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Abstract

In this research work, we study the relations between the characterized fuzzy T -spaces and characterized
1 1
fuzzy R,—spaces presented in old papers, for s e {0,1,2,3,35,4} and ke {1,2,25,3} and the characterized

fuzzy proximity spaces presented. We also study the relations between the characterized fuzzy T -spaces, the
characterized fuzzy R —spaces and the characterized fuzzy compact spaces which is presented in old paper, as a
generalization of the weaker and stronger forms of the G—compactness defined by Gahler. Moreover, we show here
the relations between these characterized fuzzy T -spaces, characterized fuzzy R,—spaces and the characterized
fuzzy uniform spaces introduced and studied by Abd-Allah in 2013 as a generalization of the weaker and stronger
forms of the fuzzy uniform spaces introduced by Gahler.
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Introduction

The notion of fuzzy filter has been introduced by Eklund et al.
By means of this notion the point-based approach to fuzzy topology
related to usual points has been developed. The more general concept
for fuzzy filter introduced by Géhler [1] and fuzzy filters are classified by
types. Because of the specific type of fuzzy filter however the approach
of Eklund is related only to the fuzzy topologies which are stratified,
that is, all constant fuzzy sets are open. The more specific fuzzy filters
considered in the former papers are now called homogeneous. The
operation on the ordinary topological space (X,T) has been defined by
Kasahara [2] as the mapping ¢ from T into 2* such that A € A, for
all A€T. In 1983, Abd El-Monsef et al. [3] extend Kasahara operation
to the power set P (X) of a set X. In 1999, Kandil [4] and the author
extended Kasahars’s and Abd El-Monsef’s operations by introducing
an operation on the class of all fuzzy subsets endowed with an fuzzy
topology T as the mapping ¢ : L* > L¥such that int y <u? for all y€L*,
where y¢ denotes the value of ¢ at p.

The notions of the fuzzy filters and the operations on the class of
all fuzzy subsets on X endowed with a fuzzy topology 7 are applied by
Abd-Allah in [5-7] to introduce a more general theory including all the
weaker and stronger forms of the fuzzy topology. By means of these
notions the notion of ¢ ,-fuzzy interior of a fuzzy subset, ¢ ,-fuzzy
convergenceand ¢, , fuzzy neighborhood filters are defined and applied
to introduced many spec1al classes of separation axioms. The notion of
¢, -interior operator for a fuzzy subset is defined as a mapping ¢ ,.int:L*
> LX which fulfill (I1) to (I5) in Abd-Allah [5]. There is a one- ‘to-one
correspondence between the class of all ¢, ,-open fuzzy subsets of X and
these operators, that is, the class ¢, OF(X) of all ¢, ,-open fuzzy subsets
of X can be characterized by these operators. Then the triple (X,¢, .
int) as will as the triple (X, ,OF (X)) will be called the characterized

fuzzy space [5] of ¢ ,-open fuzzy subsets. The characterized fuzzy
spaces are identified by many of characterizing notions in Abd-Allah
[5-7], for example by the ¢ ,-fuzzy neighborhood filters, ¢ -fuzzy
interior of the fuzzy filters and by the set of ¢ ,-inner points of the
fuzzy filters. Moreover, the notions of closeness and compactness
in the characterized fuzzy spaces are introduced and studied by
Abd-Allah in [7]. The notions of characterized FT -spaces, Fo, ,-T

spaces, characterized FR -spaces and Fg ,-R, spaces are 1ntroduced
and studied 1n Abd-Allah [9-11] for all s €{0,1,2 22, , 4} and
k €{0,1,2, 2 ,3} - The notions of characterized fuzzy compact spaces,

characterized fuzzy proximity spaces and characterized fuzzy uniform
spaces are introduced and studied by the author in 2004 and 2013
in [7,12]. This paper is devoted to introduce and study the relatlons

between the characterized FT, and FR,-spaces, for S € {0,1,2,3,3 5.4}
and k €{1,2, 27’ 3}, the characterized fuzzy proximity spaces and

the characterized fuzzy compact spaces. Moreover, we show here
the relations between these characterized FT and FR,-spaces and the
characterized fuzzy uniform spaces. In section 2, some definitions
and notions related to the fuzzy subsets, fuzzy topologies, fuzzy filters,
fuzzy proximity, operations on fuzzy subsets, ¢, -fuzzy neighborhood
filters, characterized fuzzy space, characterized FT -spaces, Fo, ,-T,

s

spaces, characterized FR,-spaces and F¢, -R, spaces are given for

s e{0,1,2,3,3%,4} and k 6{2,2%,3}. Section 3, is devoted to
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introduce and study the relation between the characterized fuzzy
proximity spaces and our classes of the characterized FT -spaces and of
the characterized FR,-spaces. It will be shown that in the characterized
fuzzy space (X9, ,int), the fuzzy proximity ¢ will be identified with
the finer relation on the ¢, -fuzzy neighborhood filters. Also, we will
show that any fuzzy proximity is separated if and only if the associated
characterized fuzzy proximity space is characterized FT, and to each
fuzzy proximity is associated a characterized FR,-space in our sense.
Generally, it will be shown that the associated characterized fuzzy
proximity space (X,¢, ,int) is characterized FR,-space if the related
fuzzy topological space (X,7) is Fg, ,-R, space. Moreover, for each
characterized FR,-space the binary relation on L* defined by means
the ¢, ,-fuzzy closure operator ¢, ,.cl of 7 in Equation (3.6), is fuzzy
proximity on X and conversely to each fuzzy proximity § which has
a ¢, -fuzzy closure operator fulfills the binary relation given in (3.6)
is associated a characterized FR;-space (X,¢, ,.int,). Moreover, when L
is a complete chain, ¢, > Ly is 1sotone and ¢, is wfip with respect to
¢, OF (X), then we show that the associated characterized fuzzy space
(X,¢,,-int)) from the fuzzy normal topological space (X,7) is finer than
the associated characterized fuzzy proximity space (X,¢,,.int,) by the
fuzzy proximity § defined by (3.6) and they identical if and only if
(X,¢,,-int)) is characterized FT-space. At the end of this section we
prove that the associated characterized fuzzy proximity space (X,¢, ,.
int) is characterized FR,, - space and therefore it is characterized

FT, - space. There is a good notion of ¢ ,-fuzzy compactness of

the %uzzy filters and of the fuzzy topological spaces introduced and
studied by Abd-Allah et al. [7]. This notion fulfills many properties, for
example, it fulfills the Tychonoff Theorem. In section 4, we used this
notion to study the relations between the characterized fuzzy compact
spaces and our classes of the characterized FT -spaces and of the
characterized FR,-spaces. It will be shown that every ¢, -closed subset
of a characterized fuzzy compact space is ¢, ,-fuzzy compact and each
¢, ,-fuzzy compact subset of the characterized FT,-space is ¢, -closed.
Also, it will be shown that each characterized fuzzy compact FT,-space
is characterized FT,-space. Specially, we prove that the characterized
fuzzy unit interval space (IL,l//l,2 int) is characterized fuzzy compact
FT,-space and characterized FT,, - space. Generally, we show that
every characterized fuzzy compact space is characterized FT,-space
if and only if it is characterized FT, - space. We show that, if (X 7
int ) is characterized fuzzy compact space finer than the characterized
FTZ—space (X’(P1,z'int1)’ then (X,(pu.intr) is (pl’zl/ll)z—fuzzy isomorphic to
(X»l//l,z-intg)- Moreover, if 7 is finer than o, (X,(pu.intT) is characterized
fuzzy compact space and (X,y, ,.int ) is characterized FT. 31 space, then
X,y int) and (X,y, .int) are ¢ ,y, -fuzzy isomorphic. The notion
of fuzzy uniform structure had been introduced and studied by Gahler
et al. [13]. This notion with the notion of the operations on the class
of all fuzzy subsets are applied to introduce and study the notion of
characterized fuzzy uniform spaces. In section 5, we introduce and
study the relations between the characterized fuzzy uniform spaces and
our classes of the characterized FT -spaces and of the characterized FR,-
spaces. We show that the fuzzy uniform space (X, %) is separated if and
only if the associated characterized fuzzy uniform space (X,¢, ,.int,) is
characterized FT -space but the fuzzy uniform space (X, %) is separated
if and only if the associated stratified fuzzy topological space (X,7,,) is
F,,-T, space for all i€{0,1}. For each fuzzy uniform structure on a set
X, we prove that there is an induced stratified fuzzy proximity on L*.
Moreover, both the fuzzy uniform structure and this induced stratified
fuzzy proximity are associated with the same stratified characterized
fuzzy uniform space. Finally, for each fuzzy uniform space (X,%) we
prove that the associated stratified characterized fuzzy uniform space

(X9, ,-int,) with the fuzzy uniform structure % is characterized fR,, -
> 2
space and it is characterized FT,, - space if (X, %) is separated.
2

Preliminaries

We begin by recalling some facts on fuzzy subsets and on fuzzy
filters. Let L be a completely distributive complete lattice with different
least and last elements 0 and 1, respectively. Let L, = L \ {0}. Sometimes
we will assume more specially that L is a complete chain, that is, L is a
complete lattice whose partial ordering is a linear one. For a set X, let
L* be the set of all fuzzy subsets of X, that is, of all mappings f: X > L.
Assume that an order-reversing involution « — «' of L is fixed. For
each fuzzy subset €LY, let ' denote the complement of 4 and it is given
by the relation ' (x) = u (x)' for all x€X. Denote by &, the constant fuzzy
subset of X with value is & € L. For all x € X and forall « € L, the fuzzy
subset x_of X whose value a at x and 0 otherwise is called a fuzzy point
in X. The set of all fuzzy points of a set X will be denoted by S (X).

Fuzzy filters

The fuzzy filter on X [1] is the mapping M: L* > L such that the
following conditions are fulfilled:

(F1) M (&) <a for all «€EL and (1) = 1.
(F2) M (u Np) = M() AM(p) for all p,pELX.

The fuzzy filter M is called homogeneous [14] if M(&)=« for all
a€L. For each x€X, the mapping x(u) = u(x) defined by x(u) = u(x)
for all yELX is a homogeneous fuzzy filter on X. For each p€L¥, the
mapping /:L" — L defined by #01) = /\ 1(X) for all nELX is a
homogeneous fuzzy filter on X, called homagenous fuzzy filter at the
fuzzy subset uEL*. Let #,X and # X be the sets of all fuzzy filters and
of all homogeneous fuzzy filters on X, respectively. If # and A are
fuzzy filters on a set X, L is said to be finer than ., denoted by
<, provided M (u) = N (p) holds for all yEL*. Noting that if L is a
complete chain then M is not finer than N, denoted by J# A, provided
there exists yEL* such that J (u) < A () holds.

Lemma 2.1

If M, N and £ are fuzzy filters on a set X. Then the following
sentences are fulfilled [1].

M= L2 Nimplies M= N and M= L= Nimplies M= N
Proposition 2.1
For all y,pELY, we have u<p ifand only if £ </ [15].
For each non-empty set A of the fuzzy filters on X the supremum
V M exists [1] and given by
MeA
(VO = N\ M),

for all u€EL*. Whereas the infimum V,,/E\ﬂ‘/” of A does not exists in
N\ M

general as an fuzzy filter. If the infimum /%,

,(/M(ﬂl)A---A/ﬂn(ﬂ,,)),

exists, then we have

N\ MY w= V
(./Ilejl )(,U) A A S H
M., M eA

for all uELX, where n is an positive integer, 4,,....¢, is a collection such
that w A...Au <pand M,,..., M are fuzzy filters from “A. Let X be a
set and y € L%, then the homogeneous fuzzy filter £ at y is the fuzzy
filter on X given by:

a= vV x, (2.1)

0 <p(x)
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Fuzzy filter bases

The family (8 )a€ (&), L of a non-empty subsets of L* is called
a valued fuzzy filter base [1] if the following conditions are fulfilled:

(V1) Efs”x implies a <sup p.

