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Abstract
Reconstructive transplantation, also referred to as vascularized composite allotransplantation (VCA), has rapidly 

emerged as a viable approach to repairing complex tissue defects. Over the past 20 years, major advances have 
been made in the field of VCA allowing for successful transplantation of over 150 hand/forearm/arm, larynx, trachea, 
abdominal wall, vascularized knee, and facial transplants with encouraging outcomes. These innovations have 
currently outpaced the scientific community’s ability to fully address certain immunological and clinical challenges. 
The literature on ischemia-reperfusion injury (IRI) in VCA is limited and mechanistic questions remain. Specifically, 
the role IRI may play in acute rejection, the progression towards chronic rejection, or immune regulation and tolerance 
induction has only been partially or indirectly addressed. Hence, much of what we understand regarding IRI in VCA is 
extrapolated from research in solid organ transplantation (SOT). This review will address the role of IRI in VCA, first 
outlining its impact on SOT, it’s effects on the immune system and allograft rejection, as well as the clinical implications 
that IRI has for VCA outcomes. 
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IRI and Organ Transplantation
The literature in SOT has clearly demonstrated that IRI is a 

potent activator of the immune system and subsequently leads to 
poor functional outcomes [1-4]. IRI poses a unique challenge for 
the transplant surgeon, as some period of ischemia is unavoidable 
given the nature of the procedure. Ischemia, induced by donor organ 
procurement, cold preservation, and implantation, is one of several 
risk factors shown to contribute to both acute and chronic rejection [5]. 
Reperfusion injury further compromises the viability of transplanted 
tissues as the restoration of blood flow leads to activation of the 
complement system, generation of reactive oxygen species (ROS), and 
the production of pro-inflammatory cytokines that intensify damage 
in the previously ischemic graft [6]. It has been shown that IRI leads 
to increased expression of MHC antigens and activates the innate 
immune system producing inflammation, ultimately leading to acute 
rejection, hastens the development of chronic rejection, and impaired 
chances for immune regulation and tolerance induction [5]. 

In cardiac transplantation, IRI is common in the early post-
transplant period, especially when ischemic time exceeds two 
hours, and is characterized by hyperemia in the previously ischemic 
myocardium, which later becomes prone to coagulative necrosis [7]. 
Studies have shown that prolonged ischemia in transplanted hearts 
leads to increased entry of activated T cells and binding of natural 
IgM antibodies to self-antigens exposed after tissue ischemia [8,9]. The 
former leads to leukocyte migration and accumulation in peripheral 
tissues and the latter is a potent activator of the complement cascade. 
Together, these effects are major contributors to the acute rejection and 
late graft loss seen after IRI [10]. Indeed, patients with cardiac allografts 
subjected to increased ischemic times are at increased risk for early graft 
loss, early death after transplant, and coronary artery vasculopathy [11]. 
Furthermore, prolonged ischemia was found to be an independent risk 
factor for mortality at 1 and 10 years post-transplant [11]. 

Similarly, animal models of renal transplants have shown that 
prolonged ischemia time leads to more acute rejection episodes [12]. 
Subsequent clinical trials observed the same effect on human renal 
transplants. Analysis of over 6,000 kidney transplant recipients showed 
that patients with prolonged ischemic times suffered early acute 

rejection and decreased 6-year renal graft survival [13]. These findings 
were independent of donor/recipient age, HLA mismatch, reactive 
antibodies, and early rejection treatments. Notably, acute transplant 
rejections were found to be a significant risk factor for short and long-
term graft survival [14]. Indeed, IRI predisposes all types of transplanted 
grafts to unfavorable sequelae. In lung and liver allografts, IRI leads 
to higher incidences of acute and chronic rejection [5,15]. However, 
there is a paucity of studies examining IRI in vascularized composite 
allotransplantation. It is possible that vascularized composite allografts 
may be even more susceptible to IRI given the diversity of tissue 
components contained within the graft [16]. 

