

Editorial

The Silence of the Cell

Blanca Bazán-Perkins*

Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México

A Brief History of Cell Calcium

Some of the most abundant metals in Earth's crust as iron, magnesium and calcium have significant roles in the regulation of cellular processes [1,2]. Biochemically, these metals are electrophiles capable of modifying the electron ion flow in biomolecules, by binding and orienting them [3]. One of the most versatile metals in cell physiology is the calcium ion (Ca2+). Nowadays, many fundamental functions of the cell are Ca²⁺ dependent. Paradoxically, early life emerged in a scant free Ca2+ environment (~100 nM) because the cation was maintained as insoluble salt by the high seawater pH. In these conditions, photosynthesis was developed by autotrophs releasing molecular oxygen (O₂) from splitting water. Because O₂ easily permeate through cell lipid bilayers generating many toxic effects, the incorporation of this molecule in cell metabolism through cellular respiration reduced its harmful effects, but carbon dioxide (CO₂) was produced as a waste product. The rich CO₂ environment generated by cellular respiration induced a slight acidification of seawater that progressively releases Ca^{2+} . In contrast to O₂, the fatty inner core of the lipid bilayers prevented large Ca²⁺ influxes, but some Ca²⁺ permeation occurred through imperfect junctions between phospholipid domains and ionic channels [4,5]. In early life, Mg²⁺ controlled the cellular physiology, but when Ca²⁺ arise in the environment, many Mg²⁺ interacting proteins begin to be Ca²⁺ interacting proteins, even when cytosolic Mg²⁺ concentration is various orders of magnitude higher than Ca2+. These ions have similar biochemical properties, but Ca2+ can coordinate many bonds than Mg²⁺, and the variable hydration of Ca²⁺ allows to the ion to react faster than $Mg^{2_{+}}[2]$. Then, the triggering action of $Ca^{2_{+}}$ in cell signaling is particularly valuable. Nevertheless, Ca2+ overload is potentially harmful to the cell since destabilize cytoskeleton, activate hydrolytic enzymes and cause damage in membrane lipid bilayers [2,6-8]. The key for cell survival in a Ca2+ rich environment was to establish a well-organized regulation of Ca²⁺ cytosolic concentrations ([Ca²⁺]c). In this concern, cells have developed a noteworthy complex machinery of Ca²⁺ binding proteins, transporters that control the membrane Ca²⁺ flow, and a highly specialized Ca2+ compartmentalization system. In addition, the development of a cellular code for Ca2+ signaling composed by Ca2+ transient events that take place in microdomains or globally was crucial to prevent the cell Ca2+ overload.

Ca²⁺ binding proteins

Key molecules in the regulation of cellular Ca²⁺ are the Ca²⁺ binding proteins. The interaction of Ca²⁺ with specific binding site in proteins can cause coordinate bonds with a great variability in number, angle and distances, and Ca²⁺ rapidly exchange its hydration degree allowing deeper protein sites binding [2,9]. Although Ca²⁺-binding proteins have a great structural diversity, it is commonly observed in these proteins a helix-loop-helix structural domain named EF-hand. The EF-hand displays many conformational states that operate as a multifunctional domain with different sensitivity to Ca²⁺ [10,11].

Other Ca²⁺-binding domain in proteins is C_2 , a concave hole in which multiple Ca²⁺ ions binds occur. The C_2 domain proteins are involved in the binding of membrane phospholipids in a Ca^{2+} dependent manner and thereby act as cellular Ca^{2+} effectors [12]. It is common to find the EF-hand and C, domains in the same protein [1].

The extracellular and cytosolic Ca2+ environments

The large electrochemical gradient of Ca^{2+} across the plasma membrane generates two different environments inside and outside the cell. The extracellular Ca^{2+} concentration in marine animals, as the squid, is around 10 mM, while in mammals cells are maintained in the range of 2.5 to 5 mM. Noteworthy, free basal $[Ca^{2+}]c$ in all cells is maintained in nanomolar range [1]. Since bacteria to vertebrates, resting $[Ca^{2+}]c$ are around 100 to 300 nM [1,4,13]. This resting $[Ca^{2+}]c$ reduces the possibility of multiple Ca^{2+} binds in a protein. In this sense, it is known that the bind of a single Ca^{2+} ion causes little or no change in the protein conformation, but multiple Ca^{2+} binding is essential to induce protein structural changes [1,14].

