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A Brief History of Cell Calcium 
Some of the most abundant metals in Earth´s crust as iron, 

magnesium and calcium have significant roles in the regulation of 
cellular processes [1,2]. Biochemically, these metals are electrophiles 
capable of modifying the electron ion flow in biomolecules, by binding 
and orienting them [3]. One of the most versatile metals in cell physiology 
is the calcium ion (Ca2+). Nowadays, many fundamental functions of 
the cell are Ca2+ dependent. Paradoxically, early life emerged in a scant 
free Ca2+ environment (~100 nM) because the cation was maintained 
as insoluble salt by the high seawater pH. In these conditions, 
photosynthesis was developed by autotrophs releasing molecular 
oxygen (O2) from splitting water. Because O2 easily permeate through 
cell lipid bilayers generating many toxic effects, the incorporation of 
this molecule in cell metabolism through cellular respiration reduced 
its harmful effects, but carbon dioxide (CO2) was produced as a waste 
product. The rich CO2 environment generated by cellular respiration 
induced a slight acidification of seawater that progressively releases 
Ca2+. In contrast to O2, the fatty inner core of the lipid bilayers prevented 
large Ca2+ influxes, but some Ca2+ permeation occurred through 
imperfect junctions between phospholipid domains and ionic channels 
[4,5]. In early life, Mg2+ controlled the cellular physiology, but when 
Ca2+ arise in the environment, many Mg2+ interacting proteins begin to 
be Ca2+ interacting proteins, even when cytosolic Mg2+ concentration is 
various orders of magnitude higher than Ca2+. These ions have similar 
biochemical properties, but Ca2+ can coordinate many bonds than 
Mg2+, and the variable hydration of Ca2+ allows to the ion to react faster 
than Mg2+ [2]. Then, the triggering action of Ca2+ in cell signaling is 
particularly valuable. Nevertheless, Ca2+ overload is potentially harmful 
to the cell since destabilize cytoskeleton, activate hydrolytic enzymes 
and cause damage in membrane lipid bilayers [2,6-8]. The key for cell 
survival in a Ca2+ rich environment was to establish a well-organized 
regulation of Ca2+ cytosolic concentrations ([Ca2+]c). In this concern, 
cells have developed a noteworthy complex machinery of Ca2+ binding 
proteins, transporters that control the membrane Ca2+ flow, and a 
highly specialized Ca2+ compartmentalization system. In addition, the 
development of a cellular code for Ca2+ signaling composed by Ca2+ 
transient events that take place in microdomains or globally was crucial 
to prevent the cell Ca2+ overload. 

Ca2+ binding proteins

Key molecules in the regulation of cellular Ca2+ are the Ca2+ binding 
proteins. The interaction of Ca2+ with specific binding site in proteins 
can cause coordinate bonds with a great variability in number, angle 
and distances, and Ca2+ rapidly exchange its hydration degree allowing 
deeper protein sites binding [2,9]. Although Ca2+-binding proteins have 
a great structural diversity, it is commonly observed in these proteins 
a helix-loop-helix structural domain named EF-hand. The EF-hand 
displays many conformational states that operate as a multifunctional 
domain with different sensitivity to Ca2+ [10,11].

Other Ca2+-binding domain in proteins is C2, a concave hole 
in which multiple Ca2+ ions binds occur. The C2 domain proteins 

are involved in the binding of membrane phospholipids in a Ca2+-
dependent manner and thereby act as cellular Ca2+ effectors [12]. It is 
common to find the EF-hand and C2 domains in the same protein [1].

The extracellular and cytosolic Ca2+ environments 

The large electrochemical gradient of Ca2+ across the plasma 
membrane generates two different environments inside and outside 
the cell. The extracellular Ca2+ concentration in marine animals, as 
the squid, is around 10 mM, while in mammals cells are maintained 
in the range of 2.5 to 5 mM. Noteworthy, free basal [Ca2+]c in all cells 
is maintained in nanomolar range [1]. Since bacteria to vertebrates, 
resting [Ca2+]c are around 100 to 300 nM [1,4,13]. This resting [Ca2+]c 
reduces the possibility of multiple Ca2+ binds in a protein. In this sense, 
it is known that the bind of a single Ca2+ ion causes little or no change 
in the protein conformation, but multiple Ca2+ binding is essential to 
induce protein structural changes [1,14]. 

Extracellular Ca2+ levels are almost stable in comparison with 
cytosolic. [Ca2+]c increment takes place under specific signaling 
and arises from two sources, the extracellular environment and the 
intracellular Ca2+ stores. The extracellular environment is an infinite 
source for Ca2+ that is accessible through various selective and non 
selective plasma membrane Ca2+ channels. The intracellular Ca2+ 
stores represent a finite source of Ca2+. The most important Ca2+ store 
is the endoplasmic reticulum (or sarcoplasmic reticulum in muscles), 
although almost all cell organelles can store Ca2+ [15]. Ca2+-release 
from sarco-endoplasmic reticulum occurs via activation of inositol 
1,4,5-trisphosphate (IP3) or by Ca2+-induced-Ca2+-release (CICR) 
receptor-channels. IP3 is a second messenger produced in response 
of plasma membrane receptor activation. Ca2+ release from sarco-
endoplasmic reticulum can be induced by cytosolic Ca2+ increments or 
cyclic ADP ribose through CICR sensitive channels [16].

