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Introduction
Recently, human adult stem cells have been developed as important 

tools for several cell-based therapies, some of which include tissue 
engineering approaches. Human mesenchymal stem cells (MSCs) are 
among the most promising candidates for such therapeutic approaches. 
Human adipose-derived stem (ADAS) cells display typical human 
MSC characteristics, including a common surface marker profile and 
differentiation potential in vitro and in vivo [1]. Murine and human 
ADAS cells undergo morphologic and phenotypic changes consistent 
with neuronal differentiation [2]; thus, adipose tissue may represent a 
source of cells that are capable of neuronal differentiation and might be 
used successfully in the treatment of various neurological diseases. The 
differentiation of ADAS cells into neural-like cells has been reported by 
several groups [2-5].

One important characteristic of ADAS cells is their maintenance 
of genomic stability during the differentiation process. The stringent 
maintenance of genomic stability in adult stem cells via anti-stress 
defenses and DNA repair mechanisms is particularly important because 
any genetic alteration can compromise the genomic stability and 
functionality of an entire cell lineage. It is well-documented that DNA 
is continuously subject to damage from endogenous and exogenous 

sources [6]; to prevent the deleterious consequences of DNA damage, 
cells have evolved several DNA repair pathways to remove DNA 
mismatches and lesions [6-10]. In cases of persistent unrepaired DNA 
damage, cells induce complex signaling pathways that culminate in 
senescence or apoptosis. Interestingly, defects in DNA repair, cellular 
senescence and/or apoptosis have been implicated in cancer and aging 
[11-13]. Some proteins implicated in DNA repair also act in diverse 
biological processes such as apoptosis and senescence. For example, the 
ataxia-telangiectasia mutated (ATM) and Rad3-related (ATR) proteins 
are stress-response kinases that respond to a variety of insults including 
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Abstract
The development of a clinically translatable method of engineering with adipose-derived adult stem (ADAS) for 

reconstruction requires investigation of several components. The differentiation of ADAS cells into neuronal cells has 
been reported by several groups. The stringent maintenance of genomic stability in adult stem cells via anti-stress 
defenses and DNA repair mechanisms is particularly important because any genetic alteration can compromise 
the genomic stability and functionality of the cell. The main objective of this data was to examine some parameters 
related to DNA damage in cells submitted to the neural differentiation protocol and to understand if DNA damage can 
be associated to cell differentiation. The comet assay, micronucleus tests, and the cell viability assay were utilized 
to observed ADAS cells treated with neural induction medium. The results of our genotoxicity assays suggest that 
increased DNA damage observable by the comet assay was induced by neural differentiation. Emerging findings 
suggest that DNA damage; telomerase and DNA repair proteins play important roles in neurogenesis developing. 
Surprisingly we obtain evidence for an association between DNA damage and neuronal-like differentiation and 
hypothesize that during neural differentiation DNA damage will recruit telomerase TIP60 and MCM3, where they 
may function in DNA repair, chromatin remodeling and limiting DNA replication.
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ionizing radiation, replication arrest, ultraviolet radiation and hypoxia/
re-oxygenation [14]. ATM is activated by DNA double-strand breaks 
(DSBs) caused by agents such as ionizing radiation or chemotherapeutic 
drugs; ATR is activated by stresses such as hydroxyurea treatment, 
ultraviolet light (UV) and hypoxia that induce replication-type insults 
[14]. 

The regulation of gene expression can also be modified by epigenetic 
alterations such as chromatin remodeling and DNA methylation [15]. 
Chromatin structure plays a key role in most processes involving 
DNA metabolism, including transcriptional regulation and DNA 
replication, and the epigenetic control of DNA metabolism relies on 
different histone proteins that comprise a histone code. This code, 
involving phosphorylation, ubiquitylation, sumoylation, acetylation 
and methylation, regulates chromatin accessibility either by disrupting 
chromatin contacts or by recruiting non-histone proteins to chromatin 
[16]. Recent evidence also suggests that a histone code is involved 
in DNA damage detection and repair. For example, formation of 
DSBs results in the phosphorylation of histone H2AX (the so-called 
gamma-H2AX) on the chromatin surrounding the DNA lesion [16]. 
In addition to H2AX, many other proteins such as TRRAP and TIP60 
that affect chromatin structure also regulate the epigenetic control of 
DNA metabolism [17]. TRRAP is a component of several multiprotein 
histone acetyltransferases (HAT) complexes that have been implicated 
in both transcriptional regulation and DNA repair [18]. TIP60 was 
originally identified as a cellular HAT protein that interacts with 
the HIV-1-associated protein Tat; it affects the functions of many 
targets including transcriptional regulators, cell cycle and checkpoint 
machinery and DNA repair regulators [19]. The MCM2-7 complex 
acts as a replicative helicase during DNA synthesis and plays a central 
role in S-phase genome stability [20,21]. Another important structure 
related to genetic stability is the telomeric region at the extremities of 
chromosomes. Telomeres are maintained by telomerase, a specialized 
ribonucleo protein complex that includes an RNA template and a 
reverse transcriptase catalytic subunit. Telomerase expression is low 
or absent in most human somatic tissues, whereas it is robust in early 
proliferative progenitor germ and stem cells [22]. 

