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Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD) in adults. Despite our 

current understanding of the disease, we cannot accurately predict which patients with diabetes will develop nephropathy, 
and we cannot halt the progression to ESRD. Research on the role of the immune system in DN may shed light on 
novel biomarkers and therapies for this severe complication of diabetes mellitus. In this review we examine the current 
knowledge of the role of immune system in the development and progression of diabetic nephropathy, speculate on the 
potential role of B lymphocytes, and highlight implications for prognosis and therapy.
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Introduction
Diabetic Nephropathy (DN) is the most common cause of End-

Stage Renal Disease (ESRD) in adults, and nearly 50% of chronic kidney 
disease (CKD) and ESRD cases in the United States are due to diabetes 
mellitus [1]. Among persons with diabetes mellitus the prevalence of 
nephropathy ranges from 15 to 40% depending on the type of diabetes 
mellitus (type 1 or type 2) and the severity of disease (albuminuria, 
CKD, ESRD, etc.) [2,3]. While improvements in glycemic control and 
the use of inhibitors of the Renin-Angiotensin-Aldosterone System 
(RAAS) have shown promise in clinical trials, the growth in incidence 
and/or severity of CKD in diabetes has not decreased over the past 
two decades [2]. Moreover, the increase in the prevalence of diabetes 
[2] and the high cardiovascular risk associated with CKD and ESRD
[4,5] substantiates that to care for these patients, we will utilize a
disproportionate amount of health care dollars in the coming decades.

Despite great strides in our understanding of the pathophysiology 
of diabetic nephropathy, several elements of the disease are not well 
understood. While only a minority of patients with diabetes will develop 
nephropathy, predictive risk factors are not fully elucidated. Once 
overt diabetic nephropathy is present (defined as macroalbuminuria, 
>300 mg urine albumin to gram of creatinine, and >3 ml decrease in
estimated GFR/min/year [6,7], the inexorable progression to ESRD can
be slowed but not reversed [8] . Therefore, we need to better understand
the early pathophysiologic mechanisms of diabetic nephropathy in
order to develop both better biomarkers and intervention strategies.

Diabetic nephropathy is initially characterized by hyperfiltration, 
followed by pathologic changes in the glomerulus including 
podocyte apoptosis and Extra Cellular Matrix (ECM) accumulation 
in the basement membranes and mesangium [9,10] which then 
cause microalbuminuria. Eventually, these patients develop 
glomerulosclerosis and tubulo-interstitial fibrosis which is associated 
with decreased glomerular filtration, and finally ESRD [11,12]. 
Metabolic and hemodynamic factors were thought to be the main 
causes of glomerular and tubular injury in diabetic nephropathy. 
However, recent data support the notion that the mechanisms of 
diabetic nephropathy also involve the immune system. Several 
elements of the immune system including cytokines and resident 
chemokines, macrophage recruitment, T lymphocytes, and immune 
complex deposition have been implicated in other glomerular diseases 
but have now been associated with diabetic nephropathy. In this review 
we examine the role of the immune system in the development and 

progression of diabetic nephropathy, speculate on the potential role of 
B lymphocytes, and highlight implications for prognosis and therapy.

Cytokines/Chemokines in Diabetic Nephropathy
Patients with diabetes have increased serum expression of key 

inflammatory cytokines [13]. One hypothesis is that hyperglycemia’ 
and the associated oxidative stress’ damages endothelial cells which  
in turn release cytokines and chemokines. One study has shown that 
hyperglycemia-induced glycation end-products stimulate secretion of 
monocyte chemoattractant protein from human mesangial cells in vitro 
[14]. Furthermore, production of aberrant cytokines and chemokines 
(tumor necrosis factor-α [TNF-α], interleukin-1, interferon-γ, and 
transforming growth factor β) correlates with the degree of proteinuria 
in a small cohort of patients with overt diabetic nephropathy [15]. 
Similarly, the kidneys in streptozotocin-induced diabetic rat models 
also express elevated levels of inflammatory  cytokines [16]. Many of 
these cytokines cause podocyte apoptosis and matrix accumulation 
albeit in tissue culture models [17], which warrant further study in vivo. 