Molecular Foundations and Markers of IRI
IRI mediates tissue injury by producing a strong inflammatory 

response that activates the immune system. This immune activation 
is mediated by upregulation of inflammatory cytokines and adhesion 
molecules, activation of leukocytes and endothelial cells, and generation 
of oxygen free radicals [17]. The duration of ischemia corresponds to 
the level of immune activation, with increased ischemic times leading 
to increased expression of inflammatory cytokines, such as TNF-α, 
IFN-γ, and IL-1 [17,18]. Interaction of cell adhesion molecules on 
activated leukocytes with their ligands on the injured endothelium 
leads to diapedesis of these cells into the interstitial space. These 
activated leukocytes damage tissues through the release of proteolytic 
enzymes and the generation of ROS that propagate the injury response. 
Ischemia produces further tissue damage as elevated glycolysis causes 
lactic acid accumulation, pH reduction, and impairment of membrane 
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transport functions [19]. The ischemic tissue will undergo necrosis 
unless perfusion is restored. Paradoxically, reperfusion leads to injury 
beyond that caused by the ischemia through the production of ROS in 
the mitochondria [20]. 

The resulting tissue injury leads to the generation of damage- 
associated molecular patterns (DAMPs), which are recognized by 
pattern-recognition receptors (PRRs) of the innate immune system 
[21]. Activation of PRRs leads to upregulation of inflammatory 
cytokines and adhesion molecules, which contribute to recruitment of 
leukocytes into the graft and to transplant vasculopathy [21,22]. ROS 
further trigger the innate immune system via activation of heat shock 
proteins (HSP) that signal toll-like receptors (TLRs) on macrophages 
and B cells [23]. However, TLRs play a dual immunological role by 
also activating antigen-presenting cells (APCs)- the gatekeepers of the 
adaptive immune system. The sensitization of APCs by TLRs leads to 
a dramatic increase of effector T-cells [22,24,25]. This alloreactive T 
cell response is further augmented by the pro-inflammatory cytokine 
milieu induced by IRI [25]. Thus, ROS activate both the innate and 
adaptive immune system, therefore contributing to trigger both acute 
and chronic rejection. It is important to note, however, that the link 
between non-specific injury, such as IRI, and the innate immune 
system is still speculative [26]. Although there is biological plausibility, 
unequivocal evidence of this correlation does not yet exist. 

Another key event in IRI is activation of the alternative complement 
pathway. Complement is considered to be a key component leading 
to rejection of transplanted organs by damaging cell membranes 
through the formation of membrane attack complexes, and attracting 
neutrophils to sites of IRI via chemotactic agents such as C5a 
[6,10,17,19,27]. Complement also releases anaphylatoxins (C3a, C5a) 
that cause degranulation of mast cell and the release of histamine, 
which further damages tissues. 

IRI, Rejection and Tolerance
The most important factor leading to transplant rejection is 

undoubtedly the T cell response triggered by MHCincompatibility 
[28]. This response is further bolstered by IRI, which is believed to 
be the strongest secondary factor to increase graft allogenicity [12]. 
Ischemic injury predisposes to immunologic recognition and rejection 
through upregulation of MHC II (signal 1) and costimulation (signal 
2) by activation of APCs [4]. There is ample evidence that multiple 
episodes of acute rejection initiate a state of chronic inflammation 
that may trigger myointimal proliferation, allograft vessel occlusion, 
and chronic graft dysfunction [4,5,15,29-31]. For example, using a rat 
hindlimb model of VCA, Unadkat et al. showed that acute rejection 
episodes lead to composite tissue vasculopathy and degeneration [32]. 
Thus, IRI induces an immune response, which leads to further injury, 
promoting a new injury response and increased immune recognition. 
This self-perpetuating feature may lead to chronic rejection and 
irreversible tissue damage [4]. 

