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Abstract
Renal fibrosis is a salient pathological feature of chronic kidney disease, which leads to destruction of renal 

parenchyma and progressive loss of kidney function. Although activated fibroblasts are the effector cells that are 
responsible for the excessive production and deposition of extracellular matrix, the cellular origin of these cells has 
been of intense debate. It was traditionally thought that resident fibroblasts are the source of increased extracellular 
matrix. Recently, a novel paradigm for the pathogenesis of renal fibrosis has emerged – bone marrow-derived 
fibroblast precursors migrate into kidney and contribute significantly to the pathogenesis of renal fibrosis. This review 
focuses on recent advance in our understanding of the role of bone marrow-derived fibroblasts in renal fibrosis.
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Background
Chronic kidney disease is a growing public health problem. Renal 

fibrosis is a hallmark of chronic kidney disease and the degree of 
interstitial fibrosis correlates well with the progression of kidney disease, 
regardless of the underlying etiology [1,2]. Renal interstitial fibrosis 
is characterized by fibroblast activation and excessive production 
and deposition of extracellular matrix (ECM), which leads to the 
destruction and collapse of renal parenchyma and progressive loss 
of kidney function. Because fibroblasts are the principal effector cells 
that are responsible for ECM production in the fibrotic kidney, their 
activation is regarded as a key event in the pathogenesis of renal fibrosis 
[3,4]. However, the origin of these fibroblasts remains controversial. 

Activated fibroblasts are traditionally thought to arise from resident 
renal fibroblasts. Recent evidence indicates that they may originate from 
bone marrow-derived progenitor cells [5-9]. A study of mismatched 
kidney transplantation in humans has shown that the proportion of 
host-derived SMA-positive cells is approximately 30% in allografts 
undergoing chronic rejection compared with 10% in those without 
rejection [7]. In rodent models of renal fibrosis, several studies using 
bone marrow transplantation have shown that bone marrow-derived 
fibroblasts migrate into the kidney in response to injury [5,8-12]. For 
example, one study using bone marrow transplantation of transgenic 
mice that express enhanced green fluorescence protein (GFP) under 
the control of the fibroblast specific protein 1 (FSP1) promoter has 
demonstrated that 15% of bone marrow-derived fibroblasts are present 
in the kidney 10 days after obstructive injury [5]. Another study using 
bone marrow transplantation of transgenic rats that express human 
placental alkaline phosphatase has shown that more than 30% α-SMA 
positive myofibroblasts are derived from bone marrow 7 days after 
ischemia-reperfusion injury [8].

The bone marrow-derived fibroblast precursors termed fibrocytes 
were first identified in the peripheral circulation in 1994 [13]. These 
cells arise from a subset of bone marrow-derived monocytes with 
fibroblast-like features. They express mesenchymal markers such as 
collagen I and vimentin and hematopoietic markers such as CD45, 
CD11b, and CD34 [13-16]. These cells in culture display an adherent, 
spindle-shape morphology and express α-SMA that is enhanced when 
cells are treated with TGF-β1, consistent with the concept that they 

can differentiate into myofibroblasts [14-16]. The differentiation of 
fibrocytes is regulated by other inflammatory cells, such as CD4+ T cells, 
via secretion of cytokines [17]. Profibrotic cytokines IL-4 and IL-13 
promote fibrocyte differentiation, where as antifibrotic cytokines IFN-γ 
and IL-12 inhibit its differentiation, suggesting a complex interplay 
among the inflammatory cells in the inflamed milieu determines the 
fate of bone marrow-derived fibroblasts [18,19]. 

We have recently provided unequivocal evidence that bone 
marrow-derived fibroblasts accumulate in the kidney in response to 
obstructive injury [9]. We demonstrate that CD45 and vimentin dual 
positive fibroblasts or CD11b and vimentin dual positive fibroblasts 
accumulate in the kidney in response to obstructive injury using 
confocal microscope. To confirm the bone marrow origin of these cells, 
we have generated chimeric mice using bone marrow transplantation. 
The donor mice express GFP under the control of collagen α1(I) 
promoter [20]. Our results demonstrate that bone marrow-derived 
CoI-GFP cells are present in the obstructed kidney, but not in the 
normal kidney. 

