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Commentary
Inflammation plays important roles in the early steps of fracture

healing including, the recruitment, expansion, growth and
differentiation of mesenchymal stem cells (MSCs), the coordinated
interplay of many other cell types, growth factors, and extracellular
matrix (ECM) components, as well as the production of cartilage and
bone matrix in a temporally controlled manner [1–4]. There are three
stages of fracture healing: the reactive stage, the reparative stage, and
the remodelling stage. After a bone fracture, the reparative process
initiates from a hematoma and inflammatory reaction at the fracture
site. In the inflammatory phase, the shortage of peripheral vasculature
causes an anoxic environment that leads to the formation of a
cartilaginous template, which initiates the differentiation process that
restores endochondral (EC) ossification. The proliferation and
differentiation of bone marrow stem cells (BMSCs) into chondrocytes
and osteoblasts is a critical component of this phase of fracture healing
[1,4-6]. In the reparative phase, chondrocytes facilitate ECM
deposition at the fracture site, which forms a transient soft callus [2,7].
During the initial stage of remodelling, the callus of the femoral head is
transformed into vascularized and mineralized tissue, allowing the
initial stages of osteoclast resorption to commence [8]. Later, during
bone remodelling, skeletal elements heal into the appropriate shapes
[9]. The importance of invading vascular EC during bone formation
has been established, and defective bone vasculature was reported in
osteoporosis and rickets patients [10]. Therefore, vascular endothelial
growth factor (VEGF) expression in bone repair and
neovascularization is driven with the support of nutrition, oxygen
transport and tissue oxygenation, which are required for the
differentiation of osteoblasts [11]. Pharmacological inhibition of
angiogenesis has also been shown to impair fracture healing and
reduce or delay mineralization of the callus, which further suggests the
need for a cascade of angiogenesis in the repair process [12]. Finally,
the mechanical requirements of the tissue are achieved after the
transformation of osteoclasts [13,14].

EC ossification is characterized by the condensation of
mesenchymal cells that produce a cartilage primordium surrounded by
a perichondrium, which consists of pre-chondroblasts, osteoblasts, and
fibroblasts [15,16]. Previous studies have shown that cartilaginous
callus formation plays an important role in the development of bone
tissues [17]. The early periosteal formation of membranous new bone,
followed by EC ossification results in a linear increase of callus bone
during the healing process. EC ossification occurs naturally in most
fracture healing processes; therefore, it can be used to improve almost
any orthopedic bone regeneration, especially in anoxic conditions
caused by critical size defects in the femoral head that are conducive to
initial cartilage and not direct intramembranous (IM) ossification.
However, EC fracture healing involves a well ordered sequence of

cellular events that are similar to those that occur during embryologic
bone development and postnatal skeletal growth. Calcification of the
temporary bridge of cartilaginous tissue is a pivotal mechanism in
secondary bone healing. The possible mechanisms could involve
chondrocyte apoptosis and replacement with osteoblasts or the
acquisition of an osteogenic phenotype by the chondrocytes. New
blood vessels then grow into the cartilaginous callus and vascular
osteogenic tissues, namely the chondroid matrix, gradually substitute
the avascular cartilaginous callus, leading to the formation of true
bone tissues. Together, EC ossification is an essential process for the
reparative phase of fracture healing [18,19], which starts with the
differentiation of BMSCs into chondrocytes and is followed by
chondrocyte proliferation, differentiation, maturation, and apoptosis,
as well as vasculature invasion [20].

This paper describes how chondrocytes are incorporated into the
process of fracture healing through ECM secretion, the formation of
cartilage callus or EC ossification, and the regulation of bone
regeneration involved in the healing process. Here, we only focus on
bone healing processes that involve cartilage ossification after the
formation of new bone. The wealth of recent data on this topic
necessitates an update of the existing models of EC bone repair with an
emphasis on the potential opportunities for enhancing bone repair and
new treatment approaches for the repair of cartilage. Bone
revascularization is a normal biological function consisting of a series
of carefully coordinated events that require interactions between
healing tissue and blood vessels. In this review, we will also discuss
how these interactions can be utilized in clinical application.