Considering the importance of some proteins for genomic stability 
during the differentiation process of adult stem cells, the main of this 
data is examine parameters related to DNA damage in cells submitted 
to the neural differentiation protocol and understand if the DNA 
damage is involved in this differentiation cellular. This study was 
also to observe the viability and integrity of ADAS cells treated with 
procedures that lead to neural induction. To characterize genomic and 
cellular integrity during in vitro neuronal differentiation, the genotoxic 
properties of neural inducing medium were analyzed using the comet 
and micronucleus tests and the MTT cell viability assay. Moreover, the 
expression of some proteins involved in DNA damage and repair was 
analyzed during the differentiation process. 

Materials and Methods
Human ADAS cell source

Human adipose tissue was obtained from healthy patients who 
underwent liposuction surgery for aesthetic reasons at the Hospital 
São Lucas of Pontificia Universidade Católica do Rio Grande do Sul 
(PUCRS) (Porto Alegre, RS – Brazil). The samples were obtained from 
patients with informed consent and according to a protocol approved 
by the Ethics Committee of this University. No diabetes, hepatitis, 
metabolic diseases or other systemic complications were reported in 
these donors. 

Liposuction tissue was digested with 0.015% type I collagenase, and 
the stromal cell pellet was obtained by centrifugation (400 x g). The 
stromal cells were washed three times with PBS and collected each time 
by centrifugation. The recovered cells were resuspended and plated 
in control medium containing DMEM, 10% FBS, 1% streptomycin-
penicillin and 0.1% gentamycin in tissue culture flasks. The cells were 
incubated at 37°C in a humidified atmosphere containing 5% CO2 for 
2-4 passages.

Cell culture and neuronal induction procedures

ADAS cells were initially cultured in DMEM supplemented with 
10% FBS, 1% streptomycin-penicillin and 0.1% gentamycin. After 
2-4 passages, the cells were induced to become neuronal cells. In the 
last passage before the induction, the cells were plated at a density 
of approximately 8,000 cells/cm2 and grown for 48 h. All subsequent 
assays were performed with induced and non-induced (control) cells, 
in triplicate independent experiments with 4 different donors’ cells.

Subconfluent cultures of human ADAS cells were maintained 
in DMEM supplemented with 10% FBS. Twenty-four hours prior 
to neuronal induction, the culture medium was replaced with pre-
induction medium consisting of DMEM supplemented with 20% 
FBS and 1 mM β-mercaptoethanol (BME). To initiate neuronal 
differentiation, the pre-induction medium was removed and the cells 
were washed with PBS and transferred to neuronal induction medium, 
which consisted of DMEM supplemented with 2% dimethylsulfoxide 
(DMSO) and 200 µM butylated hydroxyanisole (BHA). The 
experiments were performed after 24 h of induction.

Immunocytochemistry, quantification of morphological 
changes and immunolabeling

Chemically-induced ADAS cells were fixed with 4% 
paraformaldehyde in 0.1 M phosphate buffer (pH 7.2) for 10 min. 
Nonspecific antibody reactions were blocked with 5% horse serum for 
10 min at room temperature. The fixed cells were incubated overnight 
at 4°C with primary antibodies. After three washes, cells were incubated 
with biotinylated universal secondary antibodies for 10 min at room 
temperature, washed and incubated for 10 min at room temperature 
with a streptavidin/peroxidase complex. Diaminobenzidine (0.05%) 
with nickel chloride (0.04%) was used as chromogen, and the reactions 
were performed for 6-10 min at room temperature. Omission of 
primary antibodies served as a negative control and HeLa cells and 
K-562 cells as a positive control.