Extracellular Ca²⁺ levels are almost stable in comparison with cytosolic. $[Ca^{2+}]c$ increment takes place under specific signaling and arises from two sources, the extracellular environment and the intracellular Ca²⁺ stores. The extracellular environment is an infinite source for Ca²⁺ that is accessible through various selective and non selective plasma membrane Ca²⁺ channels. The intracellular Ca²⁺ stores represent a finite source of Ca²⁺. The most important Ca²⁺ store is the endoplasmic reticulum (or sarcoplasmic reticulum in muscles), although almost all cell organelles can store Ca²⁺ [15]. Ca²⁺-release from sarco-endoplasmic reticulum occurs via activation of inositol 1,4,5-trisphosphate (IP₃) or by Ca²⁺-induced-Ca²⁺-release (CICR) receptor-channels. IP₃ is a second messenger produced in response of plasma membrane receptor activation. Ca²⁺ release from sarco-endoplasmic reticulum can be induced by cytosolic Ca²⁺ increments or cyclic ADP ribose through CICR sensitive channels [16].

Two systems remove Ca^{2+} from cytoplasm, the Ca^{2+} pumps that have high affinity, but low capacity, and the and the Na⁺/Ca²⁺ exchanger that has lower affinity but much larger capacity [17]. Ca^{2+} pumps are located in both plasma membranes (PMCA) and sarco-endoplasmic reticulum (SERCA) and are known as the "fine-tuner" of cytosolic Ca^{2+} concentration [17,18]. It has proposed that SERCA pumps are involved in signal transduction while PMCA pumps are crucial in cell survival [19].

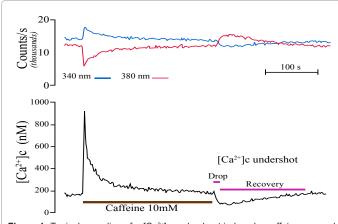
*Corresponding author: Blanca Bazán-Perkins, Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080, México, E-mail: perkins@servidor.unam.mx

Received November 21, 2012; Accepted November 22, 2012; Published November 26, 2012

Citation: Bazán-Perkins B (2012) The Silence of the Cell. J Bioanal Biomed 4: e109. doi:10.4172/1948-593X.1000e109

Copyright: © 2012 Bazán-Perkins B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cell Ca²⁺ regulation


It has been proposed that the sarcoplasmic reticulum is a superficial buffer barrier that regulates Ca^{2+} spread between myoplasm and the extracellular environment [20]. In airways smooth muscle we observed that the buffer properties of sarcoplasmic reticulum act also in an inverse way, that is, sarcoplasmic reticulum can buffer the Ca^{2+} exit from the cell [21].

Cytosolic Ca²⁺ regulation is fundamental for cell signaling. This regulation is achieved by several mechanisms, including Ca²⁺ channels distribution in the plasma membrane, sarco-endoplasmic reticulum and other Ca²⁺ stores as mitochondria or Golgi [15]. In general, when a channel is open, a concentrated plume of Ca²⁺ is formed around the channel mouth and dissipates rapidly by diffusion [22]. If ryanodine Ca²⁺ channels are sequentially reached by the concentrated Ca²⁺ plume, this initially local transient can be propagated as a wave until global cellular signal occurs. These waves adopt different shapes according to their emission frequency, wavelength and velocity, and they can appear as solitary, target or spiral waves [23].

Ca²⁺ signaling can be regulated also by the periodicity of Ca²⁺ transients. Some cellular functions only needs a single or few transient Ca²⁺ signals, as exocytosis and contraction, but others, as cellular proliferation, requires prolonged Ca²⁺ signals generated by repetitive Ca²⁺ transients. Then, Ca²⁺ transients are essentially the cellular universal code of Ca²⁺ signalization. Ca²⁺ dispersion restriction can create temporal and spatial limited domains and functionally, these domains have a vital role avoiding unspecific or global Ca²⁺-induce signals [24]. In this context, an additional message could be added to Ca²⁺ code, the [Ca²⁺]c undershoot.

[Ca²⁺]c undershoot

Many excitable and non excitable cells show a fast[Ca²⁺]c drop below basal [Ca²⁺]c after the withdrawal of agonists that induced the mobilization of Ca²⁺ from sarco-endoplasmic reticulum [12,25-30] electrical stimulation [31,32], spontaneous Ca²⁺ transients [33] or during Ca²⁺ oscillations [34] (Figure 1). This phenomenon known as [Ca²⁺]c undershoot has been observed in muscles [31-37], neurons [26,27,38-40], microglia [41,42], oligodendrocytes [29], spermatozoa [28,43] and chromaffin [44] and prostate stromal [45] cells. It has been widely

Figure 1: Typical recording of a $[Ca^{2+}]c$ undershoot induce by caffeine removal in an isolated smooth muscle cell from bovine trachea. Upper traces display fluorescence recordings at 340 and 380 nm and lower trace shows $[Ca^{2+}]c$.

demonstrated that the $[Ca^{2+}]c$ drop during the undershoot is induced by the refilling of Ca^{2+} in sarco-endoplasmic reticulum by SERCA [25-27]; while the undershoot recovery is produced by extracellular Ca^{2+} entry through voltage Ca^{2+} channels [30] or capacitative Ca^{2+} entry [36]. Recently, it has been observed that $[Ca^{2+}]c$ undershoot alterations induced by pharmacological treatments are associated to changes in sarcoplasmic reticulum Ca^{2+} loading mechanisms [35,36].