Role of Chondrocyte in Fracture Healing

EC ossification
EC bone formation occurs during the normal processes of

embryonic development, postnatal growth, and fracture healing [1]. As
the process continues, capillaries invade the tissue, chondrocytes
undergo apoptosis, and there is proteolytic degradation and resorption
of the mineralized cartilage matrix concurrent with the deposition of
new bone by osteoblasts [9,21,22].

MSCs derived from the periosteum and chondrocyte
differentiation

Initially, disrupted vasculature and bone marrow during the
inflammatory phase facilitates a coagulation cascade along with an
influx of progenitor cells, including BMSCs, into the fracture space
forming a hematoma. However, without permanent vasculature the
fracture space becomes hypoxic, and it remains unclear whether
enough stem cells survive the initial inflammatory phase to play an
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active role in subsequent tissue regeneration [1,23–26]. Signalling
molecules from the inflammatory phase and ECM subsequently recruit
progenitor cells from both the exposed periosteum and bone marrow
that migrate into the fracture space, initiating both bone
developmental pathways: IM and EC ossification [1,23-26]. The
primary differences in these pathways reside in precursor
requirements. Bone marrow stromal cells differentiate into
chondrocytes or osteoblasts through a process called IM ossification
and form a film that is directly deposited onto bone. The EC
ossification pathway involves cartilage cell proliferation, hypertrophy,
mineralization, and new bone is made through a process of small
deposits of cartilage and ossified matrix ECs [1,23-26].

Bone marrow is known to contribute to bone repair after injury
because its removal delays fracture repair, but the underlying
mechanism of this phenomenon is unclear [27]. Taguchi et al.
concluded that bone marrow-derived MSCs are osteoblast progenitor
cells in the callus, especially near the fracture site using chimeric mice
generated from bone marrow transplantation (BMT) from green
fluorescent protein (GFP) transgenic mice into wild-type recipients
[21]. However, the results of a similar experiment showed that bone
marrow-derived MSCs may contribute to fracture repair along with
factors from another source that increase MSC differentiation [28].
Finally, lineage analysis from a recent study clearly showed that bone
marrow MSCs directly act on osteoblasts and bone cells, rather than
chondrocytes [29]. Another group subsequently confirmed that the
bone cells involved in fracture repair were derived from the
periosteum [30]. After injury, periosteal cells proliferate extensively
and are known to contribute to chondrocyte development [27].
Similarly, destruction of the periosteum, rather than the bone marrow,
inhibits the production of cartilage and EC ossification, further
supporting the model that includes local origin from the periosteal
cells. The periosteum is also the main source of cartilage cells in the
gap defect model of callus. This confirms that the soft tissue does not
suppress bone marrow-stimulated differentiation of the unique
chondrocytes required for normal fracture healing [27,30-32].

Chondrocyte differentiation
The process of chondrogenic differentiation includes six phases:

mesenchymal cells (chondroprogenitors), condensed mesenchymal
cells, chondrocytes, proliferating chondrocytes, pre-hypertrophic
chondrocytes and hypertrophic chondrocytes.

EC ossification, therefore, can further be divided into three
generalized steps: (1) chondrogenesis, (2) cartilage hypertrophy, and
(3) ossification. However, regardless of the pathway, neo-
vascularization and angiogenesis are necessary before ossification can
proceed.

In the inflammatory phase, there is a stage of both mesenchymal
and angiogenesis activation. Vascular and bone marrow MSCs are
recruited to the injury site and proliferate. The second stage is only
required for bone regeneration.

Signalling the migration, proliferation, and differentiation of stem
cells into the injured site is complex and has not been fully elucidated.
However, many factors are known to influence these processes,
including the basic fibroblast growth factor (bFGF), bone
morphogenetic protein (BMP), Wnt/β-catenin and Notch signalling
pathways, as well as other physiological stimuli, such as hypoxia and
mechanical loading [32,33].