The percentage of cells showing specific immunolabeling was 
quantified in three-ten randomly selected fields at 200× magnification 
using a bright-field microscope. Approximately 50-100 cells were 
analyzed; the number of cells exhibiting positive immunolabeling was 
divided by the total number of cells in the same field as determined 
by phase optics to obtain the mean percentage of cells that were 
immunolabeled.

Single-cell gel electrophoresis (Comet assay)

Af﻿ter 24 h of neural induction, the cells were washed with ice-
cold PBS and trypsinized with 100 µL trypsin (0.15%). The alkaline 
comet assay was performed as described elsewhere [23,24], with minor 
changes. Cells were visually divided into five classes according to 
tail length: (1) Class 0 cells were undamaged, with no tail; (2) Class 
1 cells had a tail shorter than the diameter of the head (nucleus); (3) 
Class 2 cells had a tail as long as 1-2× the diameter of the head; (4) 
Class 3 cells had a tail longer than 2× the diameter of the head; and 
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(5) Class 4 cells had comets with no heads. International guidelines 
and recommendations for the comet assay consider visual scoring as a 
valid evaluation method [25,26]. A value (damage index) was assigned 
to each comet according to its class. Damage index (DI) and damage 
frequency (DF) were calculated according to Tice et al. [25]. Results 
are expressed as the mean and standard deviation of three independent 
experiments.

Micronucleus test

After treatment, the cells were separated from the plate by 
trypsinization, and the cellular suspension was centrifuged at 15,000 
rpm for 5 min. Next, a micronucleus (MN) assay was performed 
accordingly to Matsuoka et al., with modifications [27,28]. 
Micronucleated cells were counted in 2000 cells with well-preserved 
cytoplasm. The identification of micronuclei was carried out according 
to Fenech [27]. 

Cell viability analysis using the MTT assay

Cell survival was evaluated by means of the 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay; this 
assay is based on the formation of a visible dark blue formazan product 
by the action of cellular mitochondrial dehydrogenases, which acts as 
a marker for living cells. Analysis of MTT was performed according to 
Mosmann [29].

RNA extraction and real-time polymerase chain reaction 

Total RNA from a 60 cm2 plate of ADAS cells induced or non-
induced to neural tissue was extracted using the RNeasy mini kit 
(Qiagen, Valencia, CA) following the cell culture protocol of the 
manufacturer’s instructions. RNA was dissolved in water and 
spectroscopically quantified at 260 nm using a BioPhotometer 6131 
(Eppendorf, Hamburg, Deutschland.). The purity of the RNA was 
verified by absorbance (A) using the ratio A260 nm/A280 nm between 1.80 
and 2.06 (mean = 2.0). RNA was reverse transcribed into cDNA using 
the RT2 First Strand kit (Superarray, Frederick, MD). Primers for 
nestin (PPH02388A), GFAP (PPH02408E) and NSE (PPH02058A) 
were purchased from Superarray (available at www.superarray.com). 
Primers for telomerase were CAGCTTTTCCTCACCAGGAG (F) and 
GTACAGGGCACACCTTTGGT (R). qPCR reactions were carried out 
using SYBR Green polymerase chain reaction master mix (SuperArray, 
Frederick, MD) in an iCycler (BioRad, Hercules, CA). The PCR 
conditions were as follows: 10 min at 95°C followed by 40 cycles of 
95°C for 15 s and 60°C for 1 min. A final stage of 1 min at 95°C, 2 
min at 65°C and 65°C to 95°C at 2°C/ sec was used to determine the 
dissociation curves of the amplified products. For each measurement, a 
threshold cycle value (Ct) was determined. This value was defined as the 
number of cycles necessary to reach the point at which the fluorescent 
signal was first recorded as statistically significant above background. 
2-∆∆CT values ≤0.5 or ≥1.5 were considered significant for down- or 
up- regulated levels, respectively. The mRNA level relative to the β2-
microglobulin (PPH01094E) level was analyzed using the comparative 
critical threshold (∆∆Ct) method, in which the amount of target RNA 
is adjusted to a reference (internal target RNA). The relative expression 
was calculated using the 2-∆∆CT method as previously described [30].