Large clinical trials in SOT have demonstrated a clear relationship 
between the duration of ischemia and graft survival [33]. It is 
hypothesized that this link is mediated by TLRs that are activated by 
ROS generated by IRI [5]. TLRs have been shown to be key contributors 
to the rate of acute rejection in skin [34] heart [35], lung [5], kidney 
[36], liver [3], and islet [37] allografts. In a fully MHC-mismatched 
model of skin allografts, MyD88 (a TLR signal adaptor) knockout 
mice accepted their allografts indefinitely after administration of 
costimulatory blockade (CTLA4-Ig and anti-CD154), while wild-type 
animals went on to reject the allograft [38]. Systemic administration 
of a TLR activator (CpG) eliminated transplant tolerance induction 

in skin allografts [39], which together strongly suggests that TLR 
signaling impairs transplant tolerance [40]. Similarly, in a fully MHC-
mismatched model of kidney allografts, absence of a negative regulator 
of TLRs enhanced IRI and induced DC maturation with a more robust 
acute rejection response [41]. The absence of this negative regulator 
also impaired transplant tolerance induction and enhanced the 
development of chronic rejection in the same study. In humans, kidney 
allograft recipients with non-responsiveness to their allografts showed 
lower expression of MyD88 than recipients with chronic rejection [42]. 
TLR gene expression was also associated with endothelial dysfunction 
and vasculopathy in clinical studies of cardiac transplant [22]. 
Furthermore, GWAS studies have shown that hyporesponsive TLR 
genes are associated with improved outcomes for transplant recipients 
exemplified by fewer rejection episodes and improved graft function 
[1,2,43]. Although translational research studying VCA rejection is 
limited, it is likely that the activation of TLRs by IRI also contributes 
to the acute rejection episodes that occur in 85% of hand transplant 
recipients in the first year [30]. By dampening the effects of IRI, it may 
be possible to mitigate the activation of the immune system that leads 
to acute and chronic rejection. 

Animal Studies of IRI
There are a limited number of mechanistic studies exploring the 

effects of IRI in VCA. It is likely that IRI is more pronounced in VCA 
than it is in SOT due to the heterogeneity of the graft together with 
the highly antigenic skin component [16]. However, studies have 
shown that the most vulnerable site of injury in IRI is actually the 
muscle due to its high metabolic activity [19]. In as little as 3 hours of 
ischemia, a significant increase in the early signs of acute rejection can 
be observed in the skin and muscle. With 3 hours of ischemia, early 
signs of irreversible skeletal myocyte damage appear and this process 
is usually complete by 6 hours [44]. In a rat vascularized epigastric 
allotransplant model, an increase inischemia from 1 hour to 3 hours led 
to more acute rejection episodes, a more severe inflammatory response, 
and higher levels of activated lymphocytes [30]. This relatively short 
period of ischemia, which is within the period of “reversible” damage, 
is enough to tip the balance towards chronic rejection of the composite 
tissue allograft. A more dramatic difference in ischemia time (1 hour 
vs. 6 hours) in an allo-skin flap model caused an even more severe and 
rapid onset of rejection [17]. In vitro assays showed that grafts with less 
ischemia time exhibited lower anti-donor lymphocyte proliferation 
in mixed lymphocyte reactions and lower MHC-II expression. 
This inflammatory response leads to dysfunction of endothelial 
cells, triggering a reduction in nitric oxide (NO) release [19]. 
Consequentially, the tissue-protective effects of NO are minimized, 
such as attenuation of leukocyte adherence to the endothelium, 
scavenging of ROS, and physiologic regulation of vascular tone [45]. 
Microvascular insufficiency and inflammation in postcapillary venules 
ensues giving rise to the “no-reflow phenomenon” and ultimately, 
acute rejection of the composite tissue allograft [46]. Furthermore, 
prolonged ischemia was shown to have deleterious effects in a rat groin 
flap, with an increased proportion of CXCR3-positive cells in the graft, 
which may play a role in the rejection process [47]. 