Members of the transforming growth factor beta (TGF-β)
superfamily, such as growth and differentiation factors (GDFs) and
BMPs, regulate bone shape [27]. BMP family members are important
in the formation of mesenchymal condensations [26,34]. BMP
signalling induces the expression of the transcription factor sex
determining region Y-box 9 (SOX9), which is required for
commitment of undifferentiated mesenchymal cells in the
condensations to chondrocytes [35-37].

By harnessing growth factors to stimulate endogenous BMSCs,
either alone or in combination by using exogenous BMSCs,
therapeutics could be developed to promote BMSC proliferation and
differentiation to heal fractures and treat conditions of low bone mass.

However, the molecular events that regulate the differentiation of
mesenchymal cells into chondrocytes are still largely unknown.
Condensations of mesenchymal cells reportedly express the
transcription factor SOX9, which is a key regulator of chondrogenesis
and give rise to cartilage primordia, which consists of round immature
chondrocytes that continue to express SOX9 [36,38]. It is also evident
that canonical Wnt signalling promotes progenitor cell differentiation
towards the osteoblast and chondrocyte lineage in developing skeletal
elements. Wnt pathway components (Wnt4, Fzd2, Lrp5 and β-catenin)
were up-regulated at the fracture site within 3–5 days after injury in
mice [39]. Collectively, the studies described previously provide
compelling evidence in the cartilage and bone formation phases of
fracture repair. The data show that pluripotent BMSCs differentiate
into osteochondral progenitor cells and then further differentiate into
chondrocytes and osteoblasts [40]. Once cells begin to show
phenotypic features of either chondrocyte or osteoblast precursors,
they exhibit β-catenin-mediated and TCF-dependent transcriptional
activity, demonstrating the role of β-catenin signalling in the initial
phase of BMSC differentiation [41]. SOX9, which is also used as a
marker for chondrogenic differentiation [42,43], was downregulated
by Dickkopf-1 (DKK1), a secreted glycoprotein and potent Wnt
antagonist, in the early stage fracture healing [44]. It has also been
reported that DKK1 prevents the early stages of bone repair by
blocking Wnt/β-catenin signalling and the differentiation of MSCs into
chondrocytes or osteoblasts [45,46].

Chondrogenic and osteogenic programs in the progenitor cell pool
oppose each other at a molecular level. For example, activation of Wnt/
β-catenin during osteogenesis specifically prevents differentiation
toward the chondrogenic lineage by suppressing SOX9 [47,48].

The SULF1/2 enzymes are critical for modulating cell signalling
pathways that require heparan sulfate proteoglycan (HSPG) as a co-
factor for ligand–receptor interactions (Dhoot et al., Morimoto-Tomita
et al., Rosen and Lemjabbar-Alaoui).

This leads to the inhibition of 6-O sulphate requiring ligands, such
as FGFs, hepatocyte growth factor (HGF) and VEGF but also to the
promotion of other signalling pathways such as those involving glial
cell-derived neurotrophic factor (GDNF) and Wnts. Many BMPs and
their receptors are also expressed during bone formation, although
BMPs and FGFs have opposite effects on chondrocyte differentiation
[49,50].

Stabilization of hypoxia-inducible factor 1α (HIF-1α) under the
hypoxic environment, directly regulates SOX9 expression in the
condensed mesenchymal cells to promote survival and chondrogenesis
[22,51,52].
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Relationship between ECM secretion by chondrocytes and
bone fracture healing

Cartilage ossification is the process of indirect bone formation
through a cartilage intermediary, and results in part from callus-
induced differentiation of bone progenitor cells to chondrocytes. SOX9
regulates the synthesis of type II collagen (Col2) and protein
polysaccharides, typical markers of cartilage [43,53-55]. The progenitor
cells that form the fracture callus are locally recruited from bone and
periosteum [29]. In a fracture that is not fixed, these cells are subjected
to a specific regional pattern of bone and cartilage differentiation. In
the fracture space, progenitor cells form bone by the ossification of the
cartilage.