Results
ADAS cells undergo neurogenic differentiation in vitro

Induction of ADAS cells using the Woodbury’s protocol, which uses 
β-mercaptoethanol (BME), dimethylsulfoxide (DMSO) and butylated 

hydroxyanisole (BHA) caused responsive cells to assume neuronal 
morphological characteristics within 24 h of induction [31]. In induced 
ADAS cell cultures, we observed changes in morphology in most cells 
(90-95%) by optical microscopy (Figure 1). Overall, the cells developed 
neuronal morphological characteristics. To determine whether the 
morphological changes were related to neural induction, the expression 
of neuronal markers (nestin, NSE, GFAP, and S100) was measured by 
immunohistochemistry (Figure 2). Immunocytochemistry is the best 
methodology for this type of experiments, it was possible observed the 
morphology of the cells, the relative intensity of the protein expression 
in with cells, cell’s localization of protein expression and the relative 
quantify of protein expression in the sample. Expression of NSE was 
observed in most (78%) of the cells with neuronal morphological 
characteristics, and nestin expression was observed in 8% of such cells. 
Expression of GFAP was found in less than 1% of differentiated cells, 
and S100 was not observed in these cells. The levels of nestin, GFAP 
and NSE mRNAs in these cells were quantified by qRT-PCR (Figure 
3). GFAP and NSE expression was significantly upregulated in induced 
cells (P< 0.02); however, nestin mRNA expression was quite variable in 
the samples analyzed. 

Genotoxicity assays 
The comet assay is a versatile technique for detecting a wide variety 

of DNA-altering lesions. Electrophoresis at alkaline pH facilitates the 
detection of single- and double-strand breaks, incomplete excision 
repair sites and cross-links [23,32]. When the comet assay was 
performed with induced and control cells, it was possible to observe 
an increase in damage frequency and damage index, especially in 
neuronal-induced cells (Table 1). This observation indicates that the 
neuronal differentiation used in this work could lead to an increase in 
DNA damage of ADAS cells. 

In the micronuclei test, differences between neuronal-induced and 
control cells were not observed; both showed a micronucleus frequency 
of 0.001% per 1,000 cells. In addition, the MTT assay did not reveal 
any differences between control and neural-induced cells (Figure 
4), indicating that treatment with this induction medium does not 
interfere with cell viability.

Figure 1: Morphological changes following neuronal induction of ADAS 
cells. A: Under control conditions (DMEM, 10% FBS, 1% streptomycin-
penicillin and 0.1% gentamycin), ADAS cells grow as a monolayer of large, flat 
cells. B: After 24 h of culture in neuronal induction medium, ADAS cells display 
cytoplasmic retraction and a spherical cell body appearance. All images were 
obtained at 200X magnification.
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Expression of proteins related to DNA damage, chromatin 
remodeling and DNA replication

After 24 h of neural induction, the expression of ATM, ATR, 
TRRAP, TIP60, MCM2, MCM3, and gamma-H2AX was analyzed 
by immunocytochemistry (Figure 5). The expression of ATM, ATR, 
TRRAP, MCM2 and gamma-H2AX were not observed differences in 
non-induced and induced cells. However, though TIP60 expression 
showed cytoplasmic foci expression in both non-induced and induced 
cells, it was security more highly expressed in induced cells (Figure 
5). MCM3 was expressed in both induced and non-induced cells, but 
the nuclear expression of MCM3 was more intense in induced cells 
(Figure 5). This experiment was conducted in triplicate independent 
experiments with 4 different donors cells. 

Expression of telomerase mRNA

Telomerase mRNA expression was analyzed by qRT-PCR, as 
shown in Figure 6. Telomerase expression was significantly upregulated 
in induced cells (P=0.0026). This result demonstrates that neural 
induction medium increases telomerase expression in ADAS cells. This 

Non-Induced Induced

* GFAP (glial fibrillary acidic protein), NSE (neuron-specific enolase)