Thus, cytokine signalling in the diabetic kidney, reviewed elsewhere, 
[18] may play an important role in the pathogenesis of early diabetic
nephropathy, and perhaps interventions to attenuate these pathways
could be an avenue for therapeutics. Cytokines and chemokines have
also been implicated in the recruitment of macrophages and T cells to
the diabetic kidney [19].

Role of Macrophages in Diabetic Nephropathy
Local macrophage accumulation may herald the development of 

common diabetic complications such as atherosclerosis, nephropathy, 
neuropathy, and retinopathy. Glomerular infiltration of macrophages 
in diabetic kidneys has been fairly well established by examining 
diabetic kidney biopsies from mice and humans [16,21]. In kidney 
biopsies from patients with type 2 diabetes mellitus, macrophage 
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accumulation within the interstitium is proportional to the level of 
proteinuria [22]. Progressive glomerular injury and fibrosis associated 
with increased macrophage accumulation has also been observed in 
different rodent models of diabetic nephropathy, and macrophages 
account for almost all kidney leukocyte accumulation in the glomerulus 
by immunofluorescence [23-25]. Adoptive transfer of alternate 
macrophages (M2 cells), programmed to suppress macrophage 
activity, to a streptozotocin-induced mouse model of type 1 diabetes 
results in decreased accumulation of macrophages within the kidney 
[26] providing in vivo evidence of cellular recruitment in diabetic 
nephropathy.

Modulation of macrophage recruitment attenuates diabetic 
nephropathy in mouse models. In C57BL/6 mice, streptozotocin-
induced hyperglycemia increases kidney expression of Monocyte 
Chemoattractant Protein-1 (MCP-1), a potent macrophage chemokine 
[27] and MCP-1 deficiency results in decreased accumulation of 
macrophages in the kidney with subsequent protection from both 
histological damage and renal dysfunction [27,28]. Intracellular 
Adhesion Molecule (ICAM-1) also recruits macrophages, and an 
ICAM-1 deficient db/db mouse model of type 2 diabetes showed 
decreased leukocyte infiltration, reduced glomerular hypertrophy, 
decreased albuminuria, and decreased tubulo-interstitial fibrosis 
[29]. Pharmacological blockade of the C-C Chemokine Receptor 
2 (CCR2) involved in the mobilization of macrophages out of the 
bone marrow’ results in a similar phenotype of decreased glomerular 
cellular infiltration’ and decreased albuminuria [30]. These data 
support the hypothesis that macrophage recruitment and activation 
contribute to the structural and functional changes characteristic of 
diabetic nephropathy. The mechanisms for how recruited, activated 
macrophages induce glomerular damage resulting’ in podocyte 
apoptosis, basement membrane thickening’ and mesangial cell 
expansion remain an area of ongoing research. Based on current 
data, activated macrophages release reactive oxygen species and 
inflammatory cytokines which beget further tissue injury.

Role of T Lymphocytes in Diabetic Nephropathy
The recruitment of activated T-lymphocytes to the diabetic kidney 

may also contribute to development of proteinuria. Bending and 
colleagues observed in the renal parenchyma that the absolute number 
and percent of activated T-lymphocytes in the renal parenchyma was 
significantly higher in insulin dependent patients with diabetes with 
proteinuria than without proteinuria [16,31]. CD3+ T cells have also 
been found in the interstitium of mice with streptozotocin induced 
diabetes and proteinuria [32].T cells infiltrating the diabetic kidney 
produce inflammatory cytokines, such as TNF-α, interleukin-6 and 
interferon-γ. These T cells likely contribute to local inflammation 
and tissue damage [32,33]. Using db/db mice Eller et al. have recently 
shown that suppressing the activity of T cells prevents development of 
diabetic nephropathy. Adoptive transfer of regulatory T cells (Tregs), 
an immunosuppressive population of cells that dampen and counteract’ 
active inflammatory T cells, decreased glomerular diameter’ and 
albuminuria. Conversely, depletion of Tregs resulted in progression 
of diabetic nephropathy with increased glomerular diameter and 
increased albuminuria [34].