In this pathway, SOX9 expression promotes condensation and
commitment of the osteochondral progenitors toward the
chondrogenic lineage. After specification, subsequent SOX9 activity is
necessary to maintain cell morphology and the chondrogenic
phenotype through maturation to hypertrophy. In a process that
resembles the well-described process of EC ossification in the growth
plate [49]. Chondrocyte proliferation in the cartilage of the fracture
callus, where the bone phenotype is obtained, also experiences
hypertrophic maturation. However, in the fracture callus growth plate
where there is a lack of tissue, SOX9 expression during the early stage
of bone callus condensation is easily detected. Subsequently, SOX9
regulates the production of cartilage ECM by directly binding to
enhancer elements that control the expression of type II collagen and
aggrecan [43,53,54,56]. Hypoxia enhances ECM synthesis through the
HIF-1α/SOX9 signalling pathway [22,51,52].

Similar to the growth plate cartilage, differentiation of cartilage cells
in the fracture callus is controlled and these cells mature gradually.
Hypertrophic maturation of the chondrocytes is marked by increased
expression of Type X collagen (Col10) in the area where cartilage
transitions to bone.

Enlargement of the cartilage anlagen by chondrocyte
proliferation, hypertrophy and ECM production

In the process of bone healing, most of the initial developmental
procedures are conserved, as are the genetic mechanisms involved in
the regulation of cell differentiation by a variety of cell types [57,58]. In
development, cartilage production at the injured site is repaired by
cartilage ossification. The fracture callus deposits ECM that includes
Col2, which promotes the aggregation of cartilage cells, and their
differentiation into hypertrophic chondrocytes is promoted by ECM
deposits containing Col10. This is then partially mineralized, absorbed
and replaced by a collagen matrix that is mainly composed of type I
collagen (Col1) [34]. This complex developmental process requires
strict control mechanisms that locally produce factors and their
respective receptors, including ECM components and transcription
factors through the coordinated action of hormones [59]. Strikingly, a
similar phenotype was found in mice containing null mutations in the
tumor suppressor gene PTEN, which regulates Akt activation upstream
of the O-box transcription factors [60,61].

This process is affected by the invasion of osteoblasts and
osteoclasts. These cells, whose development and function are closely
linked, continue to transform the regenerated tissue into mature bone
until the fracture is healed. Other aspects of bone repair are different
from bone development; for example, bone repair may be affected by
the mechanical environment. In unstable fracture healing through EC
ossification, stable fracture healing occurs through the ossification of

the deposited film. In this process, different recruitment mechanisms
are used to bring mesenchymal precursors to the injured site that are
only produced by compact (cortical) and sponge (loose) bone in the
fracture site [7,62,63].

Skeletal elements are rich in ECM, and ECM remodelling is the core
of bone development and repair [62,64]. Matrix remodelling is affected
by many of the same proteases, and these enzymes determine the
speed and effectiveness of the development and repair procedures [65].
The role of matrix metalloproteinases (MMPs) in skeletal development
has been widely studied [66-71]. MMP13 promotes growth plate
hypertrophic cartilage and bone formation in trabecular bone, the
newly deposited tissue that requires absorption remodelling [68,69]. In
addition, other work points to the need for MMPs in bone repair
[62,63,72-74]. These reports suggest that MMP13 may also be involved
in bone repair, but this hypothesis requires formal testing [63].

Previous studies have shown that the differentiation of
chondrocytes is key to bone formation, bone remodelling and bone
fracture healing [75,76]. During bone repair, ECM secreted by
chondrocytes is deposited around the fracture, forming temporary
cartilage callus, which is critical for the fracture healing process
[75,77]. ECM remodelling is important during bone development and
repair. Due to the increased blood supply and presence of mature of
osteoclasts during the molding period, cartilage callus is gradually
replaced by vascularized bone tissue, resulting in the formation of real
bone tissue. EC vascular invasion in cartilage can induce the formation
of a primary ossification center in cartilage, indicating formation of
real bone tissue [10]. Bone formation occurs in the vicinity of
angiogenesis, and these new blood vessels deliver nutrients, oxygen
and mitogens secreted by osteoblasts for the bone progenitor cells
[78,79]. Unsurprisingly, angiogenesis inhibitors can damage the bone
fracture healing process [12].