Figure 2: Immunocytochemistry of ADAS cells to assess neuronal and 
glial markers. Non-induced - ADAS cells grown under control conditions in 
DMEM, 10% FBS, 1% streptomycin-penicillin and 0.1% gentamycin. Induced - 
ADAS cells after 24 h culture in neuronal induction medium. Diaminobenzidine 
(DAB) served as a brown chromagen.The percentage of cells showing specific 
immunolabeling was quantified in three randomly selected fields at 200X with 
a bright field microscope. The number of cells positive for immunolabeling 
was divided by the total number of cells in the same field as determined by 
phase optics to obtain the percentage of cells that were immunolabeled. All 
images were obtained at 200X magnification. NESTIN (marker of immature 
neural cells), GFAP (mature glial cells - astrocyte), NSE (early neuronal) e 
S100 (nuclei of astrocytes and Schwann cells).
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Figure 3: Expression of “neuronal marker” genes in non-induced and 
induced ADAS cells. Non-Induced - ADAS cells grown under control 
conditions in DMEM, 10% FBS, 1% streptomycin-penicillin and 0.1% 
gentamycin. Induced- ADAS cells after 24 h culture in neuronal induction 
medium. **(P<0.003). 
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Figure 4: Cell viability after 24 h exposure to neural induction medium. 
The relative number of cells per well was determined using the MTT assay. 
The data presented are the mean percentage cell viability ± SD. Non-
induced - ADAS cells grown under control conditions in DMEM, 10% FBS, 1% 
streptomycin-penicillin and 0.1% gentamycin. Induced- ADAS cells after 24 h 
culture in neuronal induction medium. The comparative means of non-induced 
and induced patients resulted in non significative difference with P < 0.464 at 
t-student test.

*Significant difference as compared to non-induced control group at P < 
0.01/t-student test

Table 1: Evaluation of DNA damage by the comet assay. Non-induced - ADAS 
cells grown under control conditions in DMEM, 10% FBS, 1% streptomycin-
penicillin and 0.1% gentamycin Induced - ADAS cells after 24 h culture in neuronal 
induction medium. 

	 Damage frequency (DF) Damage index (DI)
Patients Non-induced Induced Non-induced Induced

1 13.0 ± 5.44 23.8 ± 6.61 17.5 ± 3.88 33.0 ± 3.74
2 25.0 ± 10.80 51.5 ± 9.74 26.8 ± 12.20 72.8 ± 26.40
3 22.3 ± 9.07 67.0 ± 14.40 24.0 ± 11.10 165.6 ± 66.90

Means 20.11 ± 8.44 47.43 ± 10.26* 22.77 ± 9.06 90.49 ±32.34*
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experiment was conducted in triplicate independent experiments, with 
4 different donors’ cells.

Discussion
Our observations indicate that ADAS cells retain the capacity 

to express specific proteins of non-mesenchymal derivatives, 
specifically neurons, suggesting that intrinsic genomic mechanisms of 
commitment, lineage restriction, and cell fate can be reprogrammed 
using specific culture medium. After 24 hours of exposure to neuronal 
inducing medium, morphological changes in ADAS cells similar 
to those described by Woodbury et al. were observed [31]. Our 
experiments confirm that ADAS cells retain the capacity to express 
neuronal proteins, nestin and NSE as shown by immunocytochemistry 
and mRNA GFAP and NSE as shown by qRT-PCR. Several studies 
using ADAS have reported the simultaneous expression of multiple 
molecular markers [2-5]. As reviewed in Franco-Lambert et al., the 
simultaneous expression of nestin (a marker of immature neural cells) 
and NSE (a marker that indicates the presence of mature neural cells) 
in the same cell is considered unusual [33]. Nevertheless another 
important issue is the existence of a heterogeneous cell population 
in the culture; each cell population can express different types of 
marker and could stay in a different part of neural differentiation [33]. 
The presence of a pool of heterogeneous cells in the cultures used in 

our study can explain to the variability of nestin mRNA expression 
observed. The fact that human ADAS cells express neuron-specific 
proteins and show increased expression of several early neuronal and 
glial markers does not absolutely confirm that these cells will ultimately 
differentiate into mature neurons. However, the main of this data is 
examine parameters related to DNA damage in cells submitted to 
the differentiation protocol, not to generate functional neuron, and 
understand if the DNA damage and proteins related to DNA repair are 
involved in this differentiation cellular. 

