
and numerical (ND solve) methods. The Consequence of the several 

parameters are deliberated. The following assumptions can be observed 
from the analytical solution:

1. The velocity profile and rate of change of velocity profile both 

Figure 25: HAM and numerical results association for non-dimensional 
velocity ( )f ς , when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, 
Du=0.5.

Figure 26: HAM and numerical results association for temperature gradient
( )ςΘ , when =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

Figure 27: HAM and numerical solutions association for concentration fields
( )ςΦ ,  =-0.3, Pr=1.0, Sr=0.6, β=1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

β Re A (1)f ′′

1.1 0.02 0.01 0.00108382
1.12 0.00132709
1.14 0.00157984
1.1 0.02 0.00108382

0.04 0.00216921
0.06 0.00325616
0.02 0.01 0.00108382

0.02 0.008157
0.04 0.00107921

Table 2: Demonstrates the Numerical results for skin friction factor for several 
physical constraints, when  =-0.4, Pr=0.7, Sr=0.2, =1.1, Sc=0.2, Re=0.02, A=0.01, 
Du=0.2.

β Re Pr Du 2 (1)k ′− Θ

1.1 0.02 0.7 0.2 0.00540936
1.12 0.00649177
1.14 0.00757428
1.1 0.02 0.00540936

0.04 0.0108249
0.06 0.0162466
0.02 0.7 0.00540936

0.8 0.00618764
0.9 0.00696732
0.7 0.2 0.00540936

0.3 0.00531161
0.4 0.00521331

Table 3: Demonstrates the Numerical values of local Nusselt number for various 
physical parameters, when  =-0.4, Pr=0.7, Sr=0.2, =1.1, Sc=0.2, Re=0.02, A=0.01, 
Du=0.2.

β Re Sc Sr (1)′−Φ
1.1 0.02 0.2 0.2 0.000691905

1.12 0.000830282
1.14 0.000968655
1.1 0.02 0.000691905

0.04 0.00138387
0.06 0.00207589
0.02 0.2 0.000691905

0.3 0.00104088
0.4 0.00139190
0.2 0.2 0.000691905

0.3 0.000637343
0.4 0.000582473

Table 4: Demonstrates of the Sherwood quantity for various physical constraints, 
when  =-0.4, Pr=0.7, Sr=0.2, =1.1, Sc=0.2, Re=0.02, A=0.01, Du=0.2.



Citation: Khan W, Gul T (2018) The Thin Film Flow of Walter’s B Fluid over the Surface of a Stretching Cylinder with Heat and Mass Transfer Analysis. 
J Appl Computat Math 7: 411. doi: 10.4172/2168-9679.1000411

Page 10 of 11

Volume 7 • Issue 3 • 1000411J Appl Computat Math, an open access journal
ISSN: 2168-9679 

values of Soret, Dufour and Schmidt numbers during fluid 
motion.

According to the prevailing literature this is the first effort 
concerning the heat distribution of a thin film flow of a Walter’s B fluid 
on a stretching cylinder.
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ς HAM Result ( )f ς Numerical result Absolute error

1.0 1.00000 1.00000 0.0
1.1 1.09959 1.09961 51.7 10−×
1.2 1.19841 1.19851 59.7 10−×

1.3 1.29651 1.29678 42.7 10−×
1.4 1.39395 1.39452 45.7 10−×
1.5 1.49081 1.49181 31.0 10−×
1.6 1.58717 1.58874 31.6 10−×
1.7 1.6831 1.68538 32.3 10−×
1.8 1.7787 1.7818 33.1 10−×
1.9 1.87407 1.87809 34.0 10−×
2.0 1.96933 1.9743 35.0 10−×

Table 5: The association between HAM and ND-Solve for non-dimensional velocity ( )f ς when  =-0.3, Pr=1.0, Sr=0.6, =1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

ς HAM Result
( )ςΘ

Numerical result Absolute error

1.0 1.00000 1.00000 0.0
1.1 1.00059 1.00063 54.6 10−×
1.2 1.00224 1.0024 41.6 10−×
1.3 1.00481 1.00515 43.5 10−×
1.4 1.00821 1.00876 45.5 10−×
1.5 1.01242 1.01315 47.4 10−×
1.6 1.01744 1.01827 48.3 10−×
1.7 1.02337 1.02412 47.5 10−×
1.8 1.03032 1.03075 44.2 10−×
1.9 1.03847 1.03829 41.8 10−×
2.0 1.04803 1.04704 49.9 10−×

Table 6: The association between HAM and ND-Solve for temperature gradient ( )ςΘ when =-0.3, Pr=1.0, Sr=0.6, =1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

ς HAM Result
( )ςΦ

Numerical result Absolute error

1.0 1.00000 1.00000 0.0
1.1 1.01313 1.01472 31.6 10−×
1.2 1.02826 1.03045 32.2 10−×
1.3 1.0451 1.04696 31.6 10−×
1.4 1.06338 1.06416 47.8 10−×
1.5 1.08285 1.0821 47.5 10−×
1.6 1.10327 1.10094 32.3 10−×
1.7 1.12444 1.12103 33.4 10−×
1.8 1.14613 1.1429 33.2 10−×
1.9 1.16814 1.16737 47.7 10−×
2.0 1.19027 1.1956 35.3 10−×

Table 7: The association between HAM and ND-Solve for concentration field ( )ςΦ when  =-0.3, Pr=1.0, Sr=0.6, =1.4, Sc=0.6, Re=1.0, A=0.7, Du=0.5.

decreases by increasing the value of Walter’s B fluid constant 
and Reynolds number.

2. The same effect is concluded in temperature filed for Walter’s B 
fluid constant and Reynolds number.

3. The effect of Prandtl number is directly related to concentration 
field and inversely related to temperature filed. 

4. The temperature distribution increases by increasing Soret, 
Dufour and Schmidt numbers during fluid motion.

5. While the concentration field is decreased by increasing the 
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