Ideally, fracture healing depends on adequate blood vessel
formation and, therefore, the formation of new blood vessels is
necessary to meet the needs of different stages of fracture healing. In
the process of fracture healing, the transition from the callus to new
bone is the key stage in the repair process [2]. This stage includes four
coordinative processes: the apoptosis of cartilage cells; the degradation
and removal of cartilage matrix; angiogenesis in repair areas; and the
recruitment and differentiation of osteoblasts to form bone matrix
[80,81]. Failure of any of these processes can lead to delayed or blocked
fracture healing.

EC fracture healing involves a well ordered sequence of cellular
events that is similar to those occurring during embryological bone
development and postnatal skeletal growth. The possible mechanisms
responsible for the timely removal of chondrocytes, which are not
normal cellular component of cortical bone, could involve chondrocyte
apoptosis and replacement with osteoblasts or acquisition of an
osteogenic phenotype by the chondrocytes [82-85].

Signalling Pathways involved in Bone Fracture Healing
Bone fracture healing is tightly controlled by the expression of

crucial transcription factors including, Col2a1, ACAN, Col10a1, and
MMP13 [86-88] in differentiating ATDC5 cells. Moreover, the
pharmacological agent Tranilast has been shown to upregulate
expression of essential signalling molecules involved in EC ossification
such as Parathyroid hormone-related protein (PTHRP), Indian
Hedgehog (Ihh), and AXIN2 [20,89-91]. Increased matrix
proteoglycan synthesis, which induces alkaline phosphatase activity,
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accelerates mineralization. Tranilast is a potential agent that accelerates
fracture repair by promoting the regulatory steps of EC ossification.

Nepal et al. identified that Kaempferol, a flavonoid which is
abundant in plants, induces chondrogenic differentiation in ATDC5
cells through activation of the EPK/BMP-2 signalling pathway, and
that Tranilast increased Ihh and Pthrp expression in ATDC5 cells [92].
Through screening a library of plant compounds, Choi et al.
determined that genkwadaphnin stimulates chondrocyte
differentiation in ATDC5 cells via the ERK and JNK signalling
pathways. β-catenin mRNA expression was also upregulated after
genkwadaphnin treatment [93].

Canonical Wnt signalling has been shown to promote progenitor
cell differentiation towards the osteoblast and chondrocyte lineage in
developing skeletal elements, whereas Hedgehog signalling regulates
chondrocyte hypertrophy during EC ossification [49,94]. An inhibition
of Wnt signalling would be predicted to cause an acceleration of both
chondrogenic and osteogenic differentiation at the fracture sites [44].
Many processes observed in development are also recapitulated during
bone fracture repair, including periosteal cells and osteoblasts near the
fracture site, mature chondrocytes of the fracture callus and osteocytes
at cortical bone 5 days post-fracture The cartilage anlagen is also
enlarged by chondrocyte proliferation and hypertrophy, and ECM
production which, in turn, drives bone growth. The rate of bone
elongation is also driven by the orientation of the hypertrophic
chondrocytes, which is regulated by Hedgehog signalling. [95]. Growth
factors play an important role in the rapid regeneration of bone and
cartilage that takes place during fracture repair. The complexity of the
repair process requires coordination of a number of the signalling
pathways that regulate skeletal cell proliferation, ECM synthesis and
tissue differentiation. SULF2, unlike SULF1, is also expressed in the
calcified matrix of hypertrophic chondrocytes, which suggests that its
expression may be associated with inhibition of HSPG ligand by the
desulfurization effect. Increased SULF2 expression along with
increased Hedgehog signalling in the healing bone may be closely
related.