It should be noted that the efficacy of neural induction medium is 
dependent on the chemical compounds present in the medium; strong 
antioxidant substances like BME and BHA are especially effective 
inducers. The precise mechanisms by which BME induces neuronal 
differentiation are unclear. Its antioxidant properties, which enhance 
neuronal survival in vitro, may be partially responsible for neuronal 
induction [34]. Woodbury et al. (2000) treated bone marrow stem cells 
with DMSO, BHA, or butylated hydroxytoluene (BHT) alone and in 
combination. These treatments elicited neuronal morphologies with a 
time course similar to that of BME; treatment with 2% DMSO and 200 
mM BHA (DMSO/BHA) was the most effective [31]. Lu et al. (2004) 
showed that exposure to BME results in progressive cell death over time. 
BHA has cytotoxic effects in different cell lines [35-38]. On the other 
hand, BME induces protection in vitro against DNA fragmentation 

Figure 5: Expression of proteins involved in DNA damage signaling, chromatin remodeling and proliferation as measured by immunocytochemistry. Non-
induced - ADAS cells grown under control conditions in DMEM, 10% FBS, 1% streptomycin-penicillin and 0.1% gentamycin. Induced - ADAS cells after 24 h culture 
in neuronal induction medium. Diaminobenzidine (DAB) served as a brown chromagen. All images were obtained at 200X magnification.

(a)         (b)(a) (b)
“Non Induced” “Non Induced” Induced  Induced
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in stored embryos and can prevent some of the damage induced by 
oxidative stress [39,40]. BHA is an antimutagenic and antigenotoxic 
agent in vitro [41,42]. Thus, the cytotoxic effects of BME and DMSO/
BHA are controversial.

The micronucleus assay has emerged as one of the preferred 
methods for assessing chromosome damage because it enables 
both chromosome loss and chromosome breakage to be measured 
reliably [27]. The study of DNA damage at the chromosomal level 
is an essential part of genetic toxicology because chromosomal 
mutations are important events that occur during carcinogenesis. In 
the micronuclei test, differences were not observed between neuronal-
induced and control cells showing a very low micronuclei frequency 
in both. The maintenance of genomic stability in stem cells is a major 
requirement for their use in regenerative medicine. Increased mutation 
rates or an absence of DNA repair may give rise to failures in stem cell 
differentiation or even cancer stem cell induction. Thus, study of the 
major proteins related to DNA repair and/or chromatin remodeling 
is necessary in order to verify the integrity of the stem cells’ genome.

The comet assay is a versatile technique for detecting a wide variety 
of DNA altering lesions, such as single- and double-strand breaks. In 
the alkaline conditions used, additional DNA structures are detected, 
indicating DNA damage such as a basic sites (AP sites), missing either 
a pyrimidine or purine nucleotide, and sites where excision repair is 
taking place [23,32]. Our results for comet assay reveal that neuronal 
induction cells show an increase in damage frequency and damage 
index. Corroborate to this date some authors demonstrated that 
proliferating neural stem cells as well as newly generated post mitotic 
neurons may be particularly vulnerable to DNA damage in early 
development of nervous system [43,44]. The results of our genotoxicity 
assays suggest that increased DNA damage observable by the comet 
assay was induced by neural differentiation. 

ATM normally exists in an inactive dimeric form; upon DNA 
damage, it is autophosphorylated and converted to an active, 
monomeric form that signals the existence of DNA lesions to 
downstream mediators. One well-characterized target of ATM is the 
histone variant H2AX, which becomes phosphorylated at its C-terminus 
almost immediately following DNA-damaging stimuli such as ionizing 

radiation. The phosphorylated form of H2AX, termed gamma-H2AX, 
acts as a landmark for DNA repair enzymes. Our results demonstrate 
that gamma-H2AX expression does not occur in either induced or 
non-induced cells and that ATM is similarly expressed in induced 
and non-induced cells. These results indicate that the DNA damage 
observed in the comet assay is likely not due to DSB. Moreover, these 
data corroborate the findings of Biton et al. (2007) and suggest that 
ATM may not play a critical role in neuronal differentiation under the 
conditions used here [45]. 