As in SOT, reperfusion causes more damage than ischemia [48]. In 
a rat soleus muscle allograft, histologic damage was proportionate to 
reperfusion time [49]. Increased reperfusion also amplifies the rate of 
ROS formation in limbs after revascularization, and impairs vasodilation 
of the feeding arteries [50]. Steps can be taken to reduce the sequelae 
of IRI such as local hypothermia (10°C versus 34°C), which has been 
shown to significantly reduce microvascular permeability [51]. More 
mechanistic studies of IRI in VCA may help elucidate how we can shift 
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the balance of immune regulation after IRI from immunostimulation 
to immunomodulation.

Clinical Outcomes of IRI in VCA
Although it is clear that IRI portends poor outcomes in 

reconstructive transplantation, there is no available clinical data 
examining the relationship between ischemia time and acute and 
chronic rejection in VCA. As a result, inferences must be made 
based on the available data from SOT as well as the animal studies 
described above. As more experience has been gained in the field of 
VCA, ischemia times have decreased for these complex operations. 
Ischemia time for hand and face transplant now average between 6 
and 4 hours, respectively [31]; however, irreversible skeletal myocyte 
damage begins after only 3 hours of ischemia [44]. This amount of 
prolonged ischemia time may account for differences in composite 
allograft dysfunction, such as that seen between two bilateral hand 
transplant patients (160 minutes versus 9 hours) [52]. IRI may also 
be a key determinant of acute rejection in 85% of hand transplants in 
the first year, as prolonged ischemia intensifies the rate and severity 
of acute rejection. This may be demonstrated by a 30-year-old patient 
with a right hand and left hand-forearm double allograft. The more 
complex hand-forearm dissection led to perioperative ischemic 
injury of the forearm allograft. Consequentially, the patient developed 
flexion contractures of the forearm and the graft subsequently suffered 
three rejection episodes [7]. While it is impossible to unequivocally 
determine whether the cause of this patient’s rejection episodes were 
due to prolonged ischemia time, this case does lend credence to the 
notion that increased ischemia portends poor outcomes in VCA. As 
more clinical data becomes available in VCA, it will be important for 
this issue to be analyzed to clearly demonstrate the association between 
prolonged ischemia with severity and frequency of rejection episodes. 

Given the profound effect IRI can have on transplanted tissues, it 
is important to gain insight into the status of the transplanted graft 
prior to the onset of clinical rejection. Close monitoring of composite 
tissue allografts will help combat the acute rejection episodes that 
increase the risk of chronic graft dysfunction. Typically, the skin is the 
principal target of rejection after VCA, as it is the most immunogenic 
component of the graft [16,53]. Due to its external location, the skin 
provides a unique clinical opportunity for the monitoring, early 
diagnosis, prevention and treatment of VCA rejection. If ischemia 
times are prolonged then the risk of acute rejection is higher and 
the markers of rejection will appear more rapidly [6,17,30]. A study 
examining 170 biopsies from 5 hand transplant patients revealed 
upregulation of adhesion molecules during skin rejection with the 
severity of rejection strongly correlated with LFA-1, ICAM-1, and 
E-selectin [54]. However, skin and fascia are more resistant to IRI than 
muscle [27]. This is due to a more active metabolism in muscle as well 
as significant differences in reflow patterns between the tissues after 
IRI [19]. Histologic signs of IRI usually peak around 24-48 hours after 
the onset of ischemia, whereas clinical signs of acute rejection appear 
days later [30]. Clinical markers of IRI include wet-to-dry-weight ratio, 
nitroblue tetrazolium, tissue lactate, tissue myeloperoxidase, and laser 
Doppler flow [31]. Of these, nitroblue tetrazolium & wet-to-dry-weight 
ratio are considered to be the most accurate predictors of outcome after 
IRI in VCA [30]. Creatine kinase [CK] and aspartate transaminase 
[AST] levels also demonstrate the effects of prolonged ischemia on 
skeletal muscle. Using a gracilis myocutaneous flap, Villamaria et 
al. demonstrated significantly elevated CK and AST levels after a 1 
vs. 3-hour delay in restoration of blood flow [6]. Given that skeletal 
muscle is the most sensitive tissue to IRI, monitoring of CK and AST 
levels may also be appropriate. These markers provide important data 

regarding acute rejection episodes that guide clinical management and 
immunosuppression drug levels.