The basic helix-loop-helix transcription factor Hand1, which is
expressed in the cartilage primordia, is involved in the proper
osteogenesis of the bone collar via its control of Ihh production. Hand1
downregulated Ihh gene expression in vitro by inhibiting Runx2
transactivation of the Ihh proximal promoter. These results
demonstrate that Hand1 in chondrocytes regulates EC ossification, at
least in part through the Runx2/Ihh axis [96]. Furthermore, Ihh and
Ptch1 are upregulated during the initial stage of fracture repair
[97-100].

Chondrocytes are derived from the chondrogenic differentiation of
MSCs. This process includes six phases: mesenchymal cells
(chondroprogenitors), condensed mesenchymal cells, chondrocytes,
proliferating chondrocytes, pre-hypertrophic chondrocytes and
hypertrophic chondrocytes. A number of transcription factors and
cytokines influence discrete steps in the chondrocyte differentiation
pathway. These include members of the SOX family (SOX9, SOX5 and
SOX6), BMPs, connective tissue growth factor/cysteine-rich 61/
nephroblastoma overexpressed (CCN) family protein 2 (CCN2) as well
as others [101].

For example, lack of MMP-9 expression can disrupt degradation of
the cartilage matrix, leading to an increased cartilage hypertrophy
region, which is the result of an abnormal regulation of the apoptotic
process. In addition, in MMP-9−/− mice, the fracture healing process

is delayed, which can be corrected by the addition of exogenous VEGF.
These results show that angiogenesis is closely associated with cartilage
apoptosis [62], and the molecular regulation of angiogenesis is
connected with the cartilage removal during EC ossification.

Oxidative stress plays important roles in bone formation, growth
and remodelling [17-20], especially in the terminal differentiation of
MSCs that drives growth plate chondrocyte hypertrophy and
apoptosis. This is necessary for lengthening long bones and forming
structures of the appropriate shape. Apoptosis has been assessed by
caspase-3 (CASP3), and a report by Giganti et al. [23] implicated ASK1
as an upstream activator of mitochondrial-dependent CASP3
activation. In addition, ASK1 is activated by the JNK and p38 MAPK
pathways, which have important roles in cartilage and bone formation
and turnover. Specifically, the JNK signalling pathway enhances
cartilage by activating the transcription factor activated protein-1
(AP-1), which increases TGF-β expression [24]. However, long-term
activation and differentiation via p38 MAPK signalling are required for
chondrocyte maturation and are necessary for EC ossification.

We have shown that deletion (mouse mutants) or inhibition
(nqdi-1) of ASK1 enhances the survival of hypertrophic chondrocytes
and thus increases EC bone formation. The role of ASK1 in the growth
plate is newly appreciated, but inhibition of other genes that cause a
loss of hypertrophic chondrocyte apoptosis has also been reported to
increase HZ length [30,31]. Specifically, TNFR1−/− mice that showed
an absence of death-activated TNF alpha receptor showed a similar
phenotype [32]. ASK1 activation is required for TNFR1 signalling,
which suggests that the TNF pathway may be a major driving force for
the death of hypertrophic chondrocytes. Interestingly, CASP3
knockout cells produced opposite results, including delayed
ossification, decreased bone density and shorter HZ [33]. This suggests
that the ASK1 pathway is likely to be as important as CASP3.

Effects of Apoptosis and Angiogenesis on Fracture
Healing

Effects of apoptosis on bone fracture healing
When undifferentiated mesenchymal cells differentiate into

chondrocytes, chondrocyte apoptosis begins. In the chondrogenic
lineage different cells differentiate to different areas of the epiphyseal
cartilage from the resting cartilage zone, and then follow the
proliferation of hypertrophic chondrocytes. The region of cell death is
located in the central region of the skeletal element, starting at a joint
surface and continuing through the rest of the proliferating zone of the
cartilage cells. Col2a1 expression marks the quiescent and proliferating
cells, while in the hypertrophic zone chondrocytes expression
Col10A1. Hypertrophic chondrocytes further develop characteristics
of terminally differentiated cells and upregulate Col10A1 and the
terminal differentiation markers osteopontin and MMP13, which also
mark bone cells [102]. Ossification occurs when terminally
differentiated chondrocytes undergo apoptosis and the calcified
cartilage is invaded by blood vessels, osteoclasts, osteoblasts, and
mesenchymal precursor cells [102].