Lim et al. [35] examined the role of lymphocytes in diabetic 
nephropathy directly by inducing diabetic kidney injury using 
streptozotocin-induced diabetes in lymphocyte deficient Rag-/- 
mice, which lack mature T and B lymphocytes. Twenty weeks after 
onset of diabetes wild-type and Rag-/- mice both develop equivalent 

hyperglycemia, but only the wild-type mice showed evidence of kidney 
infiltration with CD4 and CD8 lymphocytes as well as glomerular 
immunoglobulin (Ig) deposition. The Rag-/- mice show similar 
macrophage accrual, histologic damage, matrix expansion, and loss of 
renal function but are protected from increased albuminuria measured 
at 8 to 20 weeks following onset of diabetic phenotype. The Rag-/- mice are 
protected from podocyte loss, and glomerular macrophage activation’ 
which may result in the protection from albuminuria. However, 
the Rag-/- mice were on a C57BL/6 background and studies in other 
mouse strains that are more robust models of diabetic nephropathy 
are still required [36,37]. A recent study by Awad using Rag-/- mice on 
C57BL/6 background found no protection from proteinuria at 6 weeks 
following streptozotocin induction [38] demonstrating the need for 
more consistent and robust mouse models. Decreased Tcell infiltration 
and activation may represent another immune-mediated pathway for 
treatment of diabetic nephropathy.

Complement Fixation and Immune Complex 
Deposition in Diabetic Nephropathy

There are emerging data that activation of the complement 
cascade may contribute to human diabetic nephropathy [39,40]. 
Hyperglycemia-induced intracellular generation of reactive oxygen 
species activates complement [39]. Another route for complement 
activation is immune complex deposition. Ainsworth and colleagues 
examined 16 kidney biopsies from type 1 and type 2 diabetic 
patients with diabetic nephropathy, and were among the first to 
observe complement and immune complex deposition in both the 
glomerular basement membrane and mesangium [20]. Based on 
the immunofluorescence findings the authors concluded that the 
morphologic alterations observed in diabetic glomerulopathy might be 
mediated by immune mechanisms [20].

Circulating immune complex levels have also been associated 
with the development of albuminuria and proliferative retinopathy 
in patients with diabetes, suggesting immunoglobulin (Ig) deposition 
can promote tissue injury [41-43]. In both adults and children 
with diabetes significantly higher levels of circulating IgG immune 
complexes correlate with microalbuminuria, suggesting that elevated 
levels of circulating immune complexes are associated with the 
development of early diabetic nephropathy [42]. Circulating immune 
complexes have also been detected in several rodent models of diabetes 
at higher titers than controls and are associated with increased 
glomerular deposition [40,44]. In these models glomerular deposition 
of Ig and C3 has been correlated with renal injury [45-47]. Several 
pathogenic mechanisms of immune complex deposition in diabetic 
renal injury have been proposed. Glomerular and tubular basement 
membrane thickening may involve an antigen-antibody reaction that 
stimulates resident cells to proliferate [42]. Moreover, certain immune 
complexes stimulate mesangial expansion by inducing collagen 
production [48]. Immune complexes may also promote glomerular 
macrophage accrual. For example, in diabetic db/db mice increased 
accumulation of macrophages in the glomeruli correlates with an 
increased glomerular deposition of IgG [23]. The immune complex-
activated complement cascade was directly tested in a study using 
human antibodies to oxidized low-density lipoproteins (Ox-LDL) 
collected from sera of patients with type 1 diabetes. Human anti-Ox-
LDL antibodies incubated with complement fragments in vitro form 
immune complexes and trigger activation of the classical complement 
pathway. Moreover, Ox-LDL immune complexes induce inflammatory 
cytokine release from macrophages in vitro [49].
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Fujita et al. [47] used a known inhibitor of the complement 
cascade in a diabetic rat model to test whether the complement 
system plays a role in the progression of diabetic glomerulosclerosis. 
The complement inhibitor significantly reduced mesangial expansion 
and proteinuria in these rats, and this was associated with a decrease 
in glomerular deposition of Ig and C3. These data indicate that the 
complement cascade is activated by injured glomeruli, and this 
activation exacerbates diabetic glomerulosclerosis. Moreover, they 
provide a therapeutic rationale for complement inhibition in patients 
with diabetic nephropathy.