Two systems remove Ca2+ from cytoplasm, the Ca2+ pumps that 
have high affinity, but low capacity, and the and the Na+/Ca2+ exchanger 
that has lower affinity but much larger capacity [17]. Ca2+ pumps are 
located in both plasma membranes (PMCA) and sarco-endoplasmic 
reticulum (SERCA) and are known as the “fine-tuner” of cytosolic Ca2+ 
concentration [17,18]. It has proposed that SERCA pumps are involved 
in signal transduction while PMCA pumps are crucial in cell survival 
[19].
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Cell Ca2+ regulation 

It has been proposed that the sarcoplasmic reticulum is a superficial 
buffer barrier that regulates Ca2+ spread between myoplasm and the 
extracellular environment [20]. In airways smooth muscle we observed 
that the buffer properties of sarcoplasmic reticulum act also in an 
inverse way, that is, sarcoplasmic reticulum can buffer the Ca2+ exit 
from the cell [21]. 

Cytosolic Ca2+ regulation is fundamental for cell signaling. This 
regulation is achieved by several mechanisms, including Ca2+ channels 
distribution in the plasma membrane, sarco-endoplasmic reticulum 
and other Ca2+ stores as mitochondria or Golgi [15]. In general, when 
a channel is open, a concentrated plume of Ca2+ is formed around the 
channel mouth and dissipates rapidly by diffusion [22]. If ryanodine 
Ca2+ channels are sequentially reached by the concentrated Ca2+ plume, 
this initially local transient can be propagated as a wave until global 
cellular signal occurs. These waves adopt different shapes according to 
their emission frequency, wavelength and velocity, and they can appear 
as solitary, target or spiral waves [23]. 

Ca2+ signaling can be regulated also by the periodicity of Ca2+ 
transients. Some cellular functions only needs a single or few transient 
Ca2+ signals, as exocytosis and contraction, but others, as cellular 
proliferation, requires prolonged Ca2+ signals generated by repetitive 
Ca2+ transients. Then, Ca2+ transients are essentially the cellular 
universal code of Ca2+ signalization. Ca2+ dispersion restriction can 
create temporal and spatial limited domains and functionally, these 
domains have a vital role avoiding unspecific or global Ca2+-induce 
signals [24]. In this context, an additional message could be added to 
Ca2+ code, the [Ca2+]c undershoot. 

[Ca2+]c undershoot 

Many excitable and non excitable cells show a fast[Ca2+]c drop 
below basal [Ca2+]c after the withdrawal of agonists that induced the 
mobilization of Ca2+ from sarco-endoplasmic reticulum [12,25-30] 
electrical stimulation [31,32], spontaneous Ca2+ transients [33] or during 
Ca2+ oscillations [34] (Figure 1). This phenomenon known as [Ca2+]c 
undershoot has been observed in muscles [31-37], neurons [26,27,38-
40], microglia [41,42], oligodendrocytes [29], spermatozoa [28,43] 
and chromaffin [44] and prostate stromal [45] cells. It has been widely 

demonstrated that the [Ca2+]c drop during the undershoot is induced 
by the refilling of Ca2+ in sarco-endoplasmic reticulum by SERCA [25-
27]; while the undershoot recovery is produced by extracellular Ca2+ 
entry through voltage Ca2+ channels [30] or capacitative Ca2+ entry 
[36]. Recently, it has been observed that [Ca2+]c undershoot alterations 
induced by pharmacological treatments are associated to changes in 
sarcoplasmic reticulum Ca2+ loading mechanisms [35,36].

Role of [Ca2+]c undershoot in cell physiology: The silence of 
the cell

Sarco-endoplasmic reticulum is a key controller of [Ca2+]c that 
can potentiate or attenuate cellular responses [21,27]. Ca2+ uptake by 
sarco-endoplasmic reticulum during undershoot has a powerful effect 
by reducing abruptly the [Ca2+]c. The transient reduction of [Ca2+]c 
after Ca2+ stimulation diminished the possibility of activation of Ca2+-
binding proteins, process that probably silence some signaling cascades 
and avoid an overload of Ca2+.

Other consequence of Ca2+ undershoot is the modification of the 
spatiotemporal distribution of Ca2+. For example, the silences between 
phasic [Ca2+]c rises during caffeine-induced oscillations in neurons are 
attributed to Ca2+ undershoot [40]. In addition, in seizure-like events 
in hippocampal slice cultures, it has been proposed that the [Ca2+]c 
undershoot could be involved postictal depression period [39]. Then, it 
is possible that undershoot of [Ca2+]c is involved in the synchronization 
and rhythmic cell activity.

In conclusion, the deficit of intracellular Ca2+ produced by the 
refilling of sarco-endoplasmic reticulum during undershoot could 
be crucial to the triggering role of Ca2+ in cellular activity. This, Ca2+ 
“silences” could be a mechanism that regulates the cell excitability 
restricting transiently Ca2+ signaling. 
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Figure 1: Typical recording of a [Ca2+]c undershoot induce by caffeine removal 
in an isolated smooth muscle cell from bovine trachea. Upper traces display 
fluorescence recordings at 340 and 380 nm and lower trace shows [Ca2+]c. 
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