Role of [Ca²⁺]c undershoot in cell physiology: The silence of the cell

Sarco-endoplasmic reticulum is a key controller of $[Ca^{2+}]c$ that can potentiate or attenuate cellular responses [21,27]. Ca^{2+} uptake by sarco-endoplasmic reticulum during undershoot has a powerful effect by reducing abruptly the $[Ca^{2+}]c$. The transient reduction of $[Ca^{2+}]c$ after Ca^{2+} stimulation diminished the possibility of activation of Ca^{2+} binding proteins, process that probably silence some signaling cascades and avoid an overload of Ca^{2+} .

Other consequence of Ca^{2+} undershoot is the modification of the spatiotemporal distribution of Ca^{2+} . For example, the silences between phasic $[Ca^{2+}]c$ rises during caffeine-induced oscillations in neurons are attributed to Ca^{2+} undershoot [40]. In addition, in seizure-like events in hippocampal slice cultures, it has been proposed that the $[Ca^{2+}]c$ undershoot could be involved postictal depression period [39]. Then, it is possible that undershoot of $[Ca^{2+}]c$ is involved in the synchronization and rhythmic cell activity.

In conclusion, the deficit of intracellular Ca^{2+} produced by the refilling of sarco-endoplasmic reticulum during undershoot could be crucial to the triggering role of Ca^{2+} in cellular activity. This, Ca^{2+} "silences" could be a mechanism that regulates the cell excitability restricting transiently Ca^{2+} signaling.

References

- 1. Wilkins P, Wilkins RG (2003) The Role of Calcium and Comparable Cations in Animal Behaviour. Royal Society of Chemistry.
- Williams RJ (2006) The evolution of calcium biochemistry. Biochim Biophys Acta 1763: 1139-1146.
- Kay AB, Phipps S, Robinson DS (2004) A role for eosinophils in airway remodelling in asthma. Trends Immunol 25: 477-482.
- Montaño LM, Bazán-Perkins B (2005) Resting calcium influx in airway smooth muscle. Can J Physiol Pharmacol 83: 717-723.
- Van Breemen D, Van Breemen C (1969) Calcium exchange diffusion in a porous phospholipid ion-exchange membrane. Nature 223: 898-900.
- Babiychuk EB, Monastyrskaya K, Potez S, Draeger A (2009) Intracellular Ca(2+) operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ 16: 1126-1134.
- Plieth C (2005) Calcium: just another regulator in the machinery of life? Ann Bot 96: 1-8.
- Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9: 219-228.
- Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca²⁺-binding helix-loop-helix EF-hand motifs. Biochem J 405: 199-221.
- Yap KL, Ames JB, Swindells MB, Ikura M (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37: 499-507.
- Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S (2007) The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol 371: 608-621.