Proposed role of B lymphocytes and AutoAntibodies in 
Diabetic Nephropathy

There are limited data regarding the role that B cells might play in 
the pathogenesis of diabetic nephropathy. B cells appear to infiltrate the 
kidney of patients with type 2 diabetes, but it remains unclear if these 
cells directly cause tissue injury [32]. Evidence of glomerular immune 
complex deposition and increased autoantibodies titers in sera of 
diabetic patients and mouse models of diabetic nephropathy implicate 
B cells in the mechanism of diabetic nephropathy. Development of 
autoantibodies to kidney antigens may contribute to the development 
of diabetic kidney injury, because patients with diabetes have increased 
levels of serum immunoglobulins including antibodies against self-
antigens modified by glycoxidation or lipoxidation [41,42,50-53]. These 
circulating autoantibodies can form immune complexes that deposit in 
glomeruli and promote activation of complement or macrophages.

Autoantibodies have been documented in diabetes, including anti-
insulin autoantibodies [54]. Anti-single-stranded DNA antibodies are 
detected at higher titers in sera of patients with diabetic complications 
in comparison to controls, and these autoantibodies appear to 
be closely associated with the presence of vascular complications 
such as nephropathy [55]. Ox-LDL is immunogenic, and immune 
complexes formed by the corresponding autoantibodies are pro-
atherogenic and pro-inflammatory [56]. Atchley et al. determined 
that the concentration of Ox-LDL immune complexes is increased 
in patients with macroalbuminuria [41]. Another study measuring 
IgG Ox-LDL antibodies in the sera of 34 patients with type 1 diabetes 
determined that the concentration of these antibodies was higher in 
the nephropathy cases, as defined by higher albumin excretion rate and 
lower glomerular filtration rate compared to controls [57].

Using the Non-Obese Diabetic (NOD) mouse model, a model of 
autoimmune type 1 diabetes, Xiao et al. examined the involvement 
of cellular and humoral immunity at various time points in the 
progression of diabetic nephropathy [46]. They found that glomeruli of 
diabetic NOD mice were infiltrated with T cells, B cells, and dendritic 
cells. Moreover, they found IgG deposits along with complement C3 in 
the glomeruli of diabetic NOD mice. Interestingly the serum from these 
diabetic mice contained autoantibodies directed towards components 
of the glomeruli, which were not present in serum of the control mice. 
These immune changes in the kidney were associated with increased 
kidney weight and urinary albumin excretion. These autoantibodies 
only develop after the mice become diabetic and appear to be directed 
towards renal endothelial cells and the glomerular basement membrane. 
These studies demonstrate the relationship between B lymphocyte-
derived autoantibodies and diabetic kidney injury providing a rationale 
to target B lymphocytes to halt immune complex deposition. Studies 
have shown that immunization of hypercholesterolemic mice with 
given peptides inhibits the development of atherosclerosis [58]. Hence, 

it may also be possible to develop vaccines to dampen diabetic kidney 
injury. Importantly, the presence of autoantibodies may also provide 
valuable non-invasive serum biomarkers for the early detection of 
disease.

Future Directions
Manipulating the immune system and decreasing inflammation 

associated with diabetic kidney injury could provide therapeutic 
targets. The use of immunosuppressants and neutralizing antibodies 
has been shown to reduce leukocyte accumulation in diabetic kidneys 
and to decreased injury [25,59,60]. In a streptozotocin-induced 
model of diabetes, treatment with TNF-α inhibitors, infliximab 
and FR167653, decreased albumin excretion in diabetic rats [60]. 
In another streptozotocin rat model, daily treatment with anti-
proliferative mycophenolate mofetil (MMF) by gavage resulted in 
decreased glomerular macrophage infiltration, glomerulosclerosis, and 
albuminuria [59,61].

There is growing evidence that macrophages and T cells, recruited 
by locally-derived chemokines play a role in diabetic nephropathy 
by generating further cytokines resulting in progressive injury and 
fibrosis. Immunoglobulin deposition results in tissue damage and 
complement activation leading to further progression of inflammation 
and recruitment of more macrophages and T cells. The role for B 
cells in diabetic kidney injury appears to be via the generation of 
autoantibodies and immune complexes (Figure 1). Autoantibodies to 
oxidized and glycosylated proteins (whose unmodified form would be 
recognized as self and therefore not produce antibodies) could serve 
as non-invasive biomarkers for identifying patients with diabetic 
nephropathy before the onset of clinical signs and symptoms.
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