Further insights may be gleaned from data on replantation of digits 
or whole limbs. In one series, the mean survival for digit replantation 
after complete avulsion was 66% (n=442), but lower for limb replantation 
due to IRI of skeletal muscle [55]. Replantation and revascularization 
of ischemic whole limbs causes acidosis, hyperkalemia, myoglobinuria, 
and can lead to hypotension from obstruction of the renal vasculature 
[27]. In the setting of limb replantation, ROS and cytokines (such 
as TNF α) can lead to capillary leakage and pulmonary edema [56]. 
Compartment syndrome is another dreaded complication after limb 
revascularization and can lead to muscle necrosis, interstitial fibrosis, 
and nerve scarring [57]. The combination of these factors often 
necessitates re-amputation of the newly re-attached limb. Clearly, the 
challenges faced by the patient early after transplantation are numerous 
as many of the aforementioned sequelae are possible in patients after 
VCA [20]. Thus, it is important to minimize ischemia time and the 
effects of IRI to give the patient the best chance of a successful recovery. 

Prevention and Treatment of IRI
While it is currently impossible to perform VCA with no ischemia 

time, every effort should be made to minimize the duration. Prevention 
of IRI may be achieved via application of therapies that have shown 
promise in SOT, such as pre-conditioning, hypothermia, preservation 
solutions, and antioxidants. Ischemic preconditioning is one of the 
most popular methods of preventing IRI. By inducing brief episodes 
of ischemia interrupted by intermittent reperfusion, the graft becomes 
more resistant to IRI [58,59]. The protective effect of preconditioning 
is related to duration and number of each ischemia-reperfusion 
cycle. There is evidence that longer (10 min. versus 5 min.) and more 
frequent cycles (3 cycles versus 1 or 2 cycles) are superior at reducing 
the extent of IRI [60]. Nitric oxide appears to be a principal protective 
factor. Ischemic preconditioning upregulates numerous isoforms of 
nitric oxide synthase and the protective effect is lost by administration 
of a nonselective nitric oxide synthase inhibitor [61]. Numerous 
studies have demonstrated prolonged graft survival and improved 
outcomes from pre-conditioning [19,20,27,31]. For example, the use of 
preconditioning and the antioxidant resveratrol in animal VCA models 
was shown to be protective against ischemia-induced microcirculatory 
changes and acute rejection [62]. Other studies showed that 
preconditioning led to reduced leukocyte-endothelial interactions and 
apoptosis, while improving microvascular perfusion in a rat hindlimb 
model [63]. Transient limb ischemia can also remotely confer the 
beneficial effects of pre-conditioning to other areas [64]. By inducing 
transient ischemia in the non-transplanted limb, one can dampen IRI 
in the transplanted limb or other graft [20]. In mouse [64], rat [65], and 
swine [66] models, it was shown that remote ischemic pre-conditioning 
provided local and remote protection against IRI, improved survival, 
and reduced infarct size. 