Acetylation of ATM by TIP60 is required for efficient ATM 
autophosphorylation and upregulation of ATM kinase activity. The 
catalytic activity of TIP60 is stimulated in response to DNA damage 
but does not appear to be regulated by ATM. This finding leads to the 
speculation that TIP60 functions upstream of ATM, sensing DNA 
damage-caused chromatin changes, which cause it to signal to ATM 
[19]. Interestingly, an RNAi screen in mouse embryonic stem cells 
revealed that Tip60 is required for pluripotency, and genome-wide 
expression analysis of Tip60 depleted embryonic stem cells suggests 
that Tip60 represses a large number of genes that are expressed during 
differentiation [46,47]. In our immunocytochemical experiments, 
TIP60 expression was evident in cytoplasmic foci in both non-induced 
and induced cells (Figure 5), with higher foci expression in induced 
cells (Figure 5), but there was little or no TIP60 expression in nuclei. It is 
known that TIP60 is a predominantly nuclear protein [48-51]; however, 
TIP60 has also been found in the cytoplasm, where it is associated 
with internalized membrane receptors thus regulating downstream 
kinase pathways or gene expression [19]. The highly cytoplasmic foci 
expression of TIP60 in induced cells could be related to represses a 
large number of genes that are expressed during differentiation how 
related in data of [46,47]. 

No differences in the expression of MCM2 in induced and non-
induced cells were detected by immunocytochemistry (Figure 5). 
However, strong nuclear expression of MCM3 was visible in the 
induced cells. The MCM proteins are required for processive DNA 
replication and are a target of S-phase checkpoints, and their loss 
causes DNA damage and genome instability. One major mechanism 
by which MCM proteins promote genome stability is by limiting DNA 
replication to one round per cell cycle [52]. Because of their crucial role 
in limiting DNA replication, MCM proteins are potential targets for 
cellular oncogenes that inhibit or deregulate the replication process. 
Deregulation of MCM activity may therefore contribute to abnormal 
cell proliferation and genome instability [53-55]. MCM proteins are 
highly expressed not only in actively replicating cells but also in cells 
with the potential to proliferate. 

It is generally thought that embryonic stem cells express a high 
level of telomerase, which maintains telomere length [56]. Because 
adult stem cells generally tend to give rise to a large number of 
daughter cells, they might also be expected to express high amounts 
of telomerase. However, for adult stem cells, the picture is less clear. 
Highly sensitive telomerase assays have demonstrated very low levels of 
telomerase in most adult stem cells, and in adult stem cells, telomeres 
are slowly shortened during life [57]. Like most somatic cells, fully 
differentiated neurons and astrocytes lack telomerase activity [58,59]. 
However, when subject to oxidative, hypoxic or excitotoxic stress the 
expression of telomerase reverse transcriptase (TERT) and telomerase 
activity increases in astrocytes [60], neurons [61] and/or microglia [59, 
62]. The function of this stress-induced telomerase reactivation is not 
clear, a study suggests that it could be involved in DNA repair and 
chromatin remodeling [44,63]. Indeed, emerging evidence suggests 
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Figure 6: Expression of telomerase mRNA in non-induced and induced 
ADAS cells. Non-induced- ADAS cells grown under control conditions in 
DMEM, 10% FBS, 1% streptomycin-penicillin and 0.1% gentamycin. Induced- 
ADAS cells after 24 h of culture in neuronal induction medium. **(P<0.0026).
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that telomerase has additional extratelomeric roles in mediating cell 
survival and anti-apoptotic functions against various cytotoxic stresses 
[64,65]. Corroborating to Zhang et al. [44] our results show the level 
of telomerase mRNA was higher in induced (neural like cells) than in 
non-induced cells.

Emerging findings suggest that DNA damage, telomerase and 
DNA repair proteins play important roles in neurogenesis developing, 
according to Zhang et al. [44] proliferating neural stem cells have high 
levels of telomerase to maintain telomeres and promote cell survival. 
Telomerase levels decrease precipitously in neurons soon after they 
differentiate from neural stem cells, which may contribute to the 
vulnerability of newly generated neurons to apoptosis [44].

In conclusion, the results obtained in this work suggest an increase 
in the DNA damage observed by comet assay is induced by neural-
like differentiation process. We obtain evidence for an association 
between DNA damage and neuronal differentiation and hypothesize 
that during neural-like differentiation DNA damage will recruit 
telomerase, TIP60 and MCM3, where they may function in DNA 
repair, chromatin remodeling and limiting DNA replication. More 
studies of differentiation of stem cells and animal models, and of 
human disorders, could suggest the potential for targeting of telomere 
associated molecules, chromatin remodeling and DNA repair proteins 
as a therapeutic approach for neurological tissue engineering design.
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