The signaling mechanisms underlying the recruitment of bone 
marrow-derived fibroblast precursors into kidney are incompletely 
understood. Chemokines play an important role in the regulation of 
fibroblast precursor infiltration in response to injury. Chemokines 
are classified based on the relative position of cysteine residues near 
the NH2 terminus into four major families: CC, CXC, C, and CX3C 
[21,22]. Chemokines activate their seven-transmembrane G protein-
coupled receptors and play primary roles in mediating the trafficking of 
circulating cells during inflammation [23]. Recently it has been reported 
that CCL21 and its receptor-CCR7 are involved in the infiltration of 
circulating fibroblast precursors in the kidney in a murine model of 
renal fibrosis induced by obstructive injury [6].
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CXCL16 is a recently discovered cytokine belonging to the 
CXC chemokine family [24]. There are two forms of CXCL16. The 
soluble form generated by its cleavage at the cell surface functions 
as a chemoattractant to recruit circulating cells. The transmembrane 
form has a transmembrane structure which functions as an adhesion 
molecule for CXCR6 expressing cells and scavenger receptor for 
oxidized low-density lipoprotein. We have recently found that 
CXCL16 is induced in response to obstructive injury [9]. Specifically, 
we demonstrate that CXCL16 mRNA is induced in the kidney in 
response to obstructive injury in a time-dependent manner and 
CXCL16 protein is upregulated mainly in the kidney epithelial cells 
in the obstructed kidney. Furthermore, we show for the first time that 
CXCL16 is pathologically important because targeted disruption of 
CXCL16 causes a significant decrease in the number of bone marrow-
derived fibroblast precursors in the kidney in response to obstructive 
injury. These data indicate CXCL16 plays a critical role in recruiting 
bone marrow-derived fibroblast precursors into the kidney.

Fibrocytes express certain chemokine receptors such as CCR2, 
CXCR4, and CCR7 and inhibition of these chemokine receptors has 
been shown to suppress fibrosis through suppression of fibroblast 
precursor infiltration into injured tissues [20,25,26]. Recently, we 
demonstrate for the first time that bone marrow-derived fibroblast 
precursors express CXCR6, the receptor for CXCL16 [9]. CXCR6 was 
first cloned as an orphan receptor in 1997 [27-29] and was termed 
STRL33, BONZO, or TYMSTR. We then show that targeted disruption 
of CXCL16 suppresses the infiltration of CD45, CXCR6 and collagen 
I triple positive fibroblast precursors into the kidney, suggesting that 
CXCl16 regulates fibroblast precursor trafficking by an interaction 
with its receptor - CXCR6 [9]. 

Myofibroblasts are a population of smooth muscle-like fibroblasts 
that play a central role in wound healing and fibrosis [30]. Their 
activation is generally considered a key event in the pathogenesis of 
renal fibrosis [3,4]. Furthermore, experimental and clinical studies have 
shown that the number of interstitial myofibroblasts correlates closely 
with the severity of tubulointerstitial fibrosis and the progression of 
kidney disease [31-33]. We have recently demonstrated that bone 
marrow-derived myofibroblasts identified as CD45 and α-SMA dual 
positive cells accumulate in the injured kidney of WT mice, whereas 
their accumulation is significantly reduced in the injured kidney 
of CXCL16-KO mice [9]. This finding strongly indicates that bone 
marrow-derived fibroblast precursors are activated in the kidney and 
contribute to the population of renal myofibroblasts. 

A salient pathological feature of renal fibrosis is a striking increase 
and deposition of extracellular matrix proteins including collagen 
and fibronectin. Morphometric analysis of picrosirius red staining of 
kidney sections at day 14 after obstructive injury demonstrates the 
presence of interstitial collagen deposition. This collagen deposition 
is significantly attenuated in the obstructed kidneys of CXCL16-KO 
mice [9]. Consistent with these findings, we further illustrate that the 
mRNA and protein levels of collagen I and fibronectin are markedly 
increased in the injured kidneys of WT mice, whereas these responses 
are significantly inhibited in the injured kidney of CXCL16-KO mice.

In summary, recent studies have demonstrated that bone marrow-
derived fibroblasts migrate into kidney and contribute significantly to 

the pathogenesis of renal fibrosis in response to injury. Furthermore, 
our study defines a novel mechanism by which CXCL16 participates in 
renal fibrosis. In response to injury, the upregulated CXCL16 recruits 
circulating fibroblast precursors into the kidney, which play a critical 
role in the pathogenesis of renal fibrosis. These data suggest that 
inhibition of CXCL16 could represent a novel therapeutic approach for 
fibrotic kidney disease.
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