(V2) Foralla,ff L witha A€ L andall €5 and p € 8, there are
yzaAfandn<y psuchthaty €f.

As shown in Gihler [1], each valued fuzzy filter base (%, )y,
defines a fuzzy filter #M on X by H(u)= ~/ a for all yELX.

PEB, P 1
Conversely, each fuzzy filter M can be generated by a valued fuzzy filter
base, e.g. by (a=prdl),., with a-pr M = {u€L* | a < M (u)}. The
(a-pr M )aeL0 is the family of pre filters on X and it is called the large
valued fuzzy filter base of J(. Recall that the pre filter on X [16] is a
non-empty proper subset Fof L such that (1) g, p € Fimpliesy Ap € F
and (2) from p € Fand p< it follows p € F.

Valued and superior principal fuzzy filters

Let a non-empty set X be fixed, 4 € L* and « € L such that a<sup
U, the valued principal fuzzy filter [20] generated by y and «, will be
denoted by [,a], is the fuzzy filter on X which has (B3) s, with
B={u}if0<f<aand By =11} otherwise as a valued fuzzy filter base.
For all n€L*, we have [u,a] () =0ifu £ 7, [l (n) =aif <y #1 and
[.a] (n)=11if 7 =1. Moreover, for each S€L we have S-pr[u,a]={y |
usnyif f<aand S-priu,a]={1} otherwise. The superior principal
fuzzy filter [1] generated by y, written [y], is the homogeneous fuzzy
filter on X which has S ={u A & | a€EL} U {a& | a€EL} as a superior fuzzy
filter base. As shown in Katsaras [18], the superior principal fuzzy filter
[u] is representable by a fuzzy pre filter if and only if sup y = 1.

Fuzzy filter functors and fuzzy filter monads

The fuzzy filter functor % : SET>SET is the covariant functor from
the category SET of all sets to this category which assigns to each set X
the set # X and to each mapping f: X°Y the mapping #,f:# X >#, Y. The
homogeneous fuzzy filter functor F: SET>SET is the sub fuzzy filter
functor of F, which assigns to each set X the set F, X and to each mapping f
:X*° Ythe domain-range restriction F f:F X >F Y of the mapping # f:# X
&Y. For each set X, let #7,:X># X be the mapping defined by #, (x) =x
forall x€X,andlet e, : L* - %" bethe mapping for which e (1) (M)
=M (p) for all gy L* and MEF,X. Moreover, let 4, : F(FX)>FX
be the mapping which assigns to each fuzzy filter £on X the fuzzy
filter u, (£)=Loce,on X. n=(n,), cob(seT) - id > Z with id
the identity set functor and # = (4, ), copsery i % © % —>  are
natural transformations. (#,,1,¢4) is a monad in the categorical sense,
called the fuzzy filter monad [1], thatis, &y ©Z(77y) =ty °5x =15y
and fy o F(fy )=ty © gy for each set X. Related to the sub

functor FL of fL, there are analogous natural transformations as

n and y, denoted ' and y’, respectively. n' consists of the range-
restrictions 77, : X — F.X of the mappings #,. ¢’ is the family of all

mappings 4, :F.(FX)—>FX defined by, (£)=£Loe for all
homogeneous fuzzy filters L on F X, where e LY L s the
mapping given by e’ (u)(M) = M (u) for all u€ L* and MeF X. As
has been shown in Géhleretal. [13], (F %" ,u")is a sub monad of (F,,#,u)
(Z .1, 1), that is, for the inclusion mappings i, : FX — X we

have 7, =i, on and py o Fiy oip, =iy oty for all sets X.

Fuzzy topologies

By a fuzzy topology on a set X [20,21], we mean a subset of L*
which is closed with respect to all suprema and all finite infima and
contains the constant fuzzy sets (0 and 1. A set X equipped with an
fuzzy topology Ton X is called fuzzy topological space. For each fuzzy
topological space (X,7), the elements of tare called open fuzzy subsets
of this space. If 7, andr, are two fuzzy topologies on a set X, thent,is
said to be finer than‘t’1 and‘r1 is said to be coarser than 7, provided
7, € 1, holds. The fuzzy topological space (X,7) and alsot are said to
be stratified provided &€ holds for all a€L, that is, all constant fuzzy
subsets are open [17].

Fuzzy proximity spaces

The binary relation & on L* is called fuzzy proximity on X [18],
provided it fulfill the following conditions:

(P1) u & p implies p 5 u forall u,pELY, where & is the negation
of 6.

(P2) (v p) g?] ifand only if u 577 and p 577 for all y,p,n€ L.

(P3) y=0or p= 0 implies 4 S p forall ppELX.

(P4) 1 8 p implies u<p’ for all y,pELX.

(P5)If 128 p , then there is an €L such that #S7 and ' 5 p.

The set X equipped with an fuzzy proximity 6 on X is said to be fuzzy
proximity space and will be denoted by (X,0). Every fuzzy proximity §
on a set X is associated an fuzzy topology on X denoted by 7. The fuzzy

proximity & on a set X is said to be separated if and only if for all x,y€X
such that x = y we have x, 8 y ; for all a,€L,.

Operation on fuzzy sets

In the sequel, let a fuzzy topological space (X,7) be fixed. By the
operation [4] on a set X, we mean the mapping ¢ : L* > L* such that
int u<p® holds, for all 4 € L¥, where u? denotes the value of ¢ at u.
The class of all operations on X will be denoted by O(LX .- By the
identity operation on O(LX ,,> We mean the operation 1[ PRy
such that 1 , (#) =g for all uEL*. Also by the constant operation on
, we mean the operation ¢ X A such that ¢ X (w=1

: defined as

()
for all p € L*. If<is a partially ordered relation on O(LX

by @ <@, < 1" <u” for all uELX, then obviously, (O(LX,,)’S) is

a completely distributive lattice. As an application on this partially
ordered relation, the operation ¢:L*>L* will be called:

(i) Isotone if 4 < p implies u? < p¢ holds, for all y, p € L.

(ii) Weakly finite intersection preserving (wfip, for short) with
respect to A C L¥if p A u?< (p A p)? holds, for all p €A and p € L.

(iii) Idempotent if u?= (u?), for all u € L*.

The operations @, € O L, are said to be dual if y=co ( (cou))
or equivalently gu=co (v (cou)) for all y € L*, where cou denotes the
complement of y. The dual operation of ¢ is denoted by @. In the
classical case of L={0,1}, by the operation on the set X [3], we mean the
mapping ¢ : P (X) > P (X) such that int A<A? for all A in the power set
P (X) and the identity operation on the class of all ordinary operations

0} on X will be denoted by i (A) = A forall AEP (X).

P , where i

P(X) P(X)
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¢-open fuzzy subsets

Let a fuzzy topological space (X,7) be fixed and ¢ € O(LX o The

fuzzy subset y : X > L is said to be ¢-open fuzzy subset if y <y? holds.
We will denote the class of all p-open fuzzy subsets on X by OF (X).
The fuzzy subset p is called ¢-closed if its complement coy is ¢-open.
The two operations @,¥ € 0( /X, are equivalent and written ¢ ~ y if

and only if ¢ OF (X) = y OF (X).
¢, ,~interior of fuzzy subsets
Let a fuzzy topological space (X,7) be fixed and #,9, € 0( X

Then the ¢, ,-interior of the fuzzy subset y: X > L is the mapping ¢, ,.
int 4 : X > L defined by:

@, intp = \4 o,

(2.2)
pea, OF(X),p% <p

As easily seen that ¢ .int y is the greatest ¢ -open fuzzy subset p
such that " less than or equal to u [5]. The fuzzy subset u is said to
be ¢, ,-open if y < ¢, ,int p. The class of all ¢ ,-open fuzzy subsets of
X will be denoted by ¢, , OF(X). The complement coy of a ¢ ,-open
fuzzy subset p will be called ¢, ,-closed and the class of all ¢, ,-closed
fuzzy subsets of X will be denoted by ¢ ,CF(X). In the classical case
of L = {0,1}, we note that the fuzzy topological space (X,7) is up to an
identification by the ordinary topological space (X,T) and ¢ ,.int y is
the classical one. Hence, in this case the ordinary subset A of Xis ¢, ,-
open if A € ¢ ,.int A. The complement of the ¢ ,-open subset A of
X will be called ¢, -closed. The class of all ¢ -open and the class of
all ¢ ,-closed subsets of X will be denoted by ¢, ,0 (X) and ¢ ,C (X),
respectively. Clearly, Fis ¢, ,-closed if and only if ¢ ,.cl, F=F.

Proposition 2.2

If (X,7) is an fuzzy topological space and ¢,,9, € O{ XKoo Then, the

mapping ¢ ,.int y : X > L fulfills the following axioms [5]:
() If ¢ 21 x| then ¢, inty < pholds.

(ii) ¢, ,-int is isotone operator, that is, if u<p then, ,intu<g ,.i
p holds for all y,p€ELX.

(111) (pl 2- lntl 1

(iv) If ¥, 21 isisotone and ¢, is wiip with respect to ¢, OF (X),
then ,.int(uAp)=¢ ,intuA¢ .intp forally, p € LX.

(v) If , is isotone and idempotent operation, then ¢, ,.int y<¢ ,.int
(¢p,,-int p) holds.

(vi) golvz.int(\/l M= \/[ @,int g, forally € ¢ , OF (X).
Proposition 2.3

Let (X,7) be an fuzzy topological space and ¢,,¢, € O(LX e Then

the following are fulfilled [5]:

(i) If #2211y, then the class ¢,, OF(X) forms extended fuzzy
topology on X [19].

(i) If #, 21y and (/)l,z.inti =1 , then the class ¢, , OF(X) forms a
supra fuzzy topology on X [19].

(iii) If ¢, 21 y is isotone and ¢, is wfip with respect to ¢ OF(X),
then ¢, , OF(X) is fuzzy pre topology on X [19].

(iv) If o, ZlL’Y is isotone and idempotent operation and ¢, is
wifip with respect to ¢, OF(X), then ¢, OF(X) is a fuzzy topology on

X [20,21].

From Propositions 2.2 and 2.3, if the fuzzy topological space (X,7)
be fixed and ¢,p, € . Then

O(LX@
PLOF(X)={uel"| p<g,intu},

and the following conditions are fulfilled:

(2.3)

(I If ¢, 21 1, then ¢ ,.int u <y holds, for all y € L*,
(I2) Ifp<p,theng  intu<g .intpforally, p€L”
(13) @1, intl=1,

(14) If ¥, 21 ,x is isotone and ¢, is wfip with respect to ¢, OF(X),
then ¢ ,intu Ag .intp=g¢ .int(uAp)forally,p € LX.

5 is isotone and idempotent, then .int Aint u)=¢_ _.int
(I5)If, d idemp hen ¢, ,int (¢, .intp)=¢,,
uforall y € L*

Characterized fuzzy spaces

Independently on the fuzzy topologies, the notion of ¢, -interior
operator for fuzzy subsets can be defined as a mapping ¢ ,.int : L* >
L* which fulfill (I1) to (I5). It is well-known that (2.2) and (2.3) give
a one-to-one correspondence between the class of all ¢, ,-open fuzzy
subsets and these operators, that is, ¢, ,OF(X) can be characterized by
the ¢ -interior operators. In this case the triple (X,¢,,.int) as will as
the trlple (X.9,,0F(X)) will be called characterized fuzzy space [5] of
the ¢, ,-open fuzzy subsets of X. For each characterized fuzzy space
(X,9,,int), the elements of ¢ , of (X) are called ¢ ,~open fuzzy subsets
of this space. If (X, @, int) and (X, v, -int) are two characterized fuzzy
spaces, then (X, @, -int) is said to be finer than (X, v, »int) and denoted
by ¢ ,int<y .intprovided ¢ ,.inty >y .intyholds forall y EL*. The
characterized fuzzy space (X,¢, ,.int) is said to be stratified if and only if
¢ [inta=a for all « € L. As shown in Abd-Allah [5], the characterized
fuzzy space (X,p, ,int) is stratified if the related fuzzy topology is
stratified. Moreover, the characterized fuzzy space (X,(pu.int) is said
to have the weak infimum property [19] provided ¢ ,.int (u A &) =g ,.
inty A g ,int & forall y € L*and « € L. The characterized fuzzy space
(X,9,,int) is said to be strongly stratified provided ¢ ,.int is stratified
and have the weak infimum property.