By manipulating the cytokine milieu pre-injury, we may prevent 
overstimulation of the inflammatory response that leads to acute 
rejection. One approach is through the induction of local hypothermia 
[67]. This reduces leukocyte adhesion and infiltration into tissues and 
minimizes the generation of ROS. Furthermore, hypothermia has been 
shown to prolong graft viability and enhance survival of replanted limbs 
[68,69]. However, skeletal muscle is susceptible to cold IRI as well [70]. 
This can be addressed through the use of preservation solutions, such as 
University of Wisconsin (UW) or Histidine-tryptophan-ketoglutarate 
(HTK) solution. Intra-arterial flushing of limbs with cold UW or HTK 
solution causes uniform temperature reduction that can diminish cold 



Citation: Khalifian S, Cooney DS, Andrew Lee WP, Brandacher G (2013) The Role of Ischemia-Reperfusion Injury in Reconstructive Transplantation. 
J Transplant Technol Res S3: 004. doi:10.4172/2161-0991.S3-004

Page 4 of 6

 J Transplant Technol Res  Ischemia - Reperfusion Injury           ISSN: 2161-0991 JTTR, an open access journal

IRI in skeletal muscle [71]. Pulsatile perfusion provides nutrients to the 
graft and flushes out harmful toxins [72]. It also prevents expression 
of proinflammatory cytokines and helps maintain capillary perfusion. 
Hypothermia and pulsatile perfusion with UW solution are currently 
standard practice in VCA, however, the advent of new preservation 
solutions such as polyethylene glycol and Celsior solution, amongst 
others, may prove to be even more efficacious in minimizing IRI. 

Another promising strategy to eliminate IRI is to quell the ROS 
that triggers reperfusion injury. Antioxidants serve this purpose and 
have been shown to improve outcomes after transplant by reducing 
histological damage and improving mitochondrial dysfunction [20]. 
A variety of antioxidants have been investigated including superoxide 
dismutase, Tempol, Coenzyme Q10, zinc aspartate, taurine and others. 
Heme oxygenase 1 showed promising results in kidney transplant 
patients by demonstrating improved graft function with no effect 
on immunosuppression drug levels [73,74]. However, no single 
antioxidant or combination has demonstrated consistent reduction of 
IRI in randomized controlled trials. 

Therapeutic interventions should also be utilized post-transplant. 
Biopsies 24-48 hours after transplant will provide insight into the 
health and immune status of the graft. Since ischemically-challenged 
skeletal muscle is more prone to acute rejection, muscle tissue should 
not be excluded from surveillance biopsies [30]. Evidence of myositis 
on biopsy may be a harbinger of rejection, as was seen in two VCA 
patients whose grafts were beginning to reject [75]. Similarly, adipose 
and subcutaneous tissue should also be included, because these tissues 
all provide valuable information regarding early acute rejection. 

Future Directions of IRI research in VCA
Some amount of ischemia is unavoidable in VCA; however, the 

consequences of IRI may potentially be mitigated. Further studies 
elucidating the role of IRI in activating the innate and adaptive immune 
response may clearly define the targets that must be modulated in 
order to prevent tissue damage or allograft rejection. It is likely that 
there is a unique, differential release of innate immune ligands after 
IRI, but this is an under-investigated area [5]. Major insights may be 
gained into IRI by correlating duration of ischemia-reperfusion with 
the following: characterization of cytokine expression, upregulation of 
MHC antigens, and identification of self-antigens that activate IgM and 
complement. These findings could help direct the development of new 
therapies. Clinically, studies are needed in order to characterize the 
short and long-term risks associated with oxidative damage. To address 
the issue of rejection and graft surveillance, studies should evaluate 
biopsies taken in the 24-48 hour window after transplantation to detect 
IRI before signs of acute rejection appear [30]. Developing a clinical 
measure of IRI at an earlier time point will allow for interventions 
prior to the development of an unfavorable cytokine milieu. Ideally, 
a dose response could be developed that would correlate duration of 
ischemia with histological findings from early biopsies, thus providing 
the surgical team with an early window for interventions. Continued 
research in the development and evaluation of therapies that diminish 
IRI will help facilitate the minimization of immunosuppression or 
induction of tolerance after VCA.

“Variability is the law of life, and as no two faces are the same, so no 
two bodies are alike, and no two individuals react alike and behave alike 
under the abnormal conditions which we know as disease” -- William 
Osler
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