Chondrocyte apoptosis is an essential process for replacing cartilage
with bone during fracture healing and the growth of long bones [103].
Previous reports have shown the presence of TUNEL-positive
apoptotic cells in hypertrophic chondrocytes [5]. Unregulated FGF
signalling can directly induce apoptosis; whereas, apoptosis has been
also reported to be dependent on the induction of pro-apoptotic
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molecules by FGF [104]. FGF signalling decreases PTHrP receptor
expression in the growth plate [105], and the down regulation of
PTHrP signalling could also play a role in promoting apoptosis by
decreasing BCL2 expression [106]. FGFR3-mediated STAT1-p21
signalling has also been reported to induce apoptosis in hypertrophic
chondrocytes during EC ossification and in fracture repair [107].
However, another study showed that STAT1 is crucial in mediating
FGF-induced apoptosis in proliferating chondrocytes, but not in the
hypertrophic chondrocytes [104]. According to this model, mast cells
are programmed for death [108-111], then osteoblasts or bone
cartilage progenitor cells can form bone matrix through blood vessels,
instead of cartilage [10]. This long held view is standard in the
literature of the growth plate biology and fracture repair.

Induced apoptosis in chondrocytes during EC ossification may
involve Fas- and caspase-mediated signalling pathways [112]. Other
studies have shown that in the process of EC ossification, β-catenin is
required upstream of Ihh signalling for chondrocyte survival and
apoptosis inhibition [113].

Effects of angiogenesis on bone fracture healing
Bones are highly vascularized tissues and vascularization plays an

important role in normal physiology, including regulating balance,
allowing bone homeostasis, and providing a hematopoietic niche.
Therefore, reconstructing bone vessels and the bone marrow cavity is
necessary for complete bone regeneration and to restore the full
function of the bone marrow.

During the repair process, the fracture callus in the initial soft callus
stage has no blood vessels. However, as the callus matures, it becomes a
potent stimulator of angiogenesis and vascular invasion through the
secretion of VEGF [114-116], PIGF [117], and PDGF [118]. The
importance of angiogenesis in fracture healing has been
experimentally demonstrated by inhibiting VEGF through the delivery
of soluble VEGF receptor (Flt-IgG), which delayed the transition of
cartilage to bone after vascular invasion [115,119]. In addition,
vascular endothelial cells secrete MMP-9, which has high specificity for
collagen degradation, thereby accelerating cartilage degradation and
vascular invasion. Moreover, cartilage matrix degradation can be
enhanced by osteoclasts transferred to the cartilage matrix through the
newly formed blood vessels. MMP-9 expression can be found in the
vasculature of calcified cartilage that is recruited to the bone [120].
These results are similar to those found in animals receiving the
angiogenesis inhibitor rapamycin, which showed a significant delay in
EC repair [121].

SULF2 expression in hypertrophic chondrocytes may indicate their
different roles in vascularization as has been suggested by the anti-
angiogenic activities of SULF1 [122,123], but pro-angiogenic activity of
SULF2 in some mammary tumors [124]. A study by Ueng et al.
suggested that one mechanism is smoking, which causes a reduction in
angiogenesis [125].

The ossification of cartilage to bone requires cell proliferation and
angiogenesis. Vascular supply of a number of circulatory factors such
as parathyroid hormone (PTH), insulin and vitamin D is important for
normal fracture healing. Importantly, vascular invasion is also
associated with cartilage matrix calcification and the transition to
bone. Changes in calcium concentration are sufficient to induce
hypertrophic chondrocytes to become mineralized, but it remains
unclear what the source of calcium is, and which cells detect these
changes.
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