Fuzzy unit interval

The fuzzy unit interval will be denoted by I, and it is defined in
Gahler [24] as the fuzzy subset [, = {x eR}|x <17}, where I=[0,1]
fxeR, | x(0)=1and 07 <x}
is the set of all positive fuzzy real numbers. Note that, the binary
relation<is defined on IR as follows: x <y < Xy SV, andx, <y, ,
for all x, y € R, where X =inf{z eR| x(z)>2a} and
Xo = sup{z €R | x(z) > a} foralla € L. Notethat the family Q which
is defined by: Q={R,|I, | Sel}U{R’|I, | Sel}u{0™|I,} is
a base for a fuzzy topology I on I, and the order pair (I,,I) is said to
be fuzzy unit interval topological space, where R, and R’ are the fuzzy
subsets of R, defined by R;(x)= V x(a) and RO (x)= (\/ X (a))'
for all xER, and § €ER. \The restrlctlons of R;and R® on I, are the fuzzy
subsets R’| I and R|I, respectively. Recall that the 1nequahty R (x) A

R (y) < R (x+y) holds, where x + y is the fuzzy real number defined
by: (x +y)(&) = e R . 5(x ()~ y (&) forall £ €ER. Consider a fuzzy

unit interval topological space (I,,I) be given and ¥,,¥, €0, 5, then
in this work the characterized fuzzy space (I,,y,.int,) will be called

is the real unit interval and R; =
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characterized fuzzy unit interval space and we define the cartesian
product of a number of copies of the fuzzy unit interval I, equipped with
the product of the characterized fuzzy unit interval spaces generated by
y, int, on it as a characterized fuzzy cube.

¢, ,~fuzzy neighborhood filters

An important notion in the characterized fuzzy space (X, ,.int)
is that of the ¢ -fuzzy neighborhood filter at the point and at the
ordinary subset in this space. Let (X,) be a fuzzy topological space and

0,0, € O(LX . As follows by (I1) to (I5) for each x€X, the mapping
N, (x):L" — L which is defined by:

N, () () = (@, ,.int p)(x) » 2.4

for all y € L¥ is a fuzzy filter, called ¢ ,-fuzzy neighborhood filter at x
[5]. If D=F€P (X), then the ¢, -fuzzy neighborhood filter at F will be
denoted by A/ ', (F) and it will be defined by:

A, (B) =N, ),

Since ./V(a12 (x) is fuzzy filter for all x€X, then ./V(pl ,(F) is also

fuzzy filter on X. Because of [¥¢]= X\E/FX ,thenwehave 4, (F) 2 [1;]
holds. If the related ¢ |,-interior operator fulfill the axioms (I1) and (12)
only, then the mapping ./I/ (x ):L* — L ,defined by (2.4) is an fuzzy

stack, called ¢, ,-fuzzy nezghborhood stack at x. Moreover, if the ¢, -
interior operator fulfill the axioms (I1), (I2) and (I4) such that in (I4)

instead of p €EL* we take &, then the mapping ./le , (x):L* >L,is

an fuzzy stack with the cutting property, called ¢, ,-fuzzy neighborhood
stack with the cutting property at x. Obviously, the ¢ ,-fuzzy
neighborhood filters fulfill the following conditions:

(N1) x < ‘/’/{/JL2 (x) holds for all x € X.
(N2) A, (X)) <

ON9) 1, (¥)(r
u €L~ ’

Clearly, y =

./VqJl ,(x )(p) holds for all 4, p €L* and pu<p.

A, () (@) =, (x ) () for all x€X and

-/’/(,;1,2 (¥ )(1) is the fuzzy subset ¢, ,-int g

The characterized fuzzy space (X,¢,,.int) is characterized as the
fuzzy filter pre topology [5], that is, as a mapping ./I/(P12 X > FX
such that the conditions (N1) to (N3) are fulfilled.

¢,,V, ,~fuzzy continuity

Let now the fuzzy topological spaces (X,7,) and (Y,7,) are fixed,

0, GO(LX,q) and V., €0 4 .- The mapping f: (X, ,.int) >

(Y,y,,int) is said to be ¢ ,y, ~fuzzy continuous [5] if the inequality

(y,,intm)o <@, int(no f)> (2.5)

holds for all n€LY. If an order reversing involution ' of L is
given, then we have that f is a fuzzy continuous if and only if
@,cl(mof ) <(y,,-clp)of holds for all #EL'. Note that ¢, ,.cl and
y, -cl, means that the closure operators related to ¢, ,.int and v, int,
respectively which are defined by ¢,clp=co (¢, 1nt coy) for all U
€€EL”. Obviously if f is ¢ ,y, -fuzzy continuous and the inverse f'of
fexists, then f: (Y,y,,int) > (X,9 ,int) is y, ¢ ,-fuzzy continuous,
that is, (@, intp)of < v, dnt(uof ) holds for all y€L*. By means

of characterizing the ¢, -fuzzy neighborhoods ./V{/)L2 (x) of ¢, ,intand

u,l 5 (x) of y, ,.int which are defined by (2.4), the fuzzy continuity of
fcan also be characterized as follows:

The mapping f: (X,¢, ,.int) > (Y,y, ,.int) is ¢ ,y, -fuzzy continuous

if the inequality./lfwlz(f x)N=2Zf (./I/m(x )) holds for each x€X.

Obviously, in case of L={0,1}, ¢, =y, =int, ¥» = lLX and ¥, = lLy , the
¢, ¥, ,-fuzzy continuity coincides with the usual fuzzy continuity.

¢, ,~fuzzy convergence

Let an fuzzy topological space (X,7) be fixed and #1-%: € o Koy If
x is a point in the characterized fuzzy space (X, ,.int), F € X and
is a fuzzy filter on X. Then s said to be ¢, -fuzzy convergence [5] to

x and written A om0 Y provided J is finer than the ¢ ,-fuzzy

neighborhood filter ./Vq)l,2 (x) . Moreover, J is said to be ¢, ,-fuzzy

convergence to F and written A —o F, provided L is finer than
1,2

the (plyz-fuzzy neighborhood filter /Vm (x) for all x€F, that is, J( is

finer than the ¢ ,-fuzzy neighborhood filter ‘/V%,z (F).

Internal ¢ ,-closure of fuzzy sets and ¢, ,-closure operators

Let a fuzzy topological space (X,7) be fixed and ¢,®, € O( X - The
internal ¢ ,-closure of the fuzzy set y: X > L is the mapping ¢, cl u:X
>L deﬁned by:

(col,,z-clﬂ)(X)=m>/ O (2.6)

M),

”/V()

(@ ,-clp)(x) = (2.6)

for all x€X. In (2.6), the fuzzy filter M my have additional properties,
e.g, we my assume that is homogeneous or even that is ultra. Obviously,
¢, clu < p holds for all p€LX. The mapping ¢, ,.cl F, X >F X which
assigns ¢, ,.cl M to each fuzzy filter M on X, that is,
g cll(y= N M(p),
9 ,clpsu
is called ¢, -closure operator [7] of the characterized fuzzy space
(X ¢, -int) with respect to the related fuzzy topology 7. Obviously, the
—closure operator ¢, , .cl is isotone hull operator, that is, for all SN
EJ X we have M < ./Vlmphes ¢, clM < g ,.cINand that M<p .clU.

(2.7)

Lemma 2.2
Let (X,7) be a fuzzy topological space and @,?, € 0( Ko Then for
each x€X, we have ¢, ,.clx =x implies that (pu.cl{x} ={x} [10].

Characterized fuzzy R, and fuzzy ¢ ,R,-spaces

The notions of characterized fuzzy R, and fuzzy ¢ ,R,-spaces are
introduced and studied in Abd-Allah [9,11] for all f ¢ {(),1527}.

Moreover, the notion of ¢, -fuzzy neighborhood filter at the pomt X
and at the ordinary subset of the characterized fuzzy space (X9, ,.int)
is applied by Abd-Allah [10], to introduced and studied the notions
of characterized fuzzy R,-spaces for k€{2,3}. However, the notions of
fuzzy | ,R,-spaces are also given by means of the ¢, -fuzzy convergence
at the pomt x and at the ordinary subset in the space. We will denote by
characterized FR, and Fg R,-spaces to the characterized fuzzy R, and
fuzzy ¢, ,R,-spaces for shorts, respectively.

Let a fuzzy topological space (X,7) be fixed and ¢,,¢, € O(LX o
Then the characterized fuzzy space (X,gou.int) is said to be:

(1) Characterized FR,-space (resp. Characterized FR,-space), if for
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all xeX, Fg ,C (X) such that x T F (resp. F,F, €p,C (X) such that
F N E,= ), the infimum N, () A ./I/%2 (F) (resp. /Vm (E)a /’/M(Fz))
does not exists. The related fuzzy topological space (X,7) is said to be

Fo ,R,-space (resp. Fg ,R,-space) if for all xEX (resp. F € ¢ ,.C (X))

and M € ZX such that /”Wx (resp. -WTZITF ) we

have ¢1’2'C|MWX (resp. ¢’1,2'CIMWF)'

(2) Characterized FRZ%- space if for all x€X, FEg,,C (X) such that
x T'F, there exists an ¢y, -fuzzy continuous mapping f: (X,¢, ,.int) >
(I,y, ,int) such that f(x)= 1 and f(¥)=0 for all yEF. The related

fuzzy topological space (X,7) is said to be F'¢,,R,, - space if and only

if (X,¢, ,-int) is characterized FR,, - space.
Characterized fuzzy T, and fuzzy ¢, -T  spaces

The notions of characterized fuzzy T, and fuzzy ¢ ,-T spaces
are investigated and studied by Abd- Allah and by Abd Allah and

1
Al-Khedhairi in [8,9,11] for all s€{0,1,2, 22,3,3 ,4}. These

characterized fuzzy spaces depend only on the usual points and the
operation defined on the class of all fuzzy subsets of X endowed with a
fuzzy topological space (X,7). We will denote by characterized FT, and
Fo, ,-T spaces to the characterized fuzzy T, and fuzzy ¢, ,-T; spaces for
shorts, respectively.

Let a fuzzy topological space (X,7) be fixed and ¢,9, €

: X
[V
Then the characterized fuzzy space (X,¢, ,.int) is said to be:

(1) Characterized FT-space (resp. Characterized FT-space) if for
all x,yEX such that x=y there exist y€EL* and a€ L, such that u (x) <
a<(X,¢,,.inty) (y) holds or (resp. and) there exist p €L*and €L such
that p (y) < 8< (¢, ,-intp) (x) holds. The related fuzzy topological space
(X7) is said to be Fp ,-T, space (resp. Fo -T, space) if for all x,y€X
'/V“’l.z () or (resp.and) ¥y £ ./V(,)l‘2 (x).

(2) Characterized FT,-space if for all x,y€X such that x=y, the
infimum ‘/I/m(x)/\ ./V(M(y) does not exists. The related fuzzy

such that x#y we have X £

topological space (X,7) is said to be Fo, ,-T, space if M Wx Y
implies x=y for all # € ZX and for all x,yeX.