- Holland IB, Jones HE, Campbell AK, Jacq A (1999) An assessment of the role of intracellular free Ca²⁺ in E. coli. Biochimie 81: 901-907.
- Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5: 2375-2390.
- Laude AJ, Simpson AW (2009) Compartmentalized signalling: Ca²⁺ compartments, microdomains and the many facets of Ca²⁺ signalling. FEBS J 276: 1800-1816.
- Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40: 297-309.
- Guerini D, Coletto L, Carafoli E (2005) Exporting calcium from cells. Cell Calcium 38: 281-289.
- 17. Saris NE, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70: 187-194.
- Pande J, Grover AK (2005) Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol 83: 743-754.
- van Breemen C, Chen Q, Laher I (1995) Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci 16: 98-105.
- Bazan-Perkins B, Montano LM (2002) Importancia del Ca²⁺ del reticulo sarcoplasmico en el músculo liso de las vías aéreas.
- 21. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586: 5047-5061.
- Reas PG, Ballarò B (2004) Reaction-diffusion equations for simulation of calcium signalling in cell systems. Riv Biol 97: 443-468.
- McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC (2006) Ca²⁺ microdomains in smooth muscle. Cell Calcium 40: 461-493.
- 24. Bazán-Perkins B, Sánchez-Guerrero E, Carbajal V, Barajas-LÃ³pez C, Montaño LM (2000) Sarcoplasmic reticulum Ca²⁺ depletion by caffeine and changes of [Ca²⁺](i) during refilling in bovine airway smooth muscle cells. Arch Med Res 31: 558-563.
- Collins RO, Thomas RC (2001) The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones. Cell Calcium 30: 41-48.
- 26. Friel DD, Tsien RW (1992) A caffeine- and ryanodine-sensitive Ca²⁺ store in bullfrog sympathetic neurones modulates effects of Ca²⁺ entry on [Ca²⁺]i. J Physiol 450: 217-246.
- Harper CV, Kirkman-Brown JC, Barratt CL, Publicover SJ (2003) Encoding of progesterone stimulus intensity by intracellular [Ca²⁺] ([Ca²⁺]i) in human spermatozoa. Biochem J 372: 407-417.
- Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2purinoreceptors triggered Ca²⁺ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483 : 41-57.
- Wu C, Sui G, Fry CH (2002) The role of the L-type Ca(2+) channel in refilling functional intracellular Ca(2+) stores in guinea-pig detrusor smooth muscle. J Physiol 538: 357-369.
- Baró I, O'Neill SC, Eisner DA (1993) Changes of intracellular [Ca²⁺] during refilling of sarcoplasmic reticulum in rat ventricular and vascular smooth muscle. J Physiol 465: 21-41.
- Ganitkevich VYa, Isenberg G (1995) Efficacy of peak Ca²⁺ currents (ICa) as trigger of sarcoplasmic reticulum Ca²⁺ release in myocytes from the guinea-pig coronary artery. J Physiol 484 : 287-306.
- 32. Mozhayeva MG, Mozhayeva GN (1996) Evidence for the existence of inositol (1,4,5)-trisphosphate- and ryanodine-sensitive pools in bovine endothelial cells. Ca²⁺ releases in cells with different basal level of intracellular Ca²⁺. Pflugers Arch 432: 614-622.
- Vornanen M (1984) Activation of contractility and sarcolemmal Ca²⁺-ATPase by Ca²⁺ during postnatal development of the rat heart. Comp Biochem Physiol A Comp Physiol 78: 691-695.
- 34. Bazán-Perkins B (2012) cGMP reduces the sarcoplasmic reticulum Ca(2+)

loading in airway smooth muscle cells: a putative mechanism in the regulation of Ca(2+) by cGMP. J Muscle Res Cell Motil 32: 375-382.

- 35. Bazán-Perkins B, Sánchez-Guerrero E, Campos MG (2009) Capacitative Ca²⁺ entry during Ca²⁺ undershoot in bovine airway smooth muscle. Cell Physiol Biochem 24: 161-166.
- 36. Wu C, Fry CH (1998) The effects of extracellular and intracellular pH on intracellular Ca²⁺ regulation in guinea-pig detrusor smooth muscle. J Physiol 508 : 131-143.
- Friel DD (1995) [Ca²⁺]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J 68: 1752-1766.
- Kovacs R, Schuchmann S, Gabriel S, Kardos J, Heinemann U (2001) Ca²⁺ signalling and changes of mitochondrial function during low-Mg2+-induced epileptiform activity in organotypic hippocampal slice cultures. Eur J Neurosci 13: 1311-1319.
- Nohmi M, Hua SY, Kuba K (1992) Basal Ca²⁺ and the oscillation of Ca²⁺ in caffeine-treated bullfrog sympathetic neurones. J Physiol 450: 513-528.
- Beck A, Penner R, Fleig A (2008) Lipopolysaccharide-induced down-regulation of Ca²⁺ release-activated Ca²⁺ currents (I CRAC) but not Ca²⁺-activated TRPM4like currents (I CAN) in cultured mouse microglial cells. J Physiol 586: 427-439.
- Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997) Mechanisms of C5a and C3a complement fragment-induced [Ca²⁺]i signaling in mouse microglia. J Neurosci 17: 615-624.
- 42. Kirkman-Brown JC, Barratt CL, Publicover SJ (2003) Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca²⁺]i transient in human spermatozoa. Dev Biol 259: 71-82.
- 43. Jiménez N, Hernández-Cruz A (2001) Modifications of intracellular Ca²⁺ signalling during nerve growth factor-induced neuronal differentiation of rat adrenal chromaffin cells. Eur J Neurosci 13: 1487-1500.
- 44. Wu C, Fry PM, Sui G, Fry CH (2005) Intracellular Ca²⁺ regulation in a human prostate stromal cell culture. Neurourol Urodyn 24: 81-88.
- 45. Carbajal V, Vargas MH, Flores-Soto E, Martinez-Cordero E, Bazán-Perkins B, et al. (2005) LTD4 induces hyperresponsiveness to histamine in bovine airway smooth muscle: role of SR-ATPase Ca²⁺ pump and tyrosine kinase. Am J Physiol Lung Cell Mol Physiol 288: L84-L92.

Page 3 of 3