
Volume 6 • Issue 1 • 1000337J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Open AccessResearch Article

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Abd-Allah and Al-Khedhairi, J Appl Computat Math 2017, 6:1
DOI: 10.4172/2168-9679.1000337

Keywords:  Fuzzy filter; Fuzzy topological space; Operationsl; Isotone 
and idempotent; Characterized fuzzy space; φ1,2–fuzzy neighborhood 
filters; Fuzzy uniform structure; Characterized fuzzy proximity space; 
Characterized fuzzy compact space; Characterized fuzzy uniform space; 
Characterized FTs–space; Fφ1,2–Ts space; Characterized FRk–space and 

Fφ1,2–Rk space for 1{0,1,2,3,3 ,4}
2

s∈ ; 1{1,2,2 ,3}
2

k ∈

Introduction
The notion of fuzzy filter has been introduced by Eklund et al. 

By means of this notion the point-based approach to fuzzy topology 
related to usual points has been developed. The more general concept 
for fuzzy filter introduced by Gähler [1] and fuzzy filters are classified by 
types. Because of the specific type of fuzzy filter however the approach 
of Eklund is related only to the fuzzy topologies which are stratified, 
that is, all constant fuzzy sets are open. The more specific fuzzy filters 
considered in the former papers are now called homogeneous. The 
operation on the ordinary topological space (X,T) has been defined by 
Kasahara [2] as the mapping φ from T into 2X such that A ⊆ Aφ, for 
all A∈T. In 1983, Abd El-Monsef et al. [3] extend Kasahara operation 
to the power set P (X) of a set X. In 1999, Kandil [4] and the author 
extended Kasahars’s and Abd El-Monsef’s operations by introducing 
an operation on the class of all fuzzy subsets endowed with an fuzzy 
topology τ as the mapping φ : LX → LX such that int µ ≤ µφ for all µ∈LX, 
where µφ denotes the value of φ at µ.

The notions of the fuzzy filters and the operations on the class of 
all fuzzy subsets on X endowed with a fuzzy topology τ are applied by 
Abd-Allah in [5-7] to introduce a more general theory including all the 
weaker and stronger forms of the fuzzy topology. By means of these 
notions the notion of φ1,2-fuzzy interior of a fuzzy subset, φ1,2-fuzzy 
convergence and φ1,2-fuzzy neighborhood filters are defined and applied 
to introduced many special classes of separation axioms. The notion of 
φ1,2-interior operator for a fuzzy subset is defined as a mapping φ1,2.int:LX 
→ LX which fulfill (I1) to (I5) in Abd-Allah [5]. There is a one-to-one
correspondence between the class of all φ1,2-open fuzzy subsets of X and 
these operators, that is, the class φ1,2OF(X) of all φ1,2-open fuzzy subsets 
of X can be characterized by these operators. Then the triple (X,φ1,2.
int) as will as the triple (X,φ1,2OF (X)) will be called the characterized

fuzzy space [5] of φ1,2-open fuzzy subsets. The characterized fuzzy 
spaces are identified by many of characterizing notions in Abd-Allah 
[5-7], for example by the φ1,2-fuzzy neighborhood filters, φ1,2-fuzzy 
interior of the fuzzy filters and by the set of φ1,2-inner points of the 
fuzzy filters. Moreover, the notions of closeness and compactness 
in the characterized fuzzy spaces are introduced and studied by 
Abd-Allah in [7]. The notions of characterized FTs-spaces, Fφ1,2-TS 
spaces, characterized FRk-spaces and Fφ1,2-Rk spaces are introduced 
and studied in Abd-Allah [9-11] for all 1 1

2 2{0,1,2,2 ,3,3 ,4}∈s  and
1
2{0,1,2,2 ,3}∈k . The notions of characterized fuzzy compact spaces, 

characterized fuzzy proximity spaces and characterized fuzzy uniform 
spaces are introduced and studied by the author in 2004 and 2013 
in [7,12]. This paper is devoted to introduce and study the relations 
between the characterized FTs and FRk-spaces, for 1

2{0,1,2,3,3 ,4}∈s
and 1

2{1,2,2 ,3}∈k , the characterized fuzzy proximity spaces and
the characterized fuzzy compact spaces. Moreover, we show here 
the relations between these characterized FTs and FRk-spaces and the 
characterized fuzzy uniform spaces. In section 2, some definitions 
and notions related to the fuzzy subsets, fuzzy topologies, fuzzy filters, 
fuzzy proximity, operations on fuzzy subsets, φ1,2-fuzzy neighborhood 
filters, characterized fuzzy space, characterized FTs-spaces, Fφ1,2-Ts 
spaces, characterized FRk-spaces and Fφ1,2-Rk spaces are given for 

1
2{0,1,2,3,3 ,4}∈s  and 1

2{2,2 ,3}∈k . Section 3, is devoted to
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Abstract
In this research work, we study the relations between the characterized fuzzy Ts–spaces and characterized 

fuzzy Rk–spaces presented in old papers, for 
1{0,1,2,3,3 ,4}
2

s∈  and 
1{1,2,2 ,3}
2

k ∈  and the characterized 

fuzzy proximity spaces presented. We also study the relations between the characterized fuzzy Ts–spaces, the 
characterized fuzzy Rk–spaces and the characterized fuzzy compact spaces which is presented in old paper, as a 
generalization of the weaker and stronger forms of the G–compactness defined by Gähler. Moreover, we show here 
the relations between these characterized fuzzy Ts–spaces, characterized fuzzy Rk–spaces and the characterized 
fuzzy uniform spaces introduced and studied by Abd-Allah in 2013 as a generalization of the weaker and stronger 
forms of the fuzzy uniform spaces introduced by Gähler.
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introduce and study the relation between the characterized fuzzy 
proximity spaces and our classes of the characterized FTs-spaces and of 
the characterized FRk-spaces. It will be shown that in the characterized 
fuzzy space (X,φ1,2.int), the fuzzy proximity δ will be identified with 
the finer relation on the φ1,2-fuzzy neighborhood filters. Also, we will 
show that any fuzzy proximity is separated if and only if the associated 
characterized fuzzy proximity space is characterized FT0 and to each 
fuzzy proximity is associated a characterized FR2-space in our sense. 
Generally, it will be shown that the associated characterized fuzzy 
proximity space (X,φ1,2.intδ) is characterized FR2-space if the related 
fuzzy topological space (X,τ) is Fφ1,2-R2 space. Moreover, for each 
characterized FR3-space the binary relation on LX defined by means 
the φ1,2-fuzzy closure operator φ1,2.cl of τ in Equation (3.6), is fuzzy 
proximity on X and conversely to each fuzzy proximity δ which has 
a φ1,2-fuzzy closure operator fulfills the binary relation given in (3.6) 
is associated a characterized FR3-space (X,φ1,2.intδ). Moreover, when L 
is a complete chain, 2 1 XL

ϕ ≥  is isotone and φ1 is wfip with respect to 
φ1 OF (X), then we show that the associated characterized fuzzy space 
(X,φ1,2.intτ) from the fuzzy normal topological space (X,τ) is finer than 
the associated characterized fuzzy proximity space (X,φ1,2.intδ) by the 
fuzzy proximity δ defined by (3.6) and they identical if and only if 
(X,φ1,2.intτ) is characterized FT4-space. At the end of this section we 
prove that the associated characterized fuzzy proximity space (X,φ1,2.
intδ) is characterized 1

22 -FR space and therefore it is characterized 

1
23 -FT space. There is a good notion of φ1,2-fuzzy compactness of 

the fuzzy filters and of the fuzzy topological spaces introduced and 
studied by Abd-Allah et al. [7]. This notion fulfills many properties, for 
example, it fulfills the Tychonoff Theorem. In section 4, we used this 
notion to study the relations between the characterized fuzzy compact 
spaces and our classes of the characterized FTs-spaces and of the 
characterized FRk-spaces. It will be shown that every φ1,2-closed subset 
of a characterized fuzzy compact space is φ1,2-fuzzy compact and each 
φ1,2-fuzzy compact subset of the characterized FT2-space is φ1,2-closed. 
Also, it will be shown that each characterized fuzzy compact FT2-space 
is characterized FT4-space. Specially, we prove that the characterized 
fuzzy unit interval space (IL,ψ1,2.intI) is characterized fuzzy compact 
FT2-space and characterized 1

23 -FT space. Generally, we show that 
every characterized fuzzy compact space is characterized FT2-space 
if and only if it is characterized 1

23 -FT space. We show that, if (X,ψ1,2.
intσ) is characterized fuzzy compact space finer than the characterized 
FT2-space (X,φ1,2.intτ), then (X,φ1,2.intτ) is φ1,2ψ1,2-fuzzy isomorphic to 
(X,ψ1,2.intσ). Moreover, if τ is finer than σ, (X,φ1,2.intτ) is characterized 
fuzzy compact space and (X,ψ1,2.intσ) is characterized 1

23 -FT space, then 
(X,ψ1,2.intτ) and (X,ψ1,2.intσ) are φ1,2ψ1,2-fuzzy isomorphic. The notion 
of fuzzy uniform structure had been introduced and studied by Gähler 
et al. [13]. This notion with the notion of the operations on the class 
of all fuzzy subsets are applied to introduce and study the notion of 
characterized fuzzy uniform spaces. In section 5, we introduce and 
study the relations between the characterized fuzzy uniform spaces and 
our classes of the characterized FTs-spaces and of the characterized FRk-
spaces. We show that the fuzzy uniform space (X,U) is separated if and 
only if the associated characterized fuzzy uniform space (X,φ1,2.intU) is 
characterized FTi-space but the fuzzy uniform space (X,U) is separated 
if and only if the associated stratified fuzzy topological space (X,τU) is 
F1,2-Ti space for all i∈{0,1}. For each fuzzy uniform structure on a set 
X, we prove that there is an induced stratified fuzzy proximity on LX. 
Moreover, both the fuzzy uniform structure and this induced stratified 
fuzzy proximity are associated with the same stratified characterized 
fuzzy uniform space. Finally, for each fuzzy uniform space (X,U) we 
prove that the associated stratified characterized fuzzy uniform space 

(X,φ1,2.intU) with the fuzzy uniform structure U is characterized 1
22 -FR

space and it is characterized 1
23 -FT space if (X,U) is separated.

Preliminaries
We begin by recalling some facts on fuzzy subsets and on fuzzy 

filters. Let L be a completely distributive complete lattice with different 
least and last elements 0 and 1, respectively. Let L0 = L \ {0}. Sometimes 
we will assume more specially that L is a complete chain, that is, L is a 
complete lattice whose partial ordering is a linear one. For a set X, let 
LX be the set of all fuzzy subsets of X, that is, of all mappings f : X → L. 
Assume that an order-reversing involution α  α' of L is fixed. For 
each fuzzy subset µ∈LX, let µ' denote the complement of µ and it is given 
by the relation µ' (x) = µ (x)' for all x∈X. Denote by ᾱ, the constant fuzzy 
subset of X with value is α ∈ L. For all x ∈ X and for all α ∈ L0, the fuzzy 
subset xα of X whose value α at x and 0 otherwise is called a fuzzy point 
in X. The set of all fuzzy points of a set X will be denoted by S (X).

Fuzzy filters 

The fuzzy filter on X [1] is the mapping M: LX → L such that the 
following conditions are fulfilled: 

(F1) M (ᾱ) ≤ α for all α∈L and (1)M = 1. 

(F2) M (µ ∧ρ) = M() ∧M(ρ) for all µ,ρ∈LX. 

 The fuzzy filter M is called homogeneous [14] if M(ᾱ) = α for all 
α∈L. For each x∈X, the mapping ( ) = ( )x xµ µ  defined by ( ) = ( )x xµ µ  
for all µ∈LX is a homogeneous fuzzy filter on X. For each µ∈LX, the 
mapping : XL Lµ →  defined by 

0< ( )
( ) = ( )

x
x

η
µ η η∧  for all η∈LX is a 

homogeneous fuzzy filter on X, called homogenous fuzzy filter at the 
fuzzy subset µ∈LX. Let FLX and FLX be the sets of all fuzzy filters and 
of all homogeneous fuzzy filters on X, respectively. If M and N are 
fuzzy filters on a set X, M is said to be finer than N, denoted by M 
≤N, provided M (µ) ≥ N (µ) holds for all µ∈LX. Noting that if L is a 
complete chain then M is not finer than N, denoted by M  N, provided 
there exists µ∈LX such that M (µ) < N (µ) holds.

Lemma 2.1

If M, N and L are fuzzy filters on a set X. Then the following 
sentences are fulfilled [1].

M ≠ L ≥ N implies M ≠ N and M ≥  L ≠ N implies M ≠ N

Proposition 2.1 

For all µ,ρ∈LX, we have µ ≤ ρ if and only if µ ρ≤   [15]. 

 For each non-empty set A of the fuzzy filters on X the supremum 

∈
∨

AM
M  exists [1] and given by 

( )( ) = ( ),µ µ
∈ ∈
∨ ∧

A AM M
M M

for all µ∈LX. Whereas the infimum ∈
∧

AM
M  of A does not exists in 

general as an fuzzy filter. If the infimum ∈
∧

AM
M  exists, then we have 

1

1 1,1
,...,

( )( ) = ( ( ) ( )),
µ µ µ

µ µ µ
∈ ∧ ∧ ≤

∈

∧ ∧∧ ∨




n

n n
nA

A
M

M M

M M M

for all µ∈LX, where n is an positive integer, µ1,…,µn is a collection such 
that µ1∧…∧µn ≤ µ and M1,…, Mn are fuzzy filters from A. Let X be a 
set and µ ∈ LX, then the homogeneous fuzzy filter µ  at µ is the fuzzy 
filter on X given by:

0 < ( )
= ∨ 

x
x

µ
µ ,                     (2.1)
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Fuzzy filter bases 

The family (ßα)α∈
0

( )α α∈LB of a non-empty subsets of LX is called 
a valued fuzzy filter base [1] if the following conditions are fulfilled: 

(V1)  ∈ ßα implies α ≤ sup µ. 

(V2) For all α,ß  L0 with α ∧ ß ∈ L0 and all  ∈ ßα and ρ ∈ ßß there are 
γ ≥ α ∧ ß and η ≤ µ  ρ such that η ∈ ßγ.

As shown in Gähler [1], each valued fuzzy filter base 
0

( )α α∈LB  
defines a fuzzy filter M on X by 

,
( ) =

αρ ρ µ
µ α

∈ ≤
∨

B
M  for all µ∈LX. 

Conversely, each fuzzy filter M can be generated by a valued fuzzy filter 
base, e.g. by 

0
( p ) Lr αα ∈− M  with α-pr M = {µ∈LX | α ≤ M (µ)}. The 

0
( -p )αα ∈Lr M  is the family of pre filters on X and it is called the large 
valued fuzzy filter base of M. Recall that the pre filter on X [16] is a 
non-empty proper subset F of LX such that (1) µ, ρ ∈ F implies µ ∧ρ ∈ F 
and (2) from µ ∈ F and µ ≤  it follows ρ ∈ F.

Valued and superior principal fuzzy filters

Let a non-empty set X be fixed, µ ∈ LX and α ∈ L such that α ≤ sup 
µ, the valued principal fuzzy filter [20] generated by µ and α, will be 
denoted by [µ,α], is the fuzzy filter on X which has 

0
( )β β∈LB  with 

ßß= {µ} if 0 ≤ ß ≤ α and = {1}βB  otherwise as a valued fuzzy filter base. 
For all η∈LX, we have [µ,α] (η) = 0 if µ  η, [µ,α] (η) = α if 1µ η≤ ≠  and 
[µ,α] (η) = 1 if = 1η . Moreover, for each ß∈L0 we have ß-pr[µ,α] = {η | 
µ ≤ η} if ß ≤ α and -p [ , ] = {1}β µ αr  otherwise. The superior principal 
fuzzy filter [1] generated by µ, written [µ], is the homogeneous fuzzy 
filter on X which has ß = {µ ∧ ᾱ | α∈L} ∪ {ᾱ | α∈L} as a superior fuzzy 
filter base. As shown in Katsaras [18], the superior principal fuzzy filter 
[µ] is representable by a fuzzy pre filter if and only if sup µ = 1.

Fuzzy filter functors and fuzzy filter monads

The fuzzy filter functor FL: SET→SET is the covariant functor from 
the category SET of all sets to this category which assigns to each set X 
the set FLX and to each mapping f : X®Y the mapping FLf :FLX →FLY. The 
homogeneous fuzzy filter functor FL: SET→SET is the sub fuzzy filter 
functor of FL which assigns to each set X the set FLX and to each mapping f 
: X ® Y the domain-range restriction FLf :FLX →FLY of the mapping FLf :FLX 
→FLY. For each set X, let ηX:X→FLX be the mapping defined by ηX (x) = ẋ 
for all x∈X, and let : → L XX

Xe L LF be the mapping for which  eX(µ) (M) 
= M (µ) for all µ  LX and M∈FLX. Moreover, let : ( )µ →X L L LX XF F F
be the mapping which assigns to each fuzzy filter L on FLX  the fuzzy 
filter ( )µ = X XeL L on X. Ob( )( ) : idη η ∈= →X LX FSET  with id 

the identity set functor and Ob( )( ) :µ µ ∈= →X L L LX F F FSET  are 
natural transformations. (FL,η,µ) is a monad in the categorical sense, 
called the fuzzy filter monad [1], that is, ( ) = = 1µ η µ η L L LX X X X XF FF  
and ( ) =µ µ µ µ L LX X X XFF  for each set X. Related to the sub 
functor FL of FL, there are analogous natural transformations as 
η and µ, denoted η′ and µ′, respectively. η′ consists of the range-
restrictions :η′ → LX X XF of the mappings ηX. µ′ is the family of all 

mappings : ( )µ′ →L L LX X XF F F  defined by ( )µ′ ′= X XeL L  for all 

homogeneous fuzzy filters L on FLX, where :′ → L XX
Xe L LF  is the 

mapping given by ( )( ) ( )µ µ′ =Xe M M  for all µ∈ LX and M∈FLX. As 

has been shown in  Gähler et al. [13], (FL,η′,µ′)is a sub monad of (FL,η,µ) 

( , , )η µLF , that is, for the inclusion mappings : →X L Li X XFF we 

have =X X Xiη η′  and =µ µ′  L LX X X X Xi i iF F  for all sets X.

Fuzzy topologies

By a fuzzy topology on a set X [20,21], we mean a subset of LX 
which is closed with respect to all suprema and all finite infima and 
contains the constant fuzzy sets 0  and 1 . A set X equipped with an 
fuzzy topology τon X is called fuzzy topological space. For each fuzzy 
topological space (X,τ), the elements of τare called open fuzzy subsets 
of this space. If τ1 andτ2 are two fuzzy topologies on a set X, thenτ2is 
said to be finer thanτ1 andτ1 is said to be coarser than τ2, provided 
τ1 ⊆ τ2 holds. The fuzzy topological space (X,τ) and alsoτ are said to 
be stratified provided ᾱ∈ holds for all α∈L, that is, all constant fuzzy 
subsets are open [17].

Fuzzy proximity spaces

The binary relation δ on LX is called fuzzy proximity on X [18], 
provided it fulfill the following conditions: 

(P1) µ δ ρ  implies ρ δ µ  for all µ,ρ∈LX, where δ  is the negation 
of δ. 

(P2) ( )µ ρ δ η∨  if and only if µ δ η  and ρ δ η  for all µ,ρ,η∈ LX. 

(P3) = 0µ  or = 0ρ  implies µ δ ρ  for all µ,ρ∈LX. 

(P4) µ δ ρ  implies µ ≤ ρ′ for all µ,ρ∈LX. 

(P5) If µ δ ρ , then there is an η∈LX such that µ δ η  and 'η δ ρ . 

The set X equipped with an fuzzy proximity δ on X is said to be fuzzy 
proximity space and will be denoted by (X,δ). Every fuzzy proximity δ 
on a set X is associated an fuzzy topology on X denoted by τδ. The fuzzy 
proximity δ on a set X is said to be separated if and only if for all x,y∈X 
such that x ≠ y we have α βδx y  for all α,ß∈L0.

Operation on fuzzy sets

In the sequel, let a fuzzy topological space (X,τ) be fixed. By the 
operation [4] on a set X, we mean the mapping φ : LX → LX such that 
int µ ≤ µφ holds, for all µ ∈ LX, where µφ denotes the value of φ at µ. 
The class of all operations on X will be denoted by ( , )XL

O
τ . By the 

identity operation on 
( , )XL

O
τ

, we mean the operation 1 : X X
XL

L L→  

such that 1 ( ) =XL
µ µ  for all µ∈LX. Also by the constant operation on 

( , )XL
O

τ , we mean the operation : X X
XL

c L L→  such that ( ) = 1XL
c µ  

for all µ ∈ LX. If ≤ is a partially ordered relation on 
( , )XL

O
τ

 defined as 

by 1 2
1 2

ϕ ϕϕ ϕ µ µ≤ ⇔ ≤ for all µ∈LX, then obviously, ( , )
( , )XL
O

τ
≤  is 

a completely distributive lattice. As an application on this partially 
ordered relation, the operation φ:LX→LX will be called: 

(i) Isotone if µ  ≤  ρ implies µφ ≤  ρφ holds, for all µ, ρ ∈ LX. 

(ii) Weakly finite intersection preserving (wfip, for short) with 
respect to A ⊆ LX if ρ ∧ µφ ≤  (ρ ∧ µ)φ holds, for all ρ ∈A and µ ∈ LX. 

(iii) Idempotent if µφ =  (µφ), for all µ ∈ LX. 

The operations 
( , )

, XL
O

τ
ϕ ψ ∈  are said to be dual if µ = co ( (coµ)) 

or equivalently φµ = co (ψ (coµ)) for all µ ∈ LX, where coµ denotes the 
complement of µ. The dual operation of φ is denoted by ϕ . In the 
classical case of L = {0,1}, by the operation on the set X [3], we mean the 
mapping φ : P (X) → P (X) such that int A ≤ Aφ for all A in the power set 
P (X) and the identity operation on the class of all ordinary operations 
O (P (X),T) on X will be denoted by iP (X), where iP (X) (A) = A for all A∈P (X).
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φ-open fuzzy subsets 

Let a fuzzy topological space (X,τ) be fixed and 
( , )XL

O
τ

ϕ ∈ . The 

fuzzy subset µ : X → L is said to be φ-open fuzzy subset if µ ≤ µφ holds. 
We will denote the class of all φ-open fuzzy subsets on X by  OF (X). 
The fuzzy subset µ is called φ-closed if its complement coµ is φ-open. 
The two operations ( , )

, XL
O

τ
ϕ ψ ∈  are equivalent and written φ ~ ψ if 

and only if φ OF (X) = ψ OF (X).

φ1,2–interior of fuzzy subsets 

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . 

Then the φ1,2-interior of the fuzzy subset µ: X → L is the mapping φ1,2.

int µ : X → L defined by: 

2
1

1,2
( ),

.int =
∈ ≤

∨
OF X

ϕ
ρ ϕ ρ µ

ϕ µ ρ ,                 (2.2)

As easily seen that φ1,2.int µ is the greatest φ1-open fuzzy subset ρ 
such that 2ϕρ  less than or equal to µ [5]. The fuzzy subset µ is said to 
be φ1,2-open if µ ≤ φ1,2.int µ. The class of all φ1,2-open fuzzy subsets of 
X will be denoted by φ1,2 OF(X). The complement coµ of a φ1,2-open 
fuzzy subset µ will be called φ1,2-closed and the class of all φ1,2-closed 
fuzzy subsets of X will be denoted by φ1,2CF(X). In the classical case 
of L = {0,1}, we note that the fuzzy topological space (X,τ) is up to an 
identification by the ordinary topological space (X,T) and φ1,2.int µ is 
the classical one. Hence, in this case the ordinary subset A of X is φ1,2-
open if A ⊆ φ1,2.int A. The complement of the φ1,2-open subset A of 
X will be called φ1,2-closed. The class of all φ1,2-open and the class of 
all φ1,2-closed subsets of X will be denoted by φ1,2O (X) and φ1,2C (X), 
respectively. Clearly, F is φ1,2-closed if and only if φ1,2.clT F = F. 

Proposition 2.2 

If (X,τ) is an fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then, the 
mapping φ1,2.int µ : X → L fulfills the following axioms [5]: 

(i) If 2 1 XL
ϕ ≥ , then φ1,2.int µ  ≤  µ holds. 

(ii) φ1,2.int is isotone operator, that is, if µ ≤ ρ then, 1,2.int µ ≤ φ1,2.int 
ρ holds for all µ,ρ∈LX. 

(iii) 1,2 .int1 = 1ϕ . 

(iv) If 2 1ϕ ≥ XL  is isotone and φ1 is wfip with respect to φ1 OF (X), 
then 1,2.int (µ ∧ ρ) = φ1,2.int µ ∧ φ1,2.int ρ for all µ, ρ ∈ LX. 

(v) If 2 is isotone and idempotent operation, then φ1,2.int µ ≤ φ1,2.int 
(φ1,2.int µ) holds. 

(vi) 1,2 1,2.int ( ) .intϕ µ ϕ µ
∈ ∈

=∨ ∨i ii I i I
 for all µi ∈ φ1,2 OF (X).

Proposition 2.3

Let (X,τ) be an fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
the following are fulfilled [5]:

(i) If 2 1 XL
ϕ ≥ , then the class φ1,2 OF(X) forms extended fuzzy 

topology on X [19]. 

(ii) If 2 1 XL
ϕ ≥  and 1,2 .int1 = 1ϕ , then the class φ1,2 OF(X) forms a 

supra fuzzy topology on X [19].

(iii) If 2 1 XL
ϕ ≥  is isotone and φ1 is wfip with respect to φ1OF(X), 

then φ1,2 OF(X) is fuzzy pre topology on X [19]. 

(iv) If 2 1 XL
ϕ ≥  is isotone and idempotent operation and φ1 is 

wfip with respect to φ1OF(X), then φ1,2 OF(X) is a fuzzy topology on 

X [20,21].

From Propositions 2.2 and 2.3, if the fuzzy topological space (X,τ) 
be fixed and 1 2 ( , )

, XL
O

τ
ϕ ϕ ∈ . Then 

1,2 1,2( ) = { | .int }∈ ≤XOF X Lϕ µ µ ϕ µ ,                 (2.3)

and the following conditions are fulfilled: 

(I1) If 2 1 XL
ϕ ≥ , then φ1,2.int µ ≤ µ holds, for all µ ∈ LX.

(I2) If µ ≤ ρ, then φ1,2.int µ ≤ φ1,2.int ρ for all µ, ρ ∈ LX.

(I3) 1,2 .int1 = 1ϕ .

(I4) If 2 1 XL
ϕ ≥ is isotone and φ1 is wfip with respect to φ1OF(X), 

then φ1,2.int µ ∧ φ1,2.int ρ = φ1,2.int (µ ∧ ρ) for all µ, ρ ∈ LX.

(I5) If 1 is isotone and idempotent, then φ1,2.int (φ1,2.int µ) = φ1,2.int 
µ for all µ ∈ LX.

Characterized fuzzy spaces 

Independently on the fuzzy topologies, the notion of φ1,2-interior 
operator for fuzzy subsets can be defined as a mapping φ1,2.int : LX → 
LX which fulfill (I1) to (I5). It is well-known that (2.2) and (2.3) give 
a one-to-one correspondence between the class of all φ1,2-open fuzzy 
subsets and these operators, that is, φ1,2OF(X) can be characterized by 
the φ1,2-interior operators. In this case the triple (X,φ1,2.int) as will as 
the triple (X,φ1,2OF(X)) will be called characterized fuzzy space [5] of 
the φ1,2-open fuzzy subsets of X. For each characterized fuzzy space 
(X,φ1,2.int), the elements of φ1,2 of (X) are called φ1,2–open fuzzy subsets 
of this space. If (X,φ1,2.int) and (X,ψ1,2.int) are two characterized fuzzy 
spaces, then (X,φ1,2.int) is said to be finer than (X,ψ1,2.int) and denoted 
by φ1,2.int ≤ ψ1,2.int provided φ1,2.int µ ≥ ψ1,2.int µ holds for all µ ∈LX. The 
characterized fuzzy space (X,φ1,2.int) is said to be stratified if and only if 
φ1,2.int ᾱ = ᾱ for all α ∈ L. As shown in Abd-Allah [5], the characterized 
fuzzy space (X,φ1,2.int) is stratified if the related fuzzy topology is 
stratified. Moreover, the characterized fuzzy space (X,φ1,2.int) is said 
to have the weak infimum property [19] provided φ1,2.int (µ ∧ ᾱ) = φ1,2.
int µ ∧ φ1,2.int ᾱ for all µ ∈ LX and α ∈ L. The characterized fuzzy space 
(X,φ1,2.int) is said to be strongly stratified provided φ1,2.int is stratified 
and have the weak infimum property.

Fuzzy unit interval

The fuzzy unit interval will be denoted by IL and it is defined in 
Gähler [24] as the fuzzy subset L= { | 1 },∗∈ ≤LI x x   where I = [0,1] 
is the real unit interval and L L= { | (0) = 1 and 0 }∈ ≤  x x x  
is the set of all positive fuzzy real numbers. Note that, the binary 
relation ≤ is defined on L as follows: 

1 1 2 2
and ,x y x y x yα α α α≤ ⇔ ≤ ≤  

for all x, y ∈ L, where 
1

= inf{ | ( ) }α α∈ ≥x z x z  and 

2
= sup{ | ( ) }α α∈ ≥x z x z  for all α ∈ L0. Note that the family Ω which 

is defined by: = { | | } { | | } {0 | }δ
δ δ δΩ ∈ ∪ ∈ ∪L L LR I I R I I I  is 

a base for a fuzzy topology I on IL and the order pair (IL,I) is said to 
be fuzzy unit interval topological space, where Rδ and Rδ are the fuzzy 

subsets of L defined by 
>

( ) = ( )δ α δ
α∨R x x  and ( ) = ( )( )δ

α δ
α

≥
′∨R x x  

for all x∈L and δ ∈. \The restrictions of Rδ and Rδ on IL are the fuzzy 
subsets Rδ| IL and Rδ|IL , respectively. Recall that the inequality Rδ (x) ∧ 
Rγ (y) ≤ Rδ+γ (x+y) holds, where x + y is the fuzzy real number defined 

by: 
, , =

( )( ) = ( ( ) ( ))
γ ζ γ ζ ξ

ξ γ ζ
∈ +

+ ∧∨


x y x y  for all ξ ∈. Consider a fuzzy 

unit interval topological space (IL,I) be given and 1 2 ( , ),ψ ψ ℑ∈
LIO , then 

in this work the characterized fuzzy space (IL,ψ1,2.intI) will be called 
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characterized fuzzy unit interval space and we define the cartesian 
product of a number of copies of the fuzzy unit interval IL equipped with 
the product of the characterized fuzzy unit interval spaces generated by 
ψ1,2.intI on it as a characterized fuzzy cube.

φ1,2–fuzzy neighborhood filters

An important notion in the characterized fuzzy space (X,φ1,2.int) 
is that of the φ1,2-fuzzy neighborhood filter at the point and at the 
ordinary subset in this space. Let (X,τ) be a fuzzy topological space and 

1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . As follows by (I1) to (I5) for each x∈X, the mapping 

1,2
( ) :ϕ →Xx L LN  which is defined by:

1,21,2
( ) = ( .int )( )( ) xxϕ µ ϕ µN ,                  (2.4) 

for all µ ∈ LX is a fuzzy filter, called φ1,2-fuzzy neighborhood filter at x 
[5]. If ∅≠F∈P (X), then the φ1,2-fuzzy neighborhood filter at F will be 
denoted by 

1,2
(F)ϕN  and it will be defined by: 

1,2 1,2F
= ( ).(F)ϕ ϕ∈
∨
x

xN N

Since
1,2

( )ϕ xN  is fuzzy filter for all x∈X, then 
1,2

(F)ϕN  is also 

fuzzy filter on X. Because of F F
[ ] =χ

∈
∨ 

x
x , then we have 

1,2 F(F) [ ]ϕ χ≥N  

holds. If the related φ1,2-interior operator fulfill the axioms (I1) and (I2) 

only, then the mapping 
1,2

:( )ϕ →XL LxN , defined by (2.4) is an fuzzy 

stack, called φ1,2-fuzzy neighborhood stack at x. Moreover, if the φ1,2-
interior operator fulfill the axioms (I1), (I2) and (I4) such that in (I4) 
instead of ρ ∈LX we take ᾱ, then the mapping 

1,2
:( )ϕ →XL LxN , is 

an fuzzy stack with the cutting property, called φ1,2-fuzzy neighborhood 
stack with the cutting property at x. Obviously, the φ1,2-fuzzy 
neighborhood filters fulfill the following conditions: 

(N1) 
1,2

( )ϕ≤x xN  holds for all x ∈ X. 

(N2) 
1,2 1,2

( ) ( )( ) ( )ϕ ϕµ ρ≤x xN N  holds for all µ, ρ ∈LX and µ ≤ ρ. 

(N3) 
1,2 1,2 1,2

( ) = ( )( ) ( ) ( )( )ϕ ϕ ϕµ µyx y xN N N , for all x∈X and 
µ ∈ LX. 

Clearly, 1,2
( )( )ϕ µy yN  is the fuzzy subset φ1,2.int µ.

The characterized fuzzy space (X,φ1,2.int) is characterized as the 
fuzzy filter pre topology [5], that is, as a mapping 

1,2
:ϕ → LX XN F  

such that the conditions (N1) to (N3) are fulfilled.

φ1,2ψ1,2–fuzzy continuity

Let now the fuzzy topological spaces (X,τ1) and (Y,τ2) are fixed, 
1 2 ( , )1
, XL

O
τ

ϕ ϕ ∈  and 1 2 ( , )2
, YL

O
τ

ψ ψ ∈ . The mapping f : (X,φ1,2.int) → 

(Y,ψ1,2.int) is said to be φ1,2ψ1,2–fuzzy continuous [5] if the inequality 

1,2 1,2( .int ) .int( )≤ f fψ η ϕ η ,                 (2.5) 

holds for all η∈LY. If an order reversing involution ′ of L is 
given, then we have that f is a fuzzy continuous if and only if 

1,2 1,2.cl( ) ( .cl )ϕ η ψ η≤ f f  holds for all η∈LY. Note that φ1,2.cl and 
ψ1,2.cl, means that the closure operators related to φ1,2.int and ψ1,2.int, 
respectively which are defined by φ1,2.cl µ = co (φ1,2.int coµ) for all µ 
∈∈LX. Obviously if f is φ1,2ψ1,2-fuzzy continuous and the inverse f–1of 
f exists, then f–1: (Y,ψ1,2.int) → (X,φ1,2.int) is ψ1,2φ1,2-fuzzy continuous, 
that is, 1 1

1,2 1,2( .int ) .int( )ϕ µ ψ µ− −≤ f f  holds for all µ∈LX. By means 

of characterizing the φ1,2-fuzzy neighborhoods
1,2

( )ϕ xN  of φ1,2.int and

1,2
( )ψ xN  of ψ1,2.int which are defined by (2.4), the fuzzy continuity of 

f can also be characterized as follows:

The mapping f: (X,φ1,2.int) → (Y,ψ1,2.int) is φ1,2ψ1,2-fuzzy continuous 

if the inequality
1,2 1,2

( )) ( ( ))(ψ ϕ≥ Lf x f xFN N holds for each x∈X. 

Obviously, in case of L = {0,1}, φ1 = ψ2 = int, 2 = 1 XL
ϕ  and 2 = 1 YL

ψ , the 
φ1,2ψ1,2-fuzzy continuity coincides with the usual fuzzy continuity.

φ1,2–fuzzy convergence 

Let an fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . If 
x is a point in the characterized fuzzy space (X,φ1,2.int), F ⊆ X and M 
is a fuzzy filter on X. Then M is said to be φ1,2-fuzzy convergence [5] to 
x and written 

1,2 .intϕ→ xM , provided M is finer than the φ1,2-fuzzy 

neighborhood filter
1,2

( )ϕ xN . Moreover, M is said to be φ1,2-fuzzy 

convergence to F and written
1,2 .int Fϕ→M , provided M is finer than 

the φ1,2-fuzzy neighborhood filter 1,2
( )ϕ xN for all x∈F, that is, M is 

finer than the φ1,2-fuzzy neighborhood filter 1,2
(F)ϕN .

Internal φ1,2-closure of fuzzy sets and φ1,2-closure operators

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . The 
internal φ1,2-closure of the fuzzy set µ: X → L is the mapping φ1,2.cl µ : X 
→ L defined by: 

1,2
1,2 ( )

( .cl )( ) = ( )
≤
∨

x
x

ϕ

ϕ µ µ
M N

M ,                (2.6)

1,2
1,2 ( )

( .cl )( ) = ( )
≤
∨

x
x

ϕ

ϕ µ µ
M N

M ,                 (2.6)

for all x∈X. In (2.6), the fuzzy filter M my have additional properties, 
e.g, we my assume that is homogeneous or even that is ultra. Obviously, 
φ1,2.clµ ≤ µ holds for all µ∈LX. The mapping φ1,2.cl FLX →FLX which 
assigns φ1,2.cl M to each fuzzy filter M on X, that is,

1,
1,2 .cl2

( ) = ( )
≤

∨
ϕ ρ µ

ϕ µ ρM M.cl ,                (2.7)

is called φ1,2-closure operator [7] of the characterized fuzzy space 
(X,φ1,2.int) with respect to the related fuzzy topology τ. Obviously, the 
φ1,2-closure operator φ1,2.cl is isotone hull operator, that is, for all M,N 
∈FLX we have M ≤ N implies φ1,2.clM ≤ φ1,2.clN and that M ≤φ1,2.clM.

Lemma 2.2 

Let (X,τ) be a fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then for 
each x∈X, we have 1,2 =.clϕ  x x  implies that φ1,2.cl{x} = {x} [10]. 

Characterized fuzzy Rk and fuzzy φ1,2Rk-spaces 

The notions of characterized fuzzy Rk and fuzzy φ1,2Rk-spaces are 
introduced and studied in Abd-Allah [9,11] for all 1{0,1,2 }

2
k ∈ . 

Moreover, the notion of φ1,2-fuzzy neighborhood filter at the point x 
and at the ordinary subset of the characterized fuzzy space (X,φ1,2.int) 
is applied by Abd-Allah [10], to introduced and studied the notions 
of characterized fuzzy Rk-spaces for k∈{2,3}. However, the notions of 
fuzzy 1,2Rk-spaces are also given by means of the φ1,2-fuzzy convergence 
at the point x and at the ordinary subset in the space. We will denote by 
characterized FRk and Fφ1,2Rk-spaces to the characterized fuzzy Rk and 
fuzzy φ1,2Rk-spaces for shorts, respectively.

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . 
Then the characterized fuzzy space (X,φ1,2.int) is said to be: 

(1) Characterized FR2-space (resp. Characterized FR3-space), if for 
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all x∈X, Fφ1,2C (X) such that x Ï F (resp. F1, F2 ∈φ1,2C (X) such that 

F1 ∩ F2 = ∅), the infimum 
1,2 1,2

( ) (F)ϕ ϕ∧xN N  (resp. 
1 21,2 1,2

(F ) (F )ϕ ϕ∧N N ) 

does not exists. The related fuzzy topological space (X,τ) is said to be 
Fφ1,2R2-space (resp. Fφ1,2R3-space) if for all x∈X (resp. F ∈ φ1,2.C (X)) 

and ∈ L XM F such that 
1,2 .intϕ→ xM  (resp. 

1,2 .int Fϕ→M ) we 

have 
1,21,2 .int.cl ϕϕ → xM  (resp. 

1,21,2 .int F.cl ϕϕ →M ). 

(2) Characterized 1
22 -FR space if for all x∈X, F∈φ1,2C (X) such that 

x Ï F, there exists an φ1,2ψ1,2-fuzzy continuous mapping f: (X,φ1,2.int) → 

(IL,ψ1,2.intI) such that ( ) = 1f x  and ( ) = 0f y  for all y∈F. The related 

fuzzy topological space (X,τ) is said to be 1
2

1,2 2 - spaceϕF R  if and only 

if (X,φ1,2.int) is characterized 1
22 -FR space. 

Characterized fuzzy Ts and fuzzy φ1,2-TS spaces 

The notions of characterized fuzzy Ts and fuzzy φ1,2-TS spaces 
are investigated and studied by Abd-Allah and by Abd-Allah and 

Al-Khedhairi in [8,9,11] for all 
1 1{0,1,2,2 ,3,3 ,4}
2 2

s∈ . These 

characterized fuzzy spaces depend only on the usual points and the 
operation defined on the class of all fuzzy subsets of X endowed with a 
fuzzy topological space (X,τ). We will denote by characterized FTs and 
Fφ1,2-Ts spaces to the characterized fuzzy Ts and fuzzy φ1,2-TS spaces for 
shorts, respectively.

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . 
Then the characterized fuzzy space (X,φ1,2.int) is said to be: 

(1) Characterized FT0-space (resp. Characterized FT1-space) if for 
all x,y∈X such that x≠y there exist µ∈LX and α∈ L0 such that µ (x) < 
α ≤ (X,φ1,2.intµ) (y) holds or (resp. and) there exist ρ ∈LX and ß∈L0 such 
that ρ (y) < ß ≤  (φ1,2.intρ) (x) holds. The related fuzzy topological space 
(X,τ) is said to be Fφ1,2-T0 space (resp. Fφ1,2-T1 space) if for all x,y∈X 

such that x≠y we have 
1,2

( )ϕ≤/x yN  or (resp. and) 1,2
( )ϕ≤/y xN . 

(2) Characterized FT2-space if for all x,y∈X such that x≠y, the 
infimum 

1,2 1,2
( ) ( )ϕ ϕ∧x yN N  does not exists. The related fuzzy 

topological space (X,τ) is said to be Fφ1,2-T2 space if 
1,2 .int ,ϕ→ x yM

implies x = y for all ∈ L XM F and for all x,y∈X. 

(3) Characterized FTs space if and only if it is characterized FRk-

space and characterized FT1-space for 
1{2,2 ,3}
2

k ∈  and 1{3,3 ,4}
2

s∈ . 

The related fuzzy topological space (X,τ) is said to be Fφ1,2-Ts if and only 
if it is Fφ1,2-Rk and Fφ1,2-T1. 

Proposition 2.4

Let (X,τ) be an fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 

the characterized fuzzy space (X,φ1,2.int) is characterized FT1-space if 
and only if 1,2 =.clϕ  x x for all x∈X [8]. 

Proposition 2.5 

If (X,φ1,2.int) is characterized FT2-space and φ1,2.int is finer than ψ1,2.
int, then (X,ψ1,2.int) is also characterized FT2-space [8]. 

Proposition 2.6 

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . 
Then the following are fulfilled [8,22]: 

(1) Every characterized FTi-space (X,φ1,2.int) is characterized FTi-1-
space for each i∈{2,3,4}. 

(2) The characterized fuzzy subspace and the characterized 
fuzzy product space of a family of characterized FT2-spaces are also 
characterized FT2-spaces . 

New Relations between Characterized FTs, Characterized 
FRk and Characterized Fuzzy Proximity Spaces

In this section we are going to introduce and study the relations 
between the characterized FTs-spaces, the characterized FRk-spaces 
and the characterized fuzzy proximity spaces presented by Abd-Allah 
in [12]. We make at first the relation between the farness on fuzzy 
sets and the finer relation on fuzzy filters. So, we show some results 
for the notion of the φ1,2-fuzzy neighborhood filter 

1,2
( )ϕ µN  at the 

fuzzy subset µ∈LX. The notion of homogeneous fuzzy filter µ which 
is defined in (2.1) and the notion of φ1,2-fuzzy neighborhood filter

1,2
( )ϕ µN at the fuzzy subset µ∈LX are applied at first to study the 

relation between the fuzzy proximity δ defined by Katsaras in [18] and 
our fuzzy separation axioms [8-10]. Moreover, the relations between 
characterized fuzzy proximity spaces and the characterized FTs-spaces 

and characterized FRk-spaces are introduced for 1{0,1,2,3,3 ,4}2∈s  

and 1{1,2,2 ,3}.2∈k

Proposition 3.1 

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  such 
that 2 1 XL

ϕ ≥  is isotone and idempotent and φ1 is wfip with respect to 
φ1OF (X). Then the supremum of the φ1,2-fuzzy neighborhood filters

1,2
( )ϕ xN at x∈X which is given by:

1,2 1,20 < ( )
( ) = ( )

x
xϕ ϕµ

µ ∨N N ,                  (3.1)

for all µ∈LX is a fuzzy filter on X called a φ1,2–fuzzy neighborhood filter 
at µ. 

Proof: Fix an α∈L0, then because of (2.4) and the condition 
2 1 XL

ϕ ≥ , we have 

1,21,2 1,20 < ( ) 0 < ( ) 0 < ( )
( ) = ( )( ) = ( .int )( ) ( ) =ϕ ϕµ µ µ
α α ϕ α α α≤∧ ∧ ∧

y y y
y y yN N

and 

1,21,2 0 < ( ) 0 < ( )
( 1) = ( .int1)( ) = 1( ) = 1.ϕ µ µ

ϕ∧ ∧
y y

y yN

Thus, condition (F1) is fulfilled. To prove condition (F2), let ρ,η∈LX, 
then because of Proposition 2.4 and (2.4) we have 

1,21,2 0 < ( )

1,2 1,20 < ( ) 0 < ( )

1,2 1,2

( )( ) = .int( )( )

= ( .int )( ) ( .int )( )

( )( ) ( )( ).

ϕ µ

µ µ

ϕ ϕ

µ ρ η ϕ ρ η

ϕ ρ ϕ η

µ ρ µ η

∧ ∧

∧

= ∧

∧
∧ ∧

y

y y

y

y y

N

N N

Hence, 1,2
( )ϕ µN is a fuzzy filter on X. Since 1,2( .int)( ) ( )ϕ ρ≤x x

holds for all x∈X and ρ∈LX, then 1,2
( )( ) ( )ϕ µ ρ µ ρ≤ N  holds for all 

ρ∈∈LX. Thus, 1,2
( )ϕµ µ≤ N  and therefore

1,2
( )ϕ µN fulfills condition 

(N1). For condition (N2), let ρ,η∈LX such that ρ ≤ η. Because of 

Proposition 2.4, we have 1,2 1,2.int .intϕ ρ ϕ η≤ holds and which implies 

that 1,2 1,20 < ( ) 0 < ( )
( .int )( ) ( .int )( )

µ µ
ϕ ρ ϕ η≤∧ ∧

y y
y y  holds for all y∈X. Hence 

1,2 1,2
( )( ) ( )( )ϕ ϕµ ρ µ η≤N N  and therefore condition (N2) is fulfilled. 

Since for any y∈X we have 1,20 < ( ) 0 < ( )
( .int )( )

µ µ
ϕ ρ∧ ∧

y y
y y  represents 
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the mapping φ1,2int ρ. Then from Proposition 2.4 we have 

1,2 1,2 1,2 1,21,2 0 < ( ) 0 < ( )
( )( .int ) = .int ( .int )( ) ( .int )( ),ϕ µ µ
µ ϕ ρ ϕ ϕ ρ ϕ ρ=∧ ∧

x x
x xN

and then 1,21,2 1,20 < ( ) 0 < ( )
( ) .int ( ) = ( )( )( )ϕ ϕµ µ
µ ϕ ρ µ ρ∧ ∧

y y
y yN N  

for all y∈X and ρ∈LX. Thus, condition (N3) is also fulfilled and 
therefore 1,2

( )ϕ µN fulfilled the conditions (N1) to (N3) of the φ1,2–fuzzy 
neighborhood filters. 

 Not that in Bayoumi et al. [15], the supremum of the empty set of 
the fuzzy filters is the finest fuzzy filter. This means 1,2

(0)ϕ µ≤ N  for 
all µ∈LX. Because of (2.4) the equations (2.1) and (2.2) can be written 
as in the following:

0 < ( )
( ) = ( )∧

x
x

µ
µ ρ ρ ,                    (3.2)

1,21,2 1,20 < ( ) 0 < ( )
( )( ) = ( )( ) ( .int )( )=∧ ∧

x x
x xϕ ϕµ µ

µ ρ ρ ϕ ρN N  ,             (3.3) 

for all ρ∈LX. Here a useful remark is given

Remark 3.1: The homogeneous fuzzy filter ẋ at the ordinary point 
x is nothing that a homogeneous fuzzy filter ẋ at the fuzzy point xα, that 
is, αx = ẋ for all x∈X and α∈L0. Moreover, the φ1,2–fuzzy neighborhood 
filter 1,2

( )ϕ xN at x is itself the φ1,2–fuzzy neighborhood filter 
1,2

( )ϕ αxN  
at xα.

The φ1,2–fuzzy neighborhood filter 1,2
( )ϕ µN  at the fuzzy subset 

µ∈LX and the homogeneous fuzzy filter µ  fulfill the following 
properties.

Lemma 3.1

Let (X,τ) be a fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then for 
all µ,ρ∈LX the following properties are fulfilled: 

(1) µ ρ≤   implies 1,2
( )ϕ ρ µ′ ′≤ N  and 

1,2
( )ϕ µ ρ≤ N  implies 

1,2
( )ϕ ρ µ′ ′≤ N . 

(2) µ ≤  implies 1,2 1,2
( ) ( )ϕ ϕµ ρ≤N N . 

(3) 
1,2 1,2 1,2

( ) = ( ) ( )ϕ ϕ ϕµ ρ µ ρ∨ ∧N N N . 

(4) 1,2
( )ϕ µ ρ≤ N  implies µ ≤ ρ. 

(5) 1,2
( )ϕ µ ρ≤ N  implies there is an η∈LX such that 1,2

( )ϕ µ η≤ N  

and 
1,2

( )ϕ η ρ≤ N .

Proof: Let µ ρ≤  . From condition (N1) we have 1,2
( )ϕµ ρ≤ N holds 

and therefore for all η∈LX we have 1,20 < ( ) 0 < ( )
( ) ( .int )( )

µ ρ
η ϕ η≥∧ ∧

x y
x y

holds. Hence, 1,20 < ( ) 0 < ( )
( ) ( .int )( )

µ ρ
η ϕ η

′ ′
≤∧ ∧

x y
x y  holds also. Thus, 

1,2
( ) ( )( )ϕµ η ρ η′ ′≤ N  and 

1,2
( )ϕ ρ µ′ ′≤ N are hold. Similarly, if 

1,2
( )ϕ µ ρ≤ N , then from (N1) we have µ ρ≤   which implies 

1,2
( )ϕ ρ µ′ ′≤ N . Thus, (1) is fulfilled. Since µ ≤ ρ implies µ (x) ≤ ρ (x) for 

all xX, then 

1,2 1,20 < ( ) 0 < ( )
( .int )( ) ( .int )( ).

µ ρ
ϕ η ϕ η≥∧ ∧

x x
x x

Hence, 
1,2 1,2

( )( ) ( )( )ϕ ϕµ η ρ η≥N N holds for all η∈LX and therefore 

1,2 1,2
( ) ( )ϕ ϕµ ρ≤N N holds. Hence, (2) is fulfilled.

Since µ, ρ ≤ µ Ú ρ, then from (2) we have 

1,2 1,2 1,2
( ) ( ) ( ).ϕ ϕ ϕµ ρ µ ρ∧ ≤ ∨N N N  Now, let η∈LX then 

1 21,2 1,2 1,2 1,2
1 2

1,2 1 1,2 2
0 < ( ) 0< ( )1 2

1,2 1 2
0<( )( )1 2

1,2 1,2
0 < ( )( )

( ) ( ) ( ) = ( )( ) ( )( )

= .int ( ) .int ( )

.int( )( )

.int ( ) = ( )( ).

( ) ( )

( )

ϕ ϕ ϕ ϕ
η

η µ ρ

η µ ρ

ϕ
µ ρ

µ ρ η µ ρ

ϕ ϕ

ϕ

ϕ η µ ρ η

∧ ≤

∧ ≤

∧ ≤ ∨

∨

∧ ∧

∧

≤ ∧

≤ ∨

∨ ∧

∧ ∧

∧

∨
∨

k k

k k x y

k k z

z

k k

k x k y

k k z

z

N N N N

N

Hence, 
1,2 1,2 1,2

( ) ( ) ( )ϕ ϕ ϕµ ρ µ ρ∧ ≥ ∨N N N  holds and therefore 

(3) is fulfilled. To prove (4), let 
1,2

( )ϕ µ ρ≤ N  holds. Because of 

(2.1), (3.1) and (N1), we have 
1,2

( )ϕµ µ≤ N  and then µ ρ≤  holds. 

Hence, Proposition 2.1 implies µ ≤ ρ. Thus, (4) is fulfilled. Finally, 

let 1,2
( )ϕ µ ρ≤ N . Then 1,20 < ( ) 0 < ( )

( .int )( ) ( )
µ ρ

ϕ λ λ≥∧ ∧
x y

x y holds for all 

λ∈LX. Hence, there is η∈LX such that 

1,2 1,20 < ( ) 0 < ( ) 0 < ( ) 0 < ( )
( .int )( ) ( ) ( .int )( ) ( ).

µ η η ρ
ϕ λ λ ϕ λ λ≥ ≥ ≥∧ ∧ ∧ ∧

x z z y
x z z y

This means there is η∈LX such that 
1,2

( )( ) ( )ϕ µ λ η λ≥ N  and 

1,2
( )( ) ( )ϕ η λ ρ λ≥ N  are hold for all λ∈LX. Thus, 1,2

( )ϕ µ η≤ N  and 

1,2
( )ϕ η ρ≤ N  are also hold. Consequently, (5) is fulfilled.

 In the characterized fuzzy space (X,φ1,2.int), the fuzzy proximity 
will be identified with the finer relation on the fuzzy filters, specially 
with the finer relation on the φ1,2-fuzzy neighborhood filters. This 
shown in the following proposition.

Proposition 3.2 

Let (X,τ) be a fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then the 
binary relation δ on LX which is defined by: 

1,2
if and only if ( ) ,ϕµ δ ρ ρ µ′≤ N

for all µ,ρ∈LX is fuzzy proximity on X. 

Proof: Let µ,ρ∈LX such that µδρ , then 
1,2

( )ϕ ρ µ′≤ N . Because of 

(1) in Lemma 3.1, we have 
1,2

( )ϕ µ ρ′≤ N  and therefore ρδ µ . Hence, 
condition (P1) is fulfilled.

Since 
1,2 1,2

( ) ( )ϕ ϕµ µ ρ≤ ∨N N  and 
1,2 1,2

( ) ( )ϕ ϕρ µ ρ≤ ∨N N  are 

hold for all µ,ρ∈LX, then 
1,2

( )ϕ µ ρ η′∨ ≤ N  implies 
1,2

( )ϕ µ η′≤ N  and 

1,2
( )ϕ ρ η′≤ N  are hold for all η∈LX. This means ( )η δ µ ρ∨  implies 

η δ µ  and η δ ρ . Conversely, let η δ µ  and η δ ρ  for all µ,ρ,η∈LX, 

then 
1,2

( )ϕ µ η′≤ N  and 1,2
( )ϕ ρ η′≤ N  are hold. Hence, (3) in Lemma 

3.1 implies 
1,2 1,2 1,2

( ) = ( ) ( )ϕ ϕ ϕµ ρ µ ρ η′∨ ∧ ≤ N N N  holds and 

therefore ( )η δ µ ρ∨ . Consequently, (P2) is fulfilled. To prove (P3), 

since 1,2
(0)ϕ µ′≤ N  holds for all µ∈∈LX. Then, 0µ δ  for all µ∈LX. 

Hence, = 0µ  or = 0ρ  implies µ δ ρ  for all ρ,η∈LX. Thus, (P3) is 
fulfilled.

Let µ,ρ∈LX such that µ δ ρ , then 
1,2

( )ϕ ρ µ′≤ N . Because of 

(1) and (4) in Lemma 3.1, we have 
1,2

( )ϕ µ ρ′≤ N  and therefore µ ≤ 

ρ′, that is, (P4) is fulfilled. Finally, let µ,ρ∈LX such that µ δ ρ , then 
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1,2
( )ϕ ρ µ′≤ N  which implies 1,2

( )ϕ µ ρ′≤ N . Because of (5) in Lemma 

3.1, there is an η∈LX such that 1,2
( )ϕ µ η≤ N  and 1,2

( )ϕ η ρ′≤ N  are 

hold. Hence, 
1,2

( )ϕ η µ′ ′≤ N  and 1,2
( )ϕ ρ η′≤ N  are also hold, that is, 

µ δ η′  and η δ ρ . Thus, (P5) holds and consequently, δ is fuzzy 
proximity on X. 

If a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
each fuzzy proximity δ on X is associated a set of all φ1,2-open fuzzy 
subsets of X with respect to δ denoted by φ1,2OF (X)δ. In this case the 
triple (X,φ1,2OF (X)δ ) as will as (X,φ1,2.intδ) is said to be characterized 
fuzzy proximity space. The related φ1,2-interior and φ1,2-closure 
operators φ1,2.intδ and φ1,2.clδ are given by: 

1,2 1,2.int = and .cl =
′ ′
∨ ∧δ δµ δ ρ µ δ ρ

ϕ µ ρ ϕ µ ρ ,              (3.5) 

respectively, for all µ∈LX. Consider the characterized fuzzy proximity 
space (X,φ1,2.intδ) be fixed and µ∈LX, then µ is said to be φ1,2δ-fuzzy 

neighborhood for the point x∈X if and only if 1δ µ′x . Moreover, the 

mapping 1,2 1,2 *: ( , .int ) ( , .int )δ δ
ϕ ψ→f X Y  is said to be φ1,2ψ1,2δ-fuzzy 

continuous, provided *η δ ρ  implies ( ) ( )η δ ρ f f  for all η,ρ ∈LY.

In the following we will show that the characterized fuzzy proximity 
space (X,φ1,2.intδ) is characterized FT0-space as in sense of [8] if and 
only if δ is separated.

Proposition 3.3

Let (X,τ) be a fuzzy topological space, 1 2 ( , )
ϕ ϕ ∈  and  is a fuzzy 

proximity on X. Then the characterized fuzzy proximity space (X,φ1,2.
intδ) is characterized FT0-space if and only if δ is separated. 

Proof: Let (X,φ1,2.intδ) is characterized FT0-space and let x,y∈X 

such that x≠y. Then 
1,2

( )δ
ϕ

≤x yN  and therefore there is µ∈LX such 

that φ1,2.intδ µ (y) >µ (x). Because of (3.4), we have ( ) > ( )
µ δ ρ

ρ µ
′
∨ y x  

and hence µ (x) > ρ (y) holds for all ρLX with µ δ ρ′ , that is, µ (x) >ρ 

(y) holds for all ρ∈∈LX with 
1,2

( )δ
ϕ

ρ µ≤ N . Choose 1=µ ′x  and 1,2 1 1( )δ
ϕ

′≤y xN , 

then because of Remark 3.1, we get 
1,2 1 1( )δ
ϕ

′≤y xN . Using Proposition 

3.2 we get 1 1x yδ  and therefore x yα βδ  holds for all α,β∈L0. Thus, δ is 
separated.

Conversely, let δ is separated fuzzy proximity and let x,y∈X such 
that x≠y. Then, 1 1x yδ  and because of Proposition 3.2 and Remark 3.1, 

we have 
1,2

( )δ
ϕ

′≤ y xN . Therefore, 1,2 .int ( ) ( )δϕ µ µ
≠

≥ ∧
z x

y z  holds for 

all µ∈LX. Consider, 1=µ ′x  we get 1,2 1.int ( ) = 1δϕ ′x y  and 1( ) = 0′x x . 

Hence, there exists 1=µ ′∈ Xx L  such that φ1,2.intδ µ (y) = 1 > µ (x), that 

is, 
1,2

( )δ
ϕ

≤x yN  and therefore (X,φ1,2.intδ) is characterized FT0-space. 

In the following proposition, the 1,2-closure of the fuzzy subsets in 
the characterized fuzzy space (X,φ1,2.intδ) are equivalent with the fuzzy 
subsets by the fuzzy proximity δ on X.

Proposition 3.4 

Let (X,τ) be a fuzzy topological space, 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  such that 

2 1 XL
ϕ ≥  and δ is a fuzzy proximity on X. Then, µδρ  if and only if 

1,2 1,2.cl .clδ δϕ µ δ ϕ ρ  for all µ, ρ ∈LX. 

Proof: Let µ, ρ ∈LX such that 1,2 1,2.cl .clδ δϕ µ δ ϕ ρ , then Proposition 

3.2 implies 1,2 1,21,2
( .cl ) ( .cl )ϕ δ δϕ ρ ϕ µ ′≤N . Since 2 1 XL

ϕ ≥  and 1,2
( )ϕ ηN  

is isotone operator, then µ ≤ φ1,2.clδ µ and 1,21,2 1,2
( ) ( .cl )ϕ ϕ δρ ϕ ρ≤N N  

are hold for all µ,ρ∈LX. Hence, 
1,2

( )ϕ ρ µ′≤ N  and therefore µ δ ρ .

Conversely, Let µ, ρ ∈LX such that µ δ ρ . Because of 

Proposition 3.2 we have 
1,2

( )ρ µ′≤ . Since 2 1 XL
ϕ ≥  and 

1,2
( )δ

ϕ
ηN  is isotone operator, then 1,2 .clδµ ϕ µ′ ′≤  holds for 

all µ′∈LX and therefore 
1,2 1,2 1,2( ) ( .cl )δ δ

δϕ ϕ
ρ µ ϕ µ′ ′≤ ≤ N N . From 

Lemma 3.1, we have 
1,2 1,2( .cl )δ

δϕ
ϕ µ ρ′≤ N  and then 

1,2 .clδρ δ ϕ µ

. Therefore, 
1,21,2 .cl ( )δ

δ ϕ
ϕ µ ρ′≤N  holds. Using Lemma 3.1 we get 

1,2 1,21,2 1,2.cl ( ) ( .cl )δ δ
δ δϕ ϕ

ϕ µ ρ ϕ ρ′ ′≤ ≤N N . Thus, 
1,2 1,2 1,2( .cl ) ( .cl )δ

δ δϕ
ϕ ρ ϕ µ ′≤ N  and 

therefore 1,2 1,2.cl .clδ δϕ µ δ ϕ ρ  for all µ,ρ∈LX.

In the following proposition, we show that the associated 
characterized fuzzy proximity space (X,φ1,2.intδ) is characterized FR2-
space if the related fuzzy topological space (X,τ) is Fφ1,2-R2 space.

Proposition 3.5 

Let (X,τ) be a fuzzy topological space, 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  and  is an fuzzy 
proximity on X. Then the associated characterized fuzzy proximity 
space (X,φ1,2.intδ) is characterized FR2-space if (X,τ) is Fφ1,2-R2 space. 

Proof: Let xX and µ ∈LX with 1,2
( )ϕ µ≤ xN . Because of Proposition 

3.2, we have µ δ ρ′  and from (P5), there is ρ∈LX such that µ δ ρ′  

and 1ρ δ′ x . Therefore Proposition 3.4 implies 1,2 1,2.cl .clδ δϕ µ δ ϕ ρ′  

and hence 
1,2 1,2 1,2( .cl ) ( .cl )δ

δ δϕ
ϕ ρ ϕ µ′ ′≤N  and 

1,2
( )δ

ϕ
ρ≤ xN  are hold. 

Hence, 1,2
( )ϕ µ≤ xN  implies there is ρ∈LX such that 

1,2
( )δ

ϕ
ρ≤ xN  

and 
1,2 1,2( .cl )δ
ϕ

ϕ ρ µ≤ N  are hold. Since (X,φ1,2.intδ) is Fφ1,2-R2 space, 

then from Theorem 3.1 in Abd-Allah [12], we have (X,φ1,2.intδ) is 
characterized FR2-space.

The binary relation << on LX is said to be fuzzy topogeneous order 
on X [23], if the following conditions are fulfilled: 

(1) ᾱ  ᾱ for all α∈{0,1}. 

(2) If µ ≪η, then µ ≤ η holds for all µ,  ∈LX. 

(3) If 1 ≤ µ ≪η ≤ η1, then µ1 ≪η1 holds. 

(4) If 1 ≪η1 and µ2 ≪η2, then µ1 ∧µ2 ≪η1 ∧η2 and µ1 ∨µ2 ≪η1 ∨η2 are 
hold for all µi,ηj∈LX, where i,j∈{1,2}. 

The fuzzy topogeneous order ≪ is said to be fuzzy topogeneous 
structure if it fulfilled the condition: 

(5) If  ≪η, then there is σ∈LX such that  <<σ and σ <<η are hold for 
all µ,η∈LX. 

The fuzzy topogeneous structure ≪ is said to be fuzzy topogenous 
complementarily symmetric if it fulfilled the condition: 

(6) If  <<η, then η′ <<µ holds for all µ,η∈LX. 

As shown in Katsaras [23], every fuzzy topogeneous structure ≪ 
is identify with the mapping N: LX → P (LX) such that η∈N (µ) if and 
only if µ <<η holds for all µ,η∈LX. The fuzzy topogeneous structures are 
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classified by these mappings. As is easily seen, each fuzzy topogeneous 
order N can be associated a fuzzy pre topology intN on a set X by 
defining 

( )
=int

µ η
µ η

∈
∨N
N

 for all µ ∈LX. In case of N is fuzzy topogeneous 

structure, intN is interior operator for fuzzy topology τN on X associated 
toN. Obviously, there is an identification between the fuzzy proximity δ 
and the complementarily symmetric fuzzy topogenous structure ≪ on 
the same set X given by: 

′ ⇔µ η µ δ η

,                   (3.5)

for all µ,η∈∈LX. If =1{ }n n
∞

  is a sequence of fuzzy topogenous structure 

on the set X and =1{ }n n
∞

  is a sequence of fuzzy topogenous structure on 
IL, then the fuzzy real function f : X → IL is said to be associated with the 
sequence =1{ }n n

∞
  if and only if η n ρ implies that 1( ) ( )nf fη ρ+   

holds for all , ILLη ρ ∈  and n∈+, where + is the set of all positive 
integer numbers.

Remark 3.2

Given that =1{ }n n
∞



 and =1{ }n n
∞



 are two sequence of 
complementarily symmetric fuzzy topogenous structures ≪ and  on 
X and IL, respectively. If δ and δ* are two fuzzy proximities on X and 
IL identified with δ and δ* by the equation (3.5), then the associated 
fuzzy real function 1,2 1,2 *: ( , .int ) ( , .int )δ δ

ϕ ϕ→f X Y  with the 
complementarily symmetric fuzzy topogenous structures ≪ is φ1,2ψ1,2δ-
fuzzy continuous, because from (3.5) we get that *ηδ ρ  implies 
( ) ( )η δ ρ f f  for all , ILLη ρ ∈ .

Lemma 3.2

Consider ≪n for n {0,1,…,} are complementarily symmetric fuzzy 
topogenous structures on a set X. Then, for each F,G∈P (X) such that 
χF ≪0 χG there exists a fuzzy real function f : X → IL associated with the 
sequence =0{ }n n

∞
  for which ( ) = 0f x  for all xF and ( ) = 1f y  for all 

yG′ [23].

Because of equation (3.5), Remark 3.2 and Lemma 3.2, we can 
easily deduce the following proposition.

Proposition 3.6 

Let (X,φ1,2.intδ) is a characterized fuzzy proximity space and F,G∈P 

(X) such that F Gχ δχ . If Φ is the family of all1,2ψ1,2δ-fuzzy continuous 

mappings 1,2 1,2 *: ( , .int ) ( , .int )δ δ
ϕ ψ→ Lf X I for which x ∈X implies 

0 ( ) 1f x≤ ≤ , then χF and χG are Φ-separable. 

Proof: Let ≪ be a complementarily symmetric fuzzy topogenous 
structure identified with δ. Because of (3.5), F Gχ δχ  implies that. Since 
f ∈ Φ is φ1,2ψ1,2δ-fuzzy continuous, then because of Remark 3.2, we have 
that f is associated with ≪. Hence, Lemma 3.2 implies that χF and χG are 
separated by f and therefore χF and χG are Φ-separable.

Proposition 3.7 

Let (X,ψ1,2,intδ) and 1,2 *( , .int )
δ

ψY  are two characterized fuzzy 

proximity spaces. If the mapping 1,2 1,2 *: ( , .int ) ( , .int )δ δ
ϕ ψ→f X Y  is 

1,2ψ1,2δ-fuzzy continuous, then the mapping f: (X,φ1,2.int) → (X,ψ1,2.int) 
is φ1,2ψ1,2-fuzzy continuous. 

Proof: Similar to the proof of Proposition 11.2 in Gähler [13].

In the following we are going to show an important relation 

between the associated characterized fuzzy proximity space and the 
characterized FR3-space.

Proposition 3.8 

Let (X,τ) be a fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  such that 
2 1 XL

ϕ ≥  is isotone and φ1 is wfip with respect to φ1OF (X), where L is 
complete chain. If (X,τ) is a fuzzy normal topological space, then the 
binary relation δ on X which is defined by: 

1,2 1,21,2
( .cl ) ( .cl )′⇔ ≤ 

ϕµ δ ρ ϕ µ ϕ ρN ,                 (2.6)

for all µ,ρ∈LX is a fuzzy proximity on X and (X,δ) is a fuzzy proximity 
space. On other hand if (X,δ) is a fuzzy proximity space with δ 
fulfills (3.6), then the associated characterized fuzzy proximity space 
(X,ψ1,2,intδ) is characterized FR3-space. 

Proof: Let (X,τ) is fuzzy normal topological space and δ 

a binary relation on X defined by (3.6). Then, µ δ ρ  implies 

1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ ρ ′≤ N  and from Lemma 3.1 part (1) we get 

1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ ρ ϕ µ ′≤ N  and then ρδ µ . Hence, condition (P1) 

is fulfilled. For showing condition (P2), let ( )µ ρ δ η∨  for a fixed 

fuzzy subsets µ,ρ,η∈LX. Then, 1,2 1,21,2
( .cl( )) ( .cl ) .ϕ ϕ µ ρ ϕ η ′∨ ≤ N  

Since L is complete chain, 2 1 XL
ϕ ≥  is isotone and φ1 is wfip with 

respect to φ1OF(X), then 1,2 1,2 1,2.cl( ) .cl .clϕ µ ρ ϕ µ ϕ ρ∨ = ∨  and 

therefore 1,2 1,2 1,21,2
( .cl .cl ) ( .cl )ϕ ϕ µ ϕ ρ ϕ η ′∨ ≤ N . Because of Lemma 3.1 part 

(3), we have 1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ η ′≤ N  and 1,2 1,21,2

( .cl ) ( .cl )ϕ ϕ ρ ϕ η ′≤ N  

are hold and therefore µ δ η  and ρ δ η . Thus, ( )µ ρ δ η∨  

implies µ δ η  and ρ δ η . On the other hand let µ δ η  and 
ρ δ η . Then from Lemma 3.1 we have tha the inequalities

1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ η ′≤ N  and 1,2 1,21,2

( .cl ) ( .cl )ϕ ϕ ρ ϕ η ′≤ N  are hold and 

therefore 1,2 1,2 1,2 1,21,2 1,2 1,2
( .cl( )) = ( .cl ) ( .cl ) ( .cl ) ,ϕ ϕ ϕϕ µ ρ ϕ µ ϕ ρ ϕ η ′∨ ∧ ≤ N N N  

that is, µ δ η  and ρ δ η  imply ( )µ ρ δ η∨ . Hence, (P2) is fulfilled. 

Now, let µ, ρ ∈LX such that = 0µ  or = 0ρ . Since 1,2
(0)ϕN  is 

the finest fuzzy filter on X and from the fact 1,2 .cl 0 = 0ϕ , we get 

1,2 1,21,2 1,2
(0) = ( .cl 0) ( .cl )ϕ ϕ ϕ ϕ ρ ′≤ N N  holds for all ρ∈LX. Thus, 0 δ ρ  

for all ρ∈LX. Since = 0µ  or = 0ρ , then we have µδ ρ , that is, 

(P3) is also fulfilled. Since µδ ρ  implies 1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ ρ ′≤ N  

which means by the inequality 1,2 1,21,2
( .cl ) ( .cl )ϕϕ µ ϕ µ≤ N  that 

1,2 1,2( .cl ) ( .cl )ϕ µ ϕ ρ ′≤  . Because of Proposition 2.1 and the fact that φ1,2.
cl is hull operator we get 1,2 1,2.cl ( .cl )µ ϕ µ ϕ ρ ρ′ ′≤ ≤ ≤ . Thus, (P4) is 

fulfilled. Let µ, ρ ∈LX such that ,µ δ ρ then 1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ ρ ′≤ N . 

Consider, 0 1,2= ( .cl )ϕ µF S , hence F∈φ1,2C(X) and therefore 1,2
( )ϕ ≤FN

1,2( .cl )ϕ ρ ′  holds. Since (X,τ ) is characterized fuzz normal space, then 

from Theorem 3.2 in Abd-Allah [12], there exists η′∈LX with arbitrary 
choice such that 

1,2
( )ϕ η′≤ FN  and 1,2 1,21,2

( .cl ) ( .cl )ϕ ϕ η ϕ ρ′ ′≤ N  are 

hold. Therefore, there exists  ∈LX such that 1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ η ′≤ N  

and 1,2 1,21,2
( .cl ) ( .cl )ϕ ϕ µ ϕ η ′≤ N , which means that µ δ η  and η δ ρ′ . 

Hence, (P5) is also fulfilled. Consequently, δ is a fuzzy proximity on X.

Conversely, let F1, F2 ∈ φ1,2C(X) such that F1 ∩ F2 = ∅. Then, 1 2′⊆F F  

and therefore 
2 21

=χ χ χ′ ′≤  F F F . Hence because of Lemma 3.1 part (1) we 
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have 
11,2 2

( )δ
ϕ

χ χ′≤ F FN . Since F1, F2 ∈φ1,2C(X), then 
1,2 1,2 2

( .cl ) =δ
δϕ

ϕ χFN  

11,2 1,22 1
( ) = ( .cl )δ

δϕ
χ χ ϕ χ′ ′≤ 

F F FN and therefore 
1 2F Fχ δ χ . From (P5), there 

exists ρ∈LX such that 
1,2 2

( ) =δ
ϕ

χFN  
1,2 2( )δ
ϕ

ρ≤ FN and 
11,2 1( ) =δ

ϕ
ρ χ′ ′≤ F FN  

are hold. Because of Lemma 3.1 part (1), we have 
1,2 1( )δ
ϕ

ρ′≤ FN . Hence, 

1,2 1,21 2( )( ) ( )( ) ( ) ( )δ δ
ϕ ϕ

µ η ρ µ ρ η′ ′∧ ≥ ∧ F FN N  holds for all. Consider 

12
= =F xη χ ρ∨  and 12

= ( ) =F xµ χ ρ′ ′∨  for all '
1 2\x F F∈ , then 

we get sup(µ∧) = 0 and 
1,2 1,21 2( )( ) ( )( ) 0δ δ
ϕ ϕ

µ η∧ ≥F FN N . Hence, there 

exist µ,η∈LX such that 
1,2 1,21 2( )( ) ( )( ) sup( )δ δ
ϕ ϕ

µ η µ η∧ ≥ ∧F FN N , that 

is, the infimum 
1,2 1,21 2( ) ( )δ δ
ϕ ϕ

∧F FN N  does not exists. Consequently, 

(X,ψ1,2.intδ) is characterized FR3-space.

In the following we are going to show an important relation 
between the associated characterized fuzzy proximity space (X,ψ1,2.
intδ) by the fuzzy proximity δ defined by (3.6) and the associated 
characterized fuzzy space (X,ψ1,2.int) that introduced form the fuzzy 
normal topological space (X,τ).

Proposition 3.9 

Let (X,τ) is a fuzzy normal topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  
such that 2 1 XL

ϕ ≥  is isotone and φ1 is wfip with respect to φ1OF (X). 
If δ is the fuzzy proximity on X defined by (3.6) and L is a complete 
chain, then (X,φ1,2.intτ) is finer than (X,φ1,2.intδ). Moreover, (X,φ1,2.intτ ) 
= (X,φ1,2.intδ) if and only if (X,φ1,2.intτ) is characterized FR4-space. 

Proof: Let (X,τ) is fuzzy normal topological space and µ is φ1,2δ-
fuzzy neighborhood for the point xX, then 1δ µ′x  and because 

of (3.6), we have 1,2 1 1,21,2
( .cl ) ( .cl )ϕ τ τϕ ϕ µ′ ′≤ xN . Therefore, 

1,21,2 1,2
( ) ( .cl { }) =ϕ ϕ τϕ≤ ≤x x xN N  1,2 1 1,21,2

( .cl ( )) ( .cl ) .xϕ τ τϕ ϕ µ µ′ ′≤ ≤

N  

Because of Proposition 2.1, we get 1 1,2( .cl )τϕ µ µ′ ′≤ ≤ x  and 

1,2( .cl )τϕ µ′ ′∈ 1,2 ( )ϕ OF X . Then, µ is 1,2-fuzzy neighborhood of x and 

therefore the family (φ1OF (X))δ is coarser than the family (φ1OF (X)), 
that is, (X,φ1,2.intτ) is finer than (X,φ1,2.intδ).

Now, let (X,φ1,2.intτ) is characterized FR4-space,
1,2ϕN and 

1,2
( )δ

ϕ
xN  denote for the φ1,2-fuzzy neighborhood filters at x in 

the characterized fuzzy space (X,φ1,2.intτ) and in the associated 
characterized fuzzy proximity space (X,φ1,2.intδ), respectively. 
Then, (X,φ1,2.intτ) is characterized FR3 and FR1-space. Therefore, 

1,2 1,2( ( )) ( ( ))OF X OF Xδϕ ϕ⊆  and 
1,21,2

( ) ( )δ
ϕ ϕ

≤x xN N  holds for all y 

≠ x in X. Hence, 1,21,2
( ) ( )δ

ϕ ϕ
≤x xN N  holds for all x∈X and then 

1,2 1,2
( ) ( )δ

ϕϕ
≥ ≤ x x yN N  holds for all y ≠ x in X. Because of Lemma 

2.1, we have that 
1,2

( )δ
ϕ

≤ x yN  holds for all y ≠ x in X and therefore 
(X,φ1,2.intδ) is characterized FT1-space. Because of Proposition 2.4 
and Lemma 2.2, we get 1,2 1 1.cl ( ) =τϕ x x  for all x∈X and therefore x1∈ 
(φ1,2CF (X))δ for all xX. Consider µ is the φ1,2-fuzzy neighborhood of 
x in (X,φ1,2.intτ), then 1xµ′ ′≤  and since 1 1,2( ( ))δϕ′∈x OF X , then 1′x  is a 

1,2-fuzzy neighborhood for every y∈X such that 1 µ′≤y . Thus, 1µ δ′ x  
and hence µ is φ1,2δ-fuzzy neighborhood of x in (X,φ1,2.intδ). Thus, (φ1,2OF 
(X)) ⊆ (φ1,2OF (X))δ, that is, 

1,2 1,2
( ) ( )δ

ϕϕ
≤x xN N  holds for all x∈X and 

therefore (X,φ1,2.intδ) is finer than (X,φ1,2.intτ). Consequently, (X,φ1,2.
intτ) is characterized FR4-space implies that (X,φ1,2.intτ ) = (X,φ1,2.intδ).

Conversely, let (X,φ1,2.intτ ) = (X,φ1,2.intδ), x∈X and µ is φ1,2-fuzzy 
neighborhood of x in (X,φ1,2.intτ). Then, µ ∈ (φ1,2OF (X))δ and x1 ≤ µ, this 

means that 1,2 1 1,2 1 1,21,2
( .cl ) ( .cl ) ( .cl ) .ϕτ τ τϕ ϕ ϕ µ µ′ ′≤ ≤ ≤ 

x xN  Because 
of Proposition 2.1, we get 1,2 1.clτϕ µ≤x and therefore 1,2 1 1.clτϕ ≤x x
holds for all x∈X. Thus, 1,2 1 1.clτϕ =x x for all x∈X. Hence, Proposition 
2.4 implies that, (X,φ1,2.intτ) is characterized FR1-space. Because 
of Proposition 3.7, (X,φ1,2.intδ) is characterized FR3-space and the 
hypothesis that (X,φ1,2.intτ ) = (X,φ1,2.intδ), implies that (X,φ1,2.intτ) is 
characterized FR3-space. Consequently, (X,φ1,2.intτ) is characterized 
FR4-space.

In the following we are going to introduce some important 
relations joining our characterized 1

22 -FR spaces, characterized 1
22 -FT

spaces and the associated characterized fuzzy proximity spaces.

Proposition 3.10 

Let (X,τ) be an fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . If δ 
is an fuzzy proximity on X, then the associated characterized fuzzy 
proximity space (X,φ1,2.intδ) is characterized 1

22 -FR space.

Proof: Let xX and Fφ1,2C (X) such that xÏF. Since Fχ ′  is 1,2δ-fuzzy 
neighborhood of x, then 1δ χFx . Because of Proposition 3.2, we 
get that x1 and χF are Φ-separated by the φ1,2ψ1,2δ-fuzzy continuous 

mapping 1,2 1,2 *: ( , .i ) ( , .i )Lf X nt I ntδ δ
ϕ ψ→ for which 0 ( ) 1f x≤ ≤ , 

that is, ( ) = 1f x  and ( ) = 1f y  for all y∈F. Consequently, (X,φ1,2.intδ) 
is characterized 1

22 -FR space. 

Corollary 3.1

Let (X,τ) be a fuzzy topological space, 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈  and δ is 
a fuzzy proximity on X. Then the associated characterized fuzzy 
proximity space (X,φ1,2.intδ) is characterized 1

22 -FT space. 

Proof : Immediately from Propositions 2.4 and 3.10.

Now, we introduce an example of an fuzzy proximity δ on a set 
X and show that it is induces an associated characterized 1

22 -FT space 
compatible with the related characterized fuzzy space.

Example 3.1 
Let 1= {0, ,1}2L , X = {x,y} and 1 1= {1, 0, , }x y  is a fuzzy topology 

on X. Choose φ1 = intτ,, φ2 = clτ, ψ1 = intI, and ψ2 = cl. Hence, x ≠ y 
and there is only two cases, the first is xÏ F = {y}∈φ1,2C(X) and the 
second is y Ï F = {x} ∈φ1,2C (X). We shall consider the first case and 
the second case is similar. Consider the mapping f : (X,φ1,2.intτ ) → 
(IL,ψ1,2.intI) defined by ( ) = 1f x  and ( ) = 0f y , then f is 1,2ψ1,2-fuzzy 
continuous and therefore (X,φ1,2.intτ) is characterized 1

22 -FR space and 
obviously (X,φ1,2.intτ) is also characterized FR1-space, that is, (X,φ1,2.intτ ) is 
characterized 1

23 -FT space. Now, consider δ is a binary relation on LX 
defied as follows: 

1,2 1,2 -µδ η ϕ ψ⇔ ∃ fuzzy continuous mapping f : (X,φ1,2.intτ ) → 

(IL,ψ1,2.intI) ( ) = 1 for all∋ ∈f x x X

1 1with and ( ) = 0 for all ,µ η≤ ≤x f y y  

for all µ,η∈LX. Hence obviously, δ is a fuzzy proximity on X and (X,φ1,2.
intτ) = (X,φ1,2.intδ), that is, the associated characterized fuzzy proximity 
space (X,φ1,2.intδ) with δ is characterized 1

23 -FT  space and compatible 
with (X,φ1,2.intτ).

Some Relations between Characterized FTs and 
Characterized Fuzzy Compact Spaces

The notion of φ1,2-fuzzy compactness of the fuzzy filters and of 
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the fuzzy topological spaces are introduced by Abd-Allah in [7] by 
means of the φ1,2-fuzzy convergence in the characterized fuzzy spaces. 
Moreover, the fuzzy compactness in the characterized fuzzy spaces is 
also introduced by means of the φ1,2-fuzzy compactness of the fuzzy 
filters and therefore it will be suitable to study here the relations 
between the characterized fuzzy compact spaces and some of our 
classes of separation axioms in the characterized fuzzy spaces.

Let (X,τ) be an fuzzy topological space, F ⊆ X and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
x∈X is said to be φ1,2-adherence point for the fuzzy filter M on X [7], 
if the infimum 

1,2
( )ϕ∧ xM N  exists for all φ1,2-fuzzy neighborhood 

filters 1,2
( )ϕ xN  at x∈X. As shown in Abd-Allah [7], the point x∈X 

is said to be φ1,2-adherence point for the fuzzy filter M on X if and 

only if there exists an fuzzy filter K∈FLX finer than M and 
1,2 .int ,xϕ→K  

that is, K ≤ M and 
1,2

( )ϕ≤ xNK  are hold for some K∈FLX. The 

subset F of X is said to be φ1,2-fuzzy closed with respect to φ1,2.int if 

1,2
( )ϕ≤ xM N  implies x∈F for some M∈FLF. The subset F is said to 

be φ1,2-fuzzy compact [7], if every fuzzy filter on F has a finer φ1,2−fuzzy 
converging filter, that is, every fuzzy filter on F has φ1,2-adherence point 
in F. Moreover, the fuzzy topological space (X,τ) is said to be φ1,2-fuzzy 
compact if X is φ1,2-fuzzy compact. More generally, the characterized 
fuzzy space (X,φ1,2.int) is said to be fuzzy compact space if the related 
fuzzy topological space (X,τ) is φ1,2-fuzzy compact.

At first, in the following we shall benefit from these facts. 
Consider the fuzzy unit interval topological space (IL,ℑ) be given and 

1 2 ( , ), IL
Oψ ψ ℑ∈ . Then: 

(1) The usual topological space (I,TI) and the ordinary characterized 
usual space 1,2( , .int )ψ

ITI  on the closed unite interval I = [0,1] are ψ1,2-
compact T2 space and characterized compact T2-space, respectively in 
the classical sense. 

(2) The closed unite interval I is identified with the fuzzy number 
[0,1]~ in Gähler [24] defined by [0,1]~ (α) = 0 for all α ∈ I and [0,1]~ (α) 
= 0 for all α Ï I. 

(3) The characterized fuzzy unite space (IL,ψ1,2.intℑ) is up to an 
identification the characterized usual space 1 2 ( , )

, XL
O

τ
ϕ ϕ ∈ in the classical 

sense. 

In the following proposition, we show that every φ1,2-fuzzy compact 
subset in the characterized FT2–space (X,φ1,2.intτ) is φ1,2-fuzzy closed 
with respect to the φ1,2-interior operator φ1,2.intτ.

Proposition 4.1 

Let a fuzzy topological space (X,τ) be fixed and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . 
Then every φ1,2-fuzzy compact subset of the characterized FT2-space is 
1,2-closed.

Proof: Let (X,φ1,2.intτ) is characterized FT2-space and F is φ1,2-fuzzy 
compact subset of X. Then, for all M ∈ FLF, there exists K ∈ FLF such 
that K ≤ M and 

1,2
( )ϕ≤ xNK  for some x∈F. Since K ∈ FLF ≤ FLX 

and (X,φ1,2.intτ) is characterized FT2-space, then 1,2
( )ϕ≤ xNK  and 

1,2
( )ϕ≤ yNK  imply that x = y. Therefore, y∈F for some K ∈ FLF. 

Hence, F is φ1,2-fuzzy closed with respect to 1,2.intτ.

Proposition 4.2