(3) Characterized FT, space if and only 1f it is characterlzed FR,-
space and characterized FT,-space for k € {2, 2 ,3} and g ¢ {3, 3 ,4) -

The related fuzzy topological space (X,7) is sa1d to be Fo, -T. if and only
ifitis Fg ,-R and Fp ,-T..
Proposition 2.4

Let (X,7) be an fuzzy topological space and ¢,,¢, € O(LX - Then

the characterized fuzzy space (X,¢,,.int) is characterized FT -space if
and only if ¢,,.ClX =X for all x€X [8].

Proposition 2.5

If (X,¢, ,-int) is characterized FT-space and ¢, intis finer than v ,.
int, then (X,y, int) is also characterized FT,-space [8].

Proposition 2.6

Let a fuzzy topological space (X,7) be fixed and ¢,,9, € O(LX 0
Then the following are fulfilled [8,22]:

(1) Every characterized FT -space (X,¢,,
space for each i€{2,3,4}.

.int) is characterized FT -

(2) The characterized fuzzy subspace and the characterized
fuzzy product space of a family of characterized FT,-spaces are also
characterized FT,-spaces .

New Relationsbetween Characterized FT, Characterized
FR, and Characterized Fuzzy Proximity Spaces

In this section we are going to introduce and study the relations
between the characterized FT -spaces, the characterized FR,-spaces
and the characterized fuzzy proximity spaces presented by Abd-Allah
in [12]. We make at first the relation between the farness on fuzzy
sets and the finer relation on fuzzy filters. So, we show some results
for the notion of the ¢ ,-fuzzy neighborhood filter ./V(/,L2 (1) at the
fuzzy subset uELX. The notion of homogeneous fuzzy filter £ which
is defined in (2.1) and the notion of ¢ ,-fuzzy neighborhood filter
_/I/(/)] ,(w)at the fuzzy subset y€EL* are applied at first to study the

relation between the fuzzy proximity & defined by Katsaras in [18] and
our fuzzy separation axioms [8-10]. Moreover, the relations between
characterized fuzzy proximity spaces and the characterized FT -spaces

and characterized FR,-spaces are introduced for s e {0,1,2,3,3 ,4}
and k 6{1,2,25,3}.
Proposition 3.1

Let a fuzzy topological space (X,7) be fixed and ¢,,¢, € 0 N such

that #, 21 x is isotone and idempotent and ¢, is wfip w1th respect to

¢,OF (X). Then the supremum of the ¢ -fuzzy neighborhood filters
./I/ (x ) at x€X which is given by:

=N A, () (3D

0< ((x)
for all yELX is a fuzzy filter on X called a ¢ ,~fuzzy neighborhood filter
at y.
Proof: Fix an a€L,
0,21, , we have
L

A, @ =

then because of (2.4) and the condition

AN N, 0@ = N (gint@)y) < N @) =a

0<u(y)

and

(D = A((Plzlntl)(y)‘ l(y)‘1

Thus, condition (F)is fulfilled. To prove condition (FZ), let p,n€ELX,
then because of Proposition 2.4 and (2.4) we have

N, WA = /N @int(pAm(y)
= N (@t p) ) A AN (9 int)(v)
A, ().

‘/V¢1,z (40) is a fuzzy filter on X. Since (¢, 2Ant)(x) < p(x)
holds for all x€X and p€LY, then ¥, o, ,(1)(p) < f(p) holds for all

pEELX, Thus, A S'/V‘M (#) and therefore./l/,plz(y) fulfills condition
(N)). For condition (N,), let p,yEL* such that p<#. Because of

=, (1)(p) A

Hence,

Proposition 2.4, we have ¢, ,.intp < ¢, ,.int77 holds and which implies
that 7\ (¢,intp)(y) < /\ ((DI,Z'intn)(y) holds for all yeX. Hence

0<u(y)
N, (p) <A, (u)(n)

Since for any y€X we have

and therefore condition (N,) is fulfilled.
Ny /(\‘,)((/’1,2-111'[,0)(}’) represents

0<u(y)
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the mapping ¢, ,int p. Then from Proposition 2.4 we have

N, W@ pintp) = /N @ ,.int(g,intp)x) = /N (@y,dntp)(x),
and then (,U)(

NV N ppintp(n) = A (1)(p)
for all y€X and pELX. Thus, condition (N3) is also fulfilled and
therefore ‘/le , (40) fulfilled the conditions (N)) to (N,) of the ¢, ,~fuzzy
neighborhoo& filters.

Not that in Bayoumi et al. [15], the supremum of the empty set of
the fuzzy filters is the finest fuzzy filter. This means #,  (0) < i for
all uELX. Because of (2.4) the equations (2.1) and (2.2) can be written
as in the following:

ap)= I\ P (3.2)
A, (w(p)= </y\u)/Vﬁ,2 (P = </#\m(¢1,2~intp)(X) , (3.3)

for all p€L*. Here a useful remark is given

Remark 3.1: The homogeneous fuzzy filter X at the ordinary point
xis nothing that a homogeneous fuzzy filter X at the fuzzy point x , that
is, X , =X for all x€X and «EL . Moreover, the ¢, ,~fuzzy nelghborhood
filter /V ,(x) atxisitselfthe ¢, ,~fuzzy ne1ghborhood filter ./V ,(x,)
atx.

The ¢, ~fuzzy neighborhood filter /V ,(4) at the fuzzy subset
UEL* and the homogeneous fuzzy ﬁlter i fulfill the following
properties.

Lemma 3.1

Let (X,7) be a fuzzy topological space and ¢1,9, € o Then for

Xy
all u,p€L* the following properties are fulfilled: v
(1) asp implies

. ‘/’/(,;1)2 (P)< i and ./V(/,l~2 (n) < p implies
N, (P < i

(2) u< implies /Vm (W) < /Vm (»).

&) A, (uvp)y=H, ()~ H, (p)-
(4) A, , (1) < p implies y <p.

) N i (4) < p implies there is an #EL* such that
and ./I/m n <p.

A, <0

Proof:Let £ < p .From condition (N1)wehave £ < '/V(/’l,z (p) holds

. .
oI\ 10)Z AN (9 int)(v)
</,\Y '7(x)SO<{’,\(),)(¢71,2-intf7)(y) holds also. Thus,

A sAH, (pHa) and
./V(M(y)slo, then from (N1) we have #<p£ which implies

and therefore for all #yEL* we have

holds. Hence,

./V(PL2 (p') < fi'are hold. Similarly, if

22

"< ;. Thus, (1) is fulfilled. Si <p impli < fi
_/Vm(p)g'u us, (1) is fulfilled. Since y < p implies y (x) <p (x) for

all xX, then
A (@, ntr)(x) = /\ ((Plzmtfl)(x)

0<p(x)

Hence, ‘/V(/’l R (1)) = A, (p)[) holds for all yELX and therefore

22

'/V%,z () < ‘/’/m (p) holds. Hence, (2) is fulfilled.

Since y, ps<py U p, then from (2) we have

Ny~ A, (p)<H, (uvp). Now, let n€LX then

‘Plz

(A, AN, (P)) = N/ (W (k) A, (P)ES))

kyaky<

=V ( VAN (pI.Z'intkl(x)/\ VAN ¢’1,2-intk2(y))

kynky<n 0<pu(x) 0<p(y)

SV A Odnt(h, Aky)(z)

kynkoy<n 0<(uvp)(z)

< N @intnG) =, (uv p)a).

0<(uvp)z)

Hence, ./le LA ‘/le ,(p)= ‘/le (v p) holds and therefore

(3) is fulfilled. To prove (4), let ‘/le (W<p holds. Because of
2
(2.1), (3.1) and (N1), we have ,L'té./lfm(y) and then £ < p holds.
Hence, Proposition 2.1 implies g < p. Thus, (4) is fulfilled. Finally,
let -/’/4012(#)3/.7. Then O/\ (,ntA)(x) = A\ A(») holds for all
s <u(x) 0<p(y)

AEL*. Hence, there is n€L* such that

N (gol ,AntA)(x) > /\ /1(2 )2 /\ (§0| 2 intd)(z) 2 /\ /1()})

0<p(x

This means there is #EL* such that ./I/m(,u)(l) >7(A) and
N, ,(1)(2) 2 p(2) are hold for all AELY. Thus, A, (1)<7 and
‘/I/(/d , (17) < p are also hold. Consequently, (5) is fulfilled.

In the characterized fuzzy space (X,¢, ,.int), the fuzzy proximity
will be identified with the finer relation on the fuzzy filters, specially
with the finer relation on the ¢ ,-fuzzy neighborhood filters. This
shown in the following proposition.

Proposition 3.2

Let (X,7) be a fuzzy topological space and ¢;,®, €0 Then the

binary relation 6 on L* which is defined by: o
u 8 pifandonlyif A, (p) <4,
for all y,p€LY is fuzzy prc;ximity on X.
Proof: Let y,pEL" such that ﬂgp , then /V(M (p) < ft' . Because of

(1) in Lemma 3.1, we have ./V(/,l R ()< p' and therefore p& u . Hence,
condition (P1) is fulfilled. '

Since N, (u) <A, (uvp) and A (p)<H, (uvp) are
hold for all y,p€LX, then ./I/m (uv p) <n' implies ./VQ)L2 (u)<7n' and
‘/V<P1 , (p) <7’ are hold for all nEL*. This means 7 S(uv p) implies
n &y and 7.5 p . Conversely,let 76 4 and 17 6 p for all u,p,nELY,
then ‘/Vq,lw2 (0)<7' and '/’/4’1,2 (P) <17 are hold. Hence, (3) in Lemma
./V{/)L2 (uvp)= ‘/’/‘/‘1,2 (n) /\./V{/)L2 (p)<71" holds and
therefore 17 5 (uv p) . Consequently, (P2) is fulfilled. To prove (P3),

3.1 implies

since A, | (0) < /7" holds for all uEELX. Then, 150 for all yuELX.

Hence, 4=0 or p=0 implies # S p for all p.nELX. Thus, (P3) is
fulfilled.
Let w,pELX such that u & p, then ./V(/)]Z(p)S[l'. Because of

(1) and (4) in Lemma 3.1, we have ./le . (1)< p' and therefore p <
p', that is, (P4) is fulfilled. Finally, let 4,p€LX such that & p, then
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,/le)2 (p) £ 4" which implies ‘/’/‘/’1,2 (1)< P Because of (5) in Lemma
3.1, there is an #ELX such that /Vm (1)<7 and ‘/fo’l,z (m<p" are
hold. Hence, ‘/Vm(n') <4 and -/V(,,l’z (P)<7" are also hold, that is,

udn' and 17 8 p. Thus, (P5) holds and consequently, § is fuzzy
proximity on X.

If a fuzzy topological space (X,7) be fixed and #>%2 € 0( ¥ - Then
each fuzzy proximity § on X is associated a set of all ¢ -open fuzzy
subsets of X with respect to § denoted by ¢ ,OF (X),. In this case the
triple (X, ,OF (X), ) as will as (X,¢, ,.int)) is said to be characterized
fuzzy proximity space. The related ¢ -interior and ¢ ,-closure
operators ¢, .int;and ¢ ,.cl; are given by:

@ intyu=\ p and ¢ ,clju= /N p, (3.5)

Iy 2y

respectively, for all y€L*. Consider the characterized fuzzy proximity
space (X,g,,.inty) be fixed and y€L%, then y is said to be ¢, ,6-fuzzy

neighborhood for the point x€X if and only if x, 5 &' . Moreover, the

mapping / 1 (X ,¢,,.int;) = ¢,y ,.int .) s said to be ¢ v, ,6-fuzzy

continuous, provided 77 S'p implies (770f) S (pof ) forall n,p ELY.
In the following we will show that the characterized fuzzy proximity

space (X, ,.inty) is characterized FT-space as in sense of [8] if and
only if § is separated.

Proposition 3.3

Let (X,7) be a fuzzy topological space, ¢ ¢, € _, and isafuzzy
proximity on X. Then the characterized fuzzy proximity space (X,¢, ,.
int,) is characterized FT-space if and only if § is separated.

Proof: Let (X,(plyz.inta) is characterized FT -space and let x,y€X
such that x#y. Then x £ ‘/V(m 57 (¥) and therefore there is y€L* such
that ¢ .int, 4 (y) >u (x). Because of (3.4), we have #\({pp(y )> p(x)
and hence y (x) > p (y) holds for all pL* with HOp , that is, p (x) >p
(») holds for all pe€LX with ./V;2 (p)< 1. Choose g =x/ and "0,
then because of Remark 3.1, we get ‘/ti (y,) £x/ . Using Proposition

3.2 we get x,0y, and therefore xag Y5 holds for all a,B€L . Thus, § is
separated.

Conversely, let § is separated fuzzy proximity and let x,y€X such
that x#y. Then, x,5y, and because of Proposition 3.2 and Remark 3.1,
we have ‘/V@i (y)<x'. Therefore, @,int;u(y)= Qﬂ(z) holds for
all uELX. Consider, 1 =x, we get @,.int;x[(¥)=1 and x/(x)=0.
Hence, there exists 42=2x| € L* such that ¢ .int,u (y) = 1> u (x), that
is, X X ./V;Z (v) and therefore (X,¢,,-inty) is characterized FT,-space.

In the following proposition, the | ,-closure of the fuzzy subsets in
the characterized fuzzy space (X,¢, ,.int,) are equivalent with the fuzzy
subsets by the fuzzy proximity § on X.

Proposition 3.4

Let (X,7) be a fuzzy topological space, @,®, € o such that

(8]
@21 and 8 is a fuzzy proximity on X. Then, udp if and only if
@,cly 1o g, el p forally,peLX.

Proof: Let y, p EL¥ such that ¢, ,.cl; u 5 ¢y, ¢l; p ,then Proposition

3.2implies A, (¢,,cl;p)<(¢,,clsp)' . Since @, =1 and A, , ()
is isotone operator, then y < ¢ ,.cl,pand A, (p) <A, (p,.cl;p)

are hold for all y,p€L*. Hence, ‘/V@1 R (p) < j' and therefore 1 & p .

Conversely, Let u, p €L* such that 4 &p. Because of

Proposition 3.2 we have RN Since ¢, 21, and

A7 () is isotone operator, then ' <@ ,cl;u" holds for

all p'el* and therefore ,bs./lf':2 (y’)s./’/;: (p,cly4') . From

Lemma 3.1, we have 4 (¢ ,cl;u)</p' and then Pg¢’1,2-C15ﬂ
. Therefore, @;,-cl;u< N ,: , (P") holds. Using Lemma 3.1 we get
el u <M (PVSH? (0,6l,0) . Thus, N (¢, clsp)< (9, ¢l 1) and
therefore ¢, .cl;u 3¢, clyp forall y,peLX.

In the following proposition, we show that the associated
characterized fuzzy proximity space (X,, ,.int,) is characterized FR,-
space if the related fuzzy topological space (X,7) is Fg, ,-R, space.
Proposition 3.5

Let (X,7) be a fuzzy topological space, ¢1,¢; € 0( Koo and isan fuzzy

proximity on X. Then the associated characterized fuzzy proximity
space (X,gol,z.ints) is characterized FR -space if (X,7) is Fo, ,-R, space.

Proof: Let xX and u €L* with /7,

o, (X) < /1 Because of Proposition

3.2, we have 4’ p and from (P5), there is p€LX such that u' 5 p
and p' S x,. Therefore Proposition 3.4 implies @,y ut' s ¢ ,cls p
and hence ./V;2 (@1,¢l; p) < (@,.cly ) and ./V(;2 (x)< p are hold.
Hence, '/V(M (x)< gt implies there is pELX such that ./V@‘)T2 x)<p
and ./V;Z (@,clp) < i are hold. Since (X, ,.int) is Fg ,-R, space,

then from Theorem 3.1 in Abd-Allah [12], we have (X,¢ ,int) is
characterized FR,-space.

The binary relation << on L* is said to be fuzzy topogeneous order
on X [23], if the following conditions are fulfilled:

(1) @ < @ for all w€{0,1}.
(2) If 4 <n, then p < n holds for all y, ELX.
(3) If < u Ky <1, then y, Ky, holds.

(4) If | K, and u, K1, then py Au, <n, Ay, and pu Vu, <Kn, Vn, are
hold for all yi,quLX, where i,j€{1,2}.

The fuzzy topogeneous order « is said to be fuzzy topogeneous
structure if it fulfilled the condition:

(5) If <1, then there is 0€L* such that << and o <<# are hold for
all y,neL”.

The fuzzy topogeneous structure « is said to be fuzzy topogenous
complementarily symmetric if it fulfilled the condition:

(6) If <<, then 1" <<y holds for all y,y€L*.

As shown in Katsaras [23], every fuzzy topogeneous structure <«
is identify with the mapping N: L* > P (L¥) such that #EN () if and
only if 4 <<# holds for all y,nEL*. The fuzzy topogeneous structures are
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classified by these mappings. As is easily seen, each fuzzy topogeneous
order N can be associated a fuzzy pre topology int, on a set X by

defining int , x= V 75 forall y €L In case of N is fuzzy topogeneous
ueN (1)

structure, int, is interior operator for fuzzy topology 7, on X associated
toN. Obviously, there is an identification between the fuzzy proximity §
and the complementarily symmetric fuzzy topogenous structure < on
the same set X given by:

p<n o udn> (3.5)

for all y,n€ELX. If {<,}"_, isa sequence of fuzzy topogenous structure
on the set X and {<,}.=1 is a sequence of fuzzy topogenous structure on
I, then the fuzzy real function f: X - I, is said to be associated with the
sequence {<,},_, ifand onlyif # < p implies that (7°./) <., (p°f)

holds for all n,pe 'L and n€Z*, where Z* is the set of all positive
integer numbers.

Remark 3.2

Given that {« 1 ~and {<1” are two
complementarily symmetric fuzzy topogenous structures <« and < on
X and I, respectively. If § and & are two fuzzy proximities on X and
I, identified with § and &' by the equation (3.5), then the associated
fuzzy real function f :(X,q,.int;)—> ¥ 2P0t ) with the
complementarily symmetric fuzzy topogenous structures < is ¢ v, ,6-
fuzzy continuous, because from (3.5) we get that 55 p implies

(nof)(pof) forall g, peL™.

Lemma 3.2

sequence of

Consider < for n {0,1,...,} are complementarily symmetric fuzzy
topogenous structures on a set X. Then, for each F,GEP (X) such that
X: <, X there exists a fuzzy real function f: X - I, associated with the

sequence {<,}7_, for which f(x)=0 for all xF and f(») =1 forall
yG' [23].

Because of equation (3.5), Remark 3.2 and Lemma 3.2, we can
easily deduce the following proposition.

Proposition 3.6

Let (X,¢, ,.int,) is a characterized fuzzy proximity space and F,GEP
(X) such that y, gy, . If @ is the family of all ,y, J-fuzzy continuous
mappings / : (X ,@,,.int;) > (I, ,p,,.int .) for which x €X implies
0< f(x)<1-theny and x, are ®-separable.

Proof: Let < be a complementarily symmetric fuzzy topogenous
structure identified with 8. Because of (3.5), y,Jy, implies that. Since
f€ ®is ¢ v, ,0-fuzzy continuous, then because of Remark 3.2, we have
that fis associated with «. Hence, Lemma 3.2 implies that y,and y are
separated by fand therefore y, and x_ are ®-separable.

Proposition 3.7
Let (X,y,,int) and (¥ W,nt L) are two characterized fuzzy

proximity spaces. If the mapping f : (X ,¢,,int;) > ¥ ,«//lﬁz.intb‘*) is

1,V,,0-fuzzy continuous, then the mapping f: (X,¢,,.int) > (X,y, ,.int)
is (plyztplyz—fuzzy continuous.

Proof: Similar to the proof of Proposition 11.2 in Géhler [13].

In the following we are going to show an important relation

between the associated characterized fuzzy proximity space and the
characterized FR,-space.

Proposition 3.8

Let (X,7) be a fuzzy topological space and ¢,,9, € 0( P such that
0,2 ILX is isotone and ¢, is wfip with respect to ¢ OF (X), where L is
complete chain. If (X,7) is a fuzzy normal topological space, then the
binary relation 6 on X which is defined by:

H gp = ‘/’/7’1,2 ((p|,2~Cltu) < (¢|,2~Cip), > (2'6)

for all y,p€L* is a fuzzy proximity on X and (X,0) is a fuzzy proximity
space. On other hand if (X,0) is a fuzzy proximity space with §
fulfills (3.6), then the associated characterized fuzzy proximity space
(X,t//l‘z,inta) is characterized FR_-space.

Proof: Let (X,7) is fuzzy normal topological space and &
a binary relation on X defined by (3.6). Then, u Jp implies
./I/(/,L2 (gol,z.cly)ﬁ((p]’z.cip)’ and from Lemma 3.1 part (1) we get
./I/(/,L2 (gol,z.clp)ﬁ((p]’z.ciy)’ and then pJ 4. Hence, condition (P1)
is fulfilled. For showing condition (P2), let (,\ p)5p for a fixed
fuzzy subsets p,p,yELY. Then, ./Vq,lyz((pl’z.cl(yvp)) < (¢ ,cln).
Since L is complete chain, ¢, 21[_)( is isotone and ¢, is wfip with
respect to ¢ OF(X), then ¢,cl(uvp)=e¢,cluve,clp and
therefore /4, | (procluv @, .0lp) < (¢,.cln) . Because of Lemma 3.1 part
(3), we have ./V(M((pl_z.cly)S((p,_z.cir])' and ‘/le_z (¢]’2.clp)£(¢l,24ciq)’
are hold and therefore 87 and pdn. Thus, (Vv pP)Sn
implies,ugﬂ and pdn. On the other hand let xd7 and
p6n. Then from Lemma 3.1 we have tha the inequalities
Ay, (@,clp) < (¢,,.clp) and A,, (¢,,€1p) < (¢,,.clp) are hold and
N @ocluy p)) =N, (@) AN, (9,€10) < (9,.l)'s
thatis, #0n and pon imply (uv p)on. Hence, (P2) is fulfilled.

therefore

Now, let 4, p €L* such that =0 or p=0. Since A, (0) is
the finest fuzzy filter on X and from the fact (0,12.016=6, we get
./V(PL2 (0)= ./th2 (¢,,.c10)<(¢,,.clp)’ holds for all p€EL*. Thus, 0 & p
for all pELY. Since u=0 or p=0, then we have uJp, that is,
(P3) is also fulfilled. Since us p implies ./V(,,L2 (p,clp) < (galyz.cip)'
which means by the inequality ((plyz.ci ) < '/V%,z (p,-cly)  that
(@,-clu) <(¢,,.clp)’ . Because of Proposition 2.1 and the fact that ¢ ,.
cl is hull operator we get 4 < @,,.clu<(9,,.clp)' <p’'. Thus, (P4) is
fulfilled. Let y, p €EL* such that # 3 p, then -/V(,L2 (p,.cly) < ((pl,z.Cip)' .
Consider, F =8,(¢, ,.clu) ,hence FEg ,C(X)and therefore -/V{,)l_2 (F)<
(9, .clp)’ holds. Since (X, 7 ) is characterized fuzz normal space, then
from Theorem 3.2 in Abd-Allah [12], there exists ' €L* with arbitrary
choice such that ./V(/,l’2 (F)<n' and -/V(,,L2 (p,-cl) < (p,.clp) are
hold. Therefore, there exists €L* such that ./I/ﬂ2 (@, clp) < (o, ,.cln)
and A, (¢,,¢11) < (¢, ,.cin) » which means that x# 67 and 7' 6 p.
Hence, (P5) is also fulfilled. Consequently, § is a fuzzy proximity on X.

Conversely, let F, F, € ¢ ,C(X) such that F, N F,=@. Then, F, c F,

and therefore ;'(Fl < X = X, - Hence because of Lemma 3.1 part (1) we
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have ./Va: (2r,) < 2, . Since F, F, €9, ,C(X), then ./ti (Pra0l; 25 =
A/va) ()< Ik . From (P5), there
exists p€L¥such that ./V:.z (;(F2 )= A7 (F)<pand ,/I/(:.Z (p)< Z;r, =F
are hold. Because of Lemma 3.1 part (1), we have ‘/qui (F))< p' .Hence,
N FY) AN (F))= /() A7) holds for all. Consider
N=Xr V%

=(¢,cl; 7;,) and therefore Zr, 5 Zr,

=p and u=(z, vx) =p foral xeF \F,, then
we get sup(yA) = 0 and ./V;2 (FD() A ‘/ti (F,)(n7) 20 . Hence, there
exist u,7ELY such that ./V{:2 (F) () A ./V;2 (F,)(17) = sup(unn), that
is, the infimum ‘/V: . (Fl)/\‘/V; . (F},) does not exists. Consequently,
(X,y, ,int) is characterized FR,-space.

In the following we are going to show an important relation
between the associated characterized fuzzy proximity space (X.y,,.
int,) by the fuzzy proximity & defined by (3.6) and the associated
characterized fuzzy space (X, ,.int) that introduced form the fuzzy
normal topological space (X,7).

Proposition 3.9

Let (X,7) is a fuzzy normal topological space and ¢,¢; € 0( P
such that ¢ 21 x is isotone and ¢, is wfip with respect to ¢, OF (X)
If § is the fuzzy proximity on X defined by (3.6) and L is a complete
chain, then (X, ,.int ) is finer than (X,¢, ,.int). Moreover, (X,¢, ,.int )
= (X,¢,,.int,) ifand only if (X,g,,.int ) is characterlzed FR,-space.

Proof: Let (X,7) is fuzzy normal topological space and y is ¢, ,0-

fuzzy neighborhood for the point xX, then x,J ' and because

of (3.6), we ‘/V(pu ((pl,z'drx )< (¢1,2-Cir H'
x < '/’/‘/’1,2 x)< '/’/‘/’1,2 (@1,2'(:11 =

Because of Proposition 2.1,

have Therefore,

N, (@2l () < (¢l 1Y < fu.
we get x, <(¢,.cl u)<i and
(p-cl, 1) € ¢ ,0F (X). Then, y is

therefore the family (¢, OF (X)), is coarser than the family (¢, OF (X)),
that is, (X,(pl)z.intr) is finer than (X"Pl,z'ints)'

\,-fuzzy neighborhood of x and

Now, let (X, ¢, int) s characterized ~FR,-space, ./V and

/V ° (X) denote for the ¢ ,-fuzzy neighborhood filters at x in
the characterized fuzzy space (X, ¢,,int) and in the associated

characterized fuzzy proximity space (X,¢ ,int), respectively.
Then, (X,¢1,2.intf) is characterized FR, and FR -Space. Therefore,

(¢,,0F (X)), < (9,,0F (X))
# x in X. Hence, -/V (x)<./V (x) holds for all x€X and then

./I/(’ x)> ./V ,(x) Xy holds for all y # x in X. Because of Lemma
2. 1 we have that /V" (x) £y holds for all y # x in X and therefore
(X,p, -inty) is charactenzed FT-space. Because of Proposition 2.4
and Lemma 2.2, we get ¢, ,.cl (xl) x, for all x€X and therefore x €
(¢,,CF (X)), for all xX. Consider y is the ¢, ,-fuzzy neighborhood of
x in (X,,,int), then 2’ < x| and since X 1 €(@,0F (X))s , then x| isa
,-fuzzy neighborhood for every y€X such that y, < 4'. Thus, u' Sx,
and hence p is ¢, ,0-fuzzy nelghborhood of x in (X,¢,,int). Thus, (¢, ,OF
(X)) € (¢,,OF (X))é, thatis, A7 (x)< A, (x) holds for all x€X and
therefore (X,¢, ,.int)) is finer than X9, 1nt) Consequently, (X,¢, ,
int ) is characterlzed FR,-space implies that (X,¢, .int )= (X, ¢, ,int 5

and N, ()< (x) holds for all y

Conversely, let (X,(pu.intr) =
neighborhood of x in (X,¢, ,.int ). Then, u € (¢, ,OF (X)), and x, _u, this

(X,, »int), x€X and p is ¢, ,-fuzzy

means that (¢,,.cl.x,) <A (9,.cl.x)<(@,.cl, #') < f1. Because
1 £ # and therefore ¢,,.cl x, <x,
holds for all x€X. Thus, ¢,,-cl, x, =x, for all x€X. Hence, Proposition
2.4 implies that, (X,¢,,.int) is characterized FR -space. Because
of Proposition 3.7, (X,¢, ,inty) is characterized FR,-space and the
hypothesis that (X,¢ ,.int_ ) = (X, ,.int,), implies that (X,¢ ,.int ) is
characterized FR,-space. Consequently, (X, ,int) is characterized
FR-space.

of Proposition 2.1, we get ¢,,-cl.x

In the following we are going to introduce some important
relations joining our characterized FR,, - spaces, characterized £7 21"

spaces and the associated characterized fuzzy proximity spaces.
Proposition 3.10

Let (X,7) be an fuzzy topological space and ¢,9, € 0( X LIfS
is an fuzzy proximity on X, then the associated charactenzed fuzzy
proximity space (X,¢, ,.int,) is characterized FR,, - space.

Proof: Let xX and Fg ,C (X) such that xIF. Since Xr is

X | ,0-fuzzy
neighborhood of x, then x,0 y, .

Because of Proposition 3.2, we
get that x, and x; are ®-separated by the ¢,y ,8-fuzzy continuous

mapping /1 (X, int;) > (I,.y,,int ) for which 0< f(x)<T,

thatis, f(x)=1 and f(y)=1 for all yEF. Consequently, (X9, ,inty)
is characterized fR,, - space.

Corollary 3.1

Let (X,7) be a fuzzy topological space, ¢,¢, €0 X, and & is
a fuzzy proximity on X. Then the associated characterized fuzzy
proximity space (X, ,.int,) is characterized FT 21” space.

Proof : Immediately from Propositions 2.4 and 3.10.

Now, we introduce an example of an fuzzy proximity § on a set
X and show that it is induces an associated characterized FT - space
compatible with the related characterized fuzzy space.

Example 3.1

Let L = {0, o) 1}, X={xytand ={1,0,x,,y,} isa fuzzy topology

on X. Choose ¢, =int,, ¢, = clT, y, = int, and v, = cl. Hence, x # y
and there is only two cases, the first is xI F = {y}E(puC(X) and the
second is y T F = {x} €¢,,C (X). We shall consider the first case and
the second case is similar. Consider the mapping f: (X, ,.int ) >
Iy, -int) defined by £(x)=T and f(y)=0, then fis ,y, ,-fuzzy
continuous and therefore (X,¢, ,.int,) is characterized FR 21 space and
obviously (X>(P1,2~intf) is also characterized FR -space, that is, (X,(pu.intr ) is
characterized T 31~ space. Now, consider 4 is a binary relation on L*
defied as follows:

uoén <3 @, ,- fuzzy continuous mapping f: (X,¢ .int ) >
Iy, ,int) 5 (x)=1forallx e X

with x, < g andf (y)=0forall y, <7,
for all 4,nELY. Hence obviously, § is a fuzzy proximity on X and (X,¢, ,.
int)) = (X,¢,, int,), that is, the associated characterized fuzzy proximity
space (X, ,.int,) with § is characterized FT 31~ space and compatible
with (X,¢ ,int ). i
Some Relations between Characterized FT, and
Characterized Fuzzy Compact Spaces

The notion of ¢ ,-fuzzy compactness of the fuzzy filters and of
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the fuzzy topological spaces are introduced by Abd-Allah in [7] by
means of the ¢ ,-fuzzy convergence in the characterized fuzzy spaces.
Moreover, the fuzzy compactness in the characterized fuzzy spaces is
also introduced by means of the ¢, -fuzzy compactness of the fuzzy
filters and therefore it will be suitable to study here the relations
between the characterized fuzzy compact spaces and some of our
classes of separation axioms in the characterized fuzzy spaces.

Let (X,7) be an fuzzy topological space, F € X and #;,%, € 0( Koo Then
x€X is said to be ¢, ,-adherence point for the fuzzy filter # on X [7],
if the infimum /\./I/ ,(x) exists for all ¢ -fuzzy neighborhood
filters -/V (X) at x€X. As shown in Abd-Allah [7], the point x€X

is said to be ¢,,-adherence point for the fuzzy filter A on X if and

only if there exists an fuzzy filter € Z X finer than M and A b

that is, & < M and .7(S./V (x) are hold for some HEF X. The

subset F of X is said to be ¢, -fuzzy closed with respect to ¢ ,int if
M < ./V ,(x) implies xEF for some MEF F. The subset F is said to

beo, , fuzzy compact (7], if every fuzzy filter on F has a finer ¢, ~fuzzy
converging filter, that is, every fuzzy filter on Fhas ¢, , -adherence point
in F. Moreover, the fuzzy topological space (X,7) is sa1d to be ¢, ,-fuzzy
compact if X is ¢, -fuzzy compact. More generally, the characterlzed
fuzzy space (X,¢, . 1nt) is said to be fuzzy compact space if the related
fuzzy topological space (X,7) is ¢, ,-fuzzy compact.

At first, in the following we shall benefit from these facts.
Consider the fuzzy unit interval topological space (I,,3) be given and
Yis¥s €0y, 5. Then:

(1) The usual topological space (I,T) and the ordinary characterized
usual space (/,¥,,.int;, ) on the closed unite interval I = [0,1] are v ,-
compact T, space and characterized compact T,-space, respectively in
the classical sense.

(2) The closed unite interval I is identified with the fuzzy number
[0,1]~ in Géahler [24] defined by [0,1]" («) = 0 for all « € I and [0,1]" («)
=0forallall

(3) The characterized fuzzy unite space (I,,y,,.int,) is up to an

identification the characterized usual space .9, € 0( P in the classical
sense.

In the following proposition, we show that every ¢, -fuzzy compact
subset in the characterized FT,-space (X,¢, ,.int) is ¢ ,-fuzzy closed
with respect to the ¢ ,-interior operator ¢, ,.int .

Proposition 4.1

Let a fuzzy topological space (X,7) be fixed and @9, € O(LX 0"
Then every ¢ ,-fuzzy compact subset of the characterized FT,-space is
,-closed.

Proof: Let (X,gol,z.intT) is characterized FT,-space and F is (pu—fuzzy
compact subset of X. Then, for all # € #F, there exists & € % F such

that £ < Mand K < ./I/(pI . (x) for some x€EF. Since X € #,F < F X
and (X,p, ,.int) is characterized FT,-space, then A < -/V(,,L2 (x) and
KX < -/V(,,l ,(») imply that x = y. Therefore, y€F for some K € F

Hence, Fis ¢, ,-fuzzy closed with respect to ,.int .
Proposition 4.2
Let (I,3) be a fuzzy unit interval topological space and

V¥, EO(LI . Then the characterized fuzzy unit interval space

L 3)

(I, ,-int)) is characterized fuzzy compact FT,-space.

Proof: Let (1, ,.int; ) be an ordinary characterized usual space.
Then, (/,¥,,.int; ) is characterized compact space in the classical
sense, that is, every filter on I has y ,-adherence point. Consider the
mapping f*: (1, ,.int; ) = (I, inty) defined by: f(a)=a for
all a€l, then it is easily to seen that fis v,y ,-fuzzy homeomorphism
between (/,y,,.int, ) and (I,y,,int). Therefore, (I,y,,int) is
characterized fuzzy compact space. Since (,T)) is y,,T,-space, then
Ly, ydnty ) is characterized FT,-space and therefore by using the
same |,V ,-fuzzy homeomorphism, we have for all a, Bel, such
that g =, the infimum -/V,/,L2 @ JV.,,LZ (B) does not exists.

Consequently, (I,y,,int) is characterized FT,-space and therefore
(I, ,-int))is characterized fuzzy compact FT,-space.

Now, we are going to prove an important relation between the
characterized compact FT,-spaces and the characterized FT,-spaces.
For this reason at first, we give a new property for the characterized
FT,-spaces by using the ¢, ,-fuzzy neighborhood filters for the fuzzy
subsets.

Proposition 4.3

Let (X,7) be n fuzzy topological space and @;,%; € O(LX,T)' Then
every disjoint ¢ ,-fuzzy compact subsets F, and F, of in the characterized
FT,-space (X,¢, ,.int ) have two disjoint ¢, ,-fuzzy neighborhood filters
'/V(M (£)) and '/V‘Pl.z (F,) for which F and F, are separated by them.

Proof: Let F, and F, are two ¢ ,-fuzzy compact subsets of the
characterized FT,-space (X,¢, ,int) such that F, N F,= @. Then, for all
M€ F F there exists H €F, F such that & < # and .7( < ./VqJl R (x;)
for some xF, where i€{1,2}. Since #F, < #X for all i€{1,2}, then
we can say that &~ < ./I/m (x,)< ./I/«)L2 (F,) and therefore there is
j(:](l A ](2 efX such that A < ./Vm(xl) for some x, F,. Since
(X,(p]yz.intr) is characterized FT,-space, thenvxl =X, which contradicts
F N F, = @. Hence, for every £ €% X we get ﬂﬁ/’f ,(F) or
£ f—/’/ , (F) which means that the infimum ./V ,(F)A ./V ,(F)
does not ex1sts and therefore F, and F, can be separated by two dlS]OlI’lt

\,-fuzzy neighborhood ﬁlters

Secondly, the notion of the fuzzy compactness for the characterized
fuzzy spaces fulfills the following property which will be also used in
the prove of this important result which given in Proposition 4.4.

Lemma 4.1

Let (X,7) be a fuzzy topological space and ¢,P, € . Then
every ¢ ,-fuzzy closed subset of the characterized fuzzy compact space
(X,9,,int) is ¢ ,-fuzzy compact.

Proof: Let F is ¢ -fuzzy closed subset of the characterized fuzzy
compact space (X, (/lelnt) and let M €% F. Then, M <./V (x)
implies that x€F. Since & F < # X, then MEF X and hence there ex1sts
HeF X such that K < M and ](é'/l/’ﬂ,z (X). Since M € #F and
H < M, then K E.7LF. Thus, for all M €FF we get X < M such that
X < /’/{,)1 ) (x) - Therefore, xEF is ¢ ,-adherence point of J, that is, F

is ¢, -fuzzy compact.
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Proposition 4.4

Let (X,7)be an fuzzy topological space and #-#: €0, x . Then every
characterized fuzzy compact FT,-space (X,¢, ,int) is characterlzed
FT,-space.

Proof: Follows directly from Lemma 4.1 and Proposition 4.3.

One of the application of Proposition 4.4, we have more generally
the following result to the characterized fuzzy unit interval space.

Proposition 4.5

Let (I,3) be an fuzzy unit interval topological space and
V¥, GO(LI

(I,y,,-int)) is characterized FT 317 space.

Ly Then the characterized fuzzy unit interval space

Proof: Because of Proposition 4.2, the characterized fuzzy unit
interval space (I,,y, ,.int) is characterized fuzzy compact FR, -space.
Therefore from Proposition 4.4, we get (I,y,,.int)) is characterized FR-
space. Hence, Proposition 4.6 in Abd-Allah [11] gives us that, (I,y, ,.
int,) is characterized #T 31 space.

The ¢ ,-fuzzy compactness in the characterized fuzzy spaces is
applied to fulfilled the Generalized Tychonoff Theorem [11] and from
(2) in Proposition 2.6, the characterized fuzzy product space of the
characterized FR,-spaces is also characterized FR,-space. Hence, by
means of Propositions 4.2 and 4.4, the following result goes clear.

Proposition 4.6

Let (I,3) be a fuzzy unit interval topological space and
Wy, €0 I
L.

FT,-space and it is characterized FT,-space.

. Then the characterized fuzzy cube is characterized

Proof: Since the characterized fuzzy cube is product of copies of
the characterized fuzzy unit interval space (I, ,.int ;) and by means of
Proposition 4.2, (I,y, ,.int ) is characterized fuzzy compact FT,-space.
Then because of Proposition 2.6, part (3) and Generalized Tychonoft
Theorem in Abd-Allah [11], it follows that, the characterized fuzzy
cube is characterized FTz-space. Moreover, Proposition 5.1, it follows
that the characterized fuzzy cube is characterized FT,-space.

Lemma 4.2
Let (X,7) and (X,0) are two fuzzy topological spaces such that 7
is finer than o If @,,9, € O(LX o YoV EO(LX o and (Xy,,. int) is

characterized fuzzy compact space, then (X,¢, ,.int ) s also characterized
fuzzy compact space.

Proof: Let ./V(pl)2 (x) and -/Vm (x) are the ¢, ,-fuzzy neighborhood

and vy, -fuzzy neighborhood at x with respect to y, ,.int_and y, ,.int
respectively. Since 7 is finer than o, then '/V"’l,z (x)< ‘/’/‘/’1,2 (x) forall
x€X. Because of y, int , is characterized fuzzy compact space, then for
all MEF X, there exists K € & X such that A < Mand KX < -/V (x )
forall x X. Therefore A~ < -/V ,(x) forallx X. Consequently, (X ?,
int ) is characterized fuzzy compact space.

Proposition 4.7

Let (X,7) and (X,0) are two fuzzy topological spaces such that is
finer than @9, €0 and ¥.¥, €0 If (X,t;/u.intg) is

1) oy
characterized fuzzy compact space and (X,¢, ,.int ) is characterized FT,-
space, then (X, ,.int) and (X,y, ,int ) are ¢ ,y, -fuzzy isomorphic.

Proof: Since 7 is finer than o, then ‘Vl,z-intag‘f’l,z-imr- Hence, because
of Proposition 2.5, (X,y, ,.int ) is characterized FT,-space. From Lemma
4.2, we have (X,¢ ,int) is characterized fuzzy compact space. Hence,
we can find the identity mapping id, : (X,¢,,.int) > (X,y, ,int ) which
is bijective ¢ ,y,,-fuzzy continuous and its inverse is ¢ ,y, -fuzzy
continuous, that is, id, is ¢, ¥, ,-fuzzy isomorphism. Consequently,
(X,9,,int) and (X,y, ,int ) are ¢ ,y, -fuzzy isomorphic.

Proposition 4.8

Let (X,7) be a fuzzy topological spaces and @,P, € 0( XKooy Then

every characterized fuzzy compact space (X,¢, ,.int) is characterized

FT,-space if and only if it is characterized FT' 31 space.

Proof: Let (X,p,,.int) is characterized fuzzy compact FT,-space.
Because of Proposition 4.4 we have (X,p, ,int ) is charactenzed FT,-
space and therefor Proposition 4.6 in Abd- Allah S [11], implies that

(X,p,,int) is characterized FT;,-space. Conversely, let (X,p, .int )
is characterized T, - space, then because of Proposition 3.2 in Abd-

Allah [11] and part (1) of Proposition 2.6, it follows that (X,¢, ,.int) is
characterized fuzzy compact FT,-space.

From Lemma 4.2 and Corollary 3.3 in [22], we can prove the
following result.

Proposition 4.9

Let (X,7) and (X,0) are two fuzzy topological spaces such that 7
is finer than o, @9, € O(LX,T) and V,.¥» EO(LX o If (X,(pl‘z.intT) is
characterized fuzzy compact space and (X,y,,.nt) is characterized
FT,, - space, then (X,¢ ,int) and (Xy ,.int) are ¢ vy, -fuzzy
isomorphic.

Proof: Follows directly from Corollary 3.3 in [22] and Lemma 4.2
similar to the proof of Proposition 4.7.

Some Relations Between Characterized FT, Characterized
FR, and Characterized Fuzzy Uniform Spaces

In this section, we are going to investigate and study the relations
between the characterized FT -spaces, the characterized FT,-spaces and
the characterized fuzzy uniform spaces presented in Abd-Allah [12].
For this, we applied the notion of homogeneous fuzzy filter at the point
and at the fuzzy set which is defined by (2.1), the superior principal
fuzzy filter [u] generated by y€L* and the ¢ ,-fuzzy neighborhoods
at the fuzzy set g which is defined by (3.1) in the characterized fuzzy
space (X,¢ ,int). Specially, the relation between the separated fuzzy
uniform spaces, the associated characterized fuzzy uniform F T spaces,
the associated characterized uniform FR 21~ space and the Fo T
space which introduced by Abd-Allah and Abd-Allah et al. in (8, 11]
are investigated for all s € {0,1,3 5}

By the fuzzy relation on the set X, we mean the mapping R : XxX
> L, that is, any fuzzy subset of XxX. For each fuzzy relation R on X,
the inverse R of R is the fuzzy relation on X defined by R (x,y) =
(y,x) for all x,y€X. Let U be a fuzzy filer on XxX. The inverse %' of U
is a fuzzy filter on XxX defined by %! (R) = % (R™") for all RL**, The
composition R, , R, of two fuzzy relations R, and R, on the set X is a
fuzzy relation on X defined by:

(R, R,)(x.7) = M (R, (x.2) AR, (2.,3)
for all x,y€EX. For each pair (x,y) of elements x and y of X x X, the

mapping (x,y) : L* > X defined by: (x,y) (R) =R (x,y) forall R€E X x X
is a homogeneous fuzzy filter on X x X. Let % and ? are fuzzy filers on
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X x X such that (x,) < % and (y,2)- < V hold for some x,y,z€X. Then the
composition ¥, U of ¥and U is a fuzzy filter [13] on X x X defined by:

@ UNR)=, Y, #R)AVR,))

for all R € L,

By the fuzzy uniform structure % on a set X [13], we mean a fuzzy
filter on X x X such that the following axioms are fulfilled:

(U1) (xx) < Uforall x € X.
(U2) U=U"
U3) U, U< U.

The pair (X,%) is called fuzzy uniform space. The fuzzy uniform
structure % [13] on a set X is said to be separated if for all x,y€X with
xly there is R € L¥* such that % (R) = 1 and R (x,y) = 0. In this case
the fuzzy uniform space (X, %) is called separated fuzzy uniform space.
Let % is a fuzzy uniform structure on a set X such that (x,x)< % holds
for all x€X and let M € F X then the mapping #[M]: L* > L which is
defined by:

UM V)= N AR A M)

for all u€L* is a fuzzy filter on X, called the image of M with respect
to the fuzzy uniform structure 2[13], where #,R[#]€ L* such that

R[7I) = V(7). R (v ,x)-

Each fuzzy uniform structure % on the set X is associated a
stratified fuzzy topology 7, on X. Consider ¢;,9, €0+ > then the
set of all ¢, ,-open fuzzy subsets of X related to 7, forms a "base for an
characterlzed stratified fuzzy space on X generated by the ¢, ,-interior
operator with respect tor,, denoted by ¢ ,.int,and (X,p , int, 2 1s the
related stratified characterized fuzzy space. In thls case, (X, ¢, ,-int,) will
be called the associated characterized fuzzy uniform space [12] which is
stratified. The related ¢ ,-interior operator ¢ ,.int, is given by:

(¢, vint 1) (x) = UK () (5.1)

for all x€X and p€L*. The fuzzy set y is said to be ¢ ,U-fuzzy
neighborhood of x€X in the associated characterized fuzzy uniform
space (X, ,int,), provided 2/[x]< . Because of (2.1), (3.1) and
(5.1) we have that

ULs]= A, () and UL = A, (1) (52)

for all x€X and y€L*. In this case ./le , (x)and

“’1 2
-/Va,m (#) are the ¢ -fuzzy
neighborhood filters of the associated characterized fuzzy uniform
space (X,p, ,int,) at x and y, respectively.

Proposition 5.1

Let X be a non-empty set, U is a fuzzy uniform structure on X and
PP, €0 =" Then the fuzzy uniform space (X,U) is separated if and
only if the associated characterized fuzzy uniform space (X,¢, ,.int,) is
characterized FT-space.

Proof: Let (X, %) is separated and let x,y€X such that x # y. Then,
there exists R € L®¥* such that %(R) = 1 and R (x,y) = 0. Consider y =
R[y,] for which

#E)=R[y,)x) =V R(z,x)A¥,(z)=0 and

(@, dnt, ))(y) = [y () = Rw\)/w?l(R) An(y)=1

for all nELX. Hence, there exists yEL* and a€L, such that u (x) < «

S((plyz.intwl,t)(y), that is, (X,(plyz.intu) is characterized FT,-space.
Conversely, let (X,¢, ,.int ) is characterized FT-space and let x = y
in X. Then, there exists y€L* and a€L such that u (x) < & <(¢, ,int,u)
R(”\)/S””(R )An(y)> u(x) holds for all neLX.
Hence, there is REL™X for which R (x,y) = (¢, ,int p)(x), if x=y and

R (x,y) = p (x), if x # y such that R (x,y) = 0 and % (R) = 1. Thus, (X, %)
is separated.

(y). This means that

Corollary 5.1

Let X be a non-empty set, % is a fuzzy uniform structure on X and
P10, €0 - 1hen the fuzzy uniform space (X,%) is separated if
and only if the associated stratified fuzzy topological space (X,7,) is
Fo ,-T, space.

Proof: Immediate from Proposition 5.1 and Theorem 2.1 in Abd-
Allah [8].

Proposition 5.2

Let X be a non-empty set, % is a fuzzy uniform structure on X and
0,0, €0 . Then the fuzzy uniform space (X,%) is separated if

and only if the associated characterized fuzzy uniform space (X, ,.
int,) is characterized FT -space.

Proof: Let (X, %) is separated and let x,y€X such that x # y. Then,
there exists R , R,EL** such that %(R) = 1 and R (x,y) = 0 for all i€{1.2}.

Consider u=R[y,] and #=R[x ], then we have u(x)=R, [yl](x):

VR (z.x) A yi(E)=0 and  7(») = R[x10) = V.(R(z.) A x(2) =

Moreover, (@dnt, 1)(y)= Ulylw= V (%(R ) A p))=1 and

(it 7)(x ) = #[x ](n)=R]XS”(?l(Rz)Ap(x D=1 for all peL*.

Hence, there exists y,7L* and a, 8 L such that y (x) < & < (X, ,.int,u)
(y)and 7 (y) < 8 <(¢,,.int )(x) are hold. Consequently, (X,¢, ,int,)is
characterized FT,-space.

Conversely, let (X,gulyz.int,u) is characterized FT,-space and let x
# y in X. Then, there exists y,y€L* and a,f€ L such that u (x) < «
< Xg, 2.int )(y)and () < f S((plz.int )(x)are hold. This means that
R}{ #R)AP))>pu(x) and , V., NV _(UR)APE) >0 gre

P <

also hold for all p€L*. Hence, there is RI,RZLXXX such that R, (x,y) =
(X,(plyz.inty)(x) ifx=yand R (x,y) = u (x) if x # y such that R (x,y) =
and 4 (R)=1and R, (x,y) = (X,(pl’z.intq)( x)if x = yand R, (x,y) =1 (y)
if x # y such that R, (x,y) = 0 and % (R,) = 1. Thus, in every case (X, %)
is separated.

Corollary 5.2

Let X be a non-empty set, % is a fuzzy uniform structure on X and
9.0, €05 - Then the fuzzy uniform space (X,%) is separated if

and only if the associated stratified fuzzy topological space (X,,) is F
¢,,-T space.

Proof: Immediate from Proposition 5.2 and Theorem 2.2 in Abd-
Allah [8].

For each fuzzy uniform structure % on the set X, the mapping h :
# X > & X which is defined by h (M) = [M] Ufor all M€ F X is global
homogeneous fuzzy neighborhood structure on X [13]. The mapping
h will be called global homogeneous fuzzy neighborhood structure
associated to the fuzzy uniform structure % and will be denoted by #,,.
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The global fuzzy neighborhood structure /4 on the set X is said to be
symmetric [13], provided that h (£) A M exists if and only if L A h
(M exists for all M, £ € FX. As shown in Gahler [13], for each fuzzy
uniform structure %, the associated homogenous fuzzy neighborhood
structure h, is symmetric and both the global homogenous fuzzy
neighborhood structures associated to the fuzzy uniform structures %
and its homogenization % " are coincide.

Proposition 5.3

Let f: (X,2%) > (Y,?) be an fuzzy uniformly continuous mapping
between fuzzy uniform spaces. Then the mapping f: (X,h,)> (Y,h,)
between the associated global homogeneous fuzzy neighborhood
spaces is (h,,h,)-fuzzy continuous [13].

Proposition 5.4
Let f: (X,%) > (Y, ?) be an fuzzy uniformly continuous mapping
)and V¥, EO(LY )
U v

Then the mapping f: (X,¢, ,.int,) > (X,¢, ,.int,) between the associated
characterized fuzzy uniform spaces is ¢, ,y, ,-fuzzy continuous.

between fuzzy uniform spaces, 1,9, € O( .

Proof: Immediate from Proposition 3.3 in Abd-Allah [11] and
Proposition 5.3.

In the following, we prove that for each fuzzy uniform structure on
a set X, there is an induced stratified fuzzy proximity on L*. Moreover,
both the fuzzy uniform structure and this induced stratified fuzzy
proximity are associated with the same stratified characterized fuzzy
uniform space.

Proposition 5.5

Let X be a non-empty set, % is a fuzzy uniform structure on X and
0, €0, X Then the binary relation J, on L* which is defined by:

(0.4 ,¢1,2-intu) =X ,¢1,2'int5ﬂ) (5.3)

for all y,pELX is a stratified fuzzy proximity on X. Moreover, both the
fuzzy uniform structure % and the induced stratified fuzzy proximity
d,, are associated with the same stratified characterized fuzzy uniform

space, that is, (X ,¢,,.int, ) = (X ,¢,,.int, ).
Proof: Immediate from (5.2), (5.3) and Proposition 3.2.
Corollary 5.3

Let (X,%), (Y,?) are two fuzzy uniform spaces, ?1-9, EO(X 25, and
v, €0y 50 Then the mapping f: (X, %) > (Y,?) is fuzzy uniformly
continuous between fuzzy uniform spaces if and only if the mapping
f (X ., .int Jﬂ) > .y, .int% ) is¢g ,V,,-fuzzy continuous between
the associated stratified fuzzy proximity spaces.

Proof: Immediate from Propositions 5.4 and 5.5. O

Because of Propositions 3.7 and 5.5 and Corollary 5.3, we can
deduce the result.

Proposition 5.6

Let (X,%) be an fuzzy uniform space, F,GEP (X) such that
QI[F]: Uy < 7, =G' and ¢,P, € O(x,rdu) . If @ is the family of

all fuzzy uniformly continuous functions f: (X,%) > (I,,%) for which
x€X implies 0 < f(x)<1,then xand x, are ®-separable.

Proof: Immediate from Propositions 3.7 and 5.5 and Corollary 5.3.

Now, we shall prove that the stratified characterized fuzzy uniform

space which associated with an fuzzy uniform structure is characterized
FR,, - space in sense of Abd-Allah et al. [11].

Proposition 5.7

Let X be a non-empty set, % is a fuzzy uniform structure on X
and 9,9, €0, Xy Then the associated stratified characterized fuzzy
uniform space (X,¢,,.int,) with the fuzzy uniform structure % is
characterized FR 2™ Space.

Proof: Let xX, F € ¢ ,C(X) such that x T F. Since X is ¢, %
—fuzzy neighborhood of x, that is, #[x 1= ‘/l/(ﬂl.2 x)<F'. On
account of Proposition 5.6, we get that x, and y, are ®-separated by

the fuzzy uniformly continuous function f: (X,%) > (I,, %). Because
of Proposition 5.4, the function f : (X ,@,,.int,)) = (1., ,.int ) is
¢,,¥,,~fuzzy continuous. Consequently, (X,¢, ,int,) is characterized

IR 21 Space.
Corollary 5.4

Let (X, %) be a separated fuzzy uniform space and ¢,,¢, €0 _ ).
Then the associated stratified characterized fuzzy uniform space (X, ,.
int,) with the fuzzy uniform structure % is characterized FT’, - space.

Proof: Immediate from Propositions 5.2 and 5.7.

In the following we give an example ofahomogeneous fuzzy uniform
structure and we show that the associated stratified characterized fuzzy
uniform space is characterized fuzzy uniform FT,, - space.

2

Example 5.1

The fuzzy metric in sense of S. Gihler and W. Gahler [24] is
canonically generate a homogeneous fuzzy structure as follows:
Consider X is non-empty set and d is a fuzzy metric on X, then the
mapping %;:L** > L which is defined by:

%(R) B 0<§,e¥od£R @
for all REL*™¥ is a homogeneous fuzzy uniform structures on X.
Moreover, the associated stratified characterized fuzzy uniform
space (X ,p,,int,) is identical with the associated characterized fuzzy
metrizable space (X ,g,,.int, ), thatis, (X ,¢,,.int, )= (X ,¢,,.int, ). Because
of Proposition 3.1 in Abd-Allah et al. [22], we have, (X.g,,.nt,) is
characterized FT,-space and therefore (X ,¢,,.nt,) is also characterized
FT,-space. Hence from Proposition 4.6 in Abd-Allah et al. [11], we get

(X ,p,,int,,) is characterized FT', - space.

Conclusion

In this paper, we studied the relations between the characterized
fuzzy T-spaces, the characterized fuzzy R -spaces presented in
Abd-Allah and Abd-Allah and Al-Khedhairi [8-10,11] and the
characterized fuzzy proximity spaces presented by Abd-Allah [12],
for s e {0,1,2,3,3%,4} and k € {1,2,2%,3} . We also introduced and
studied the relations between our characterized fuzzy T -spaces, the
characterized fuzzy R,-spaces and the characterized fuzzy compact
spaces presented by Abd-Allah [12] as a generalization of the weaker
and stronger forms to the G-compactness defined by Géhler in 1995.
Moreover, we shows here the relations between these characterized
fuzzy T -spaces, the characterized fuzzy R, -spaces and the characterized
fuzzy uniform spaces introduced and studied by Abd-Allah in 2013 as
a generalization of the weaker and stronger forms of the fuzzy uniform
spaces introduced by Géhler et al. in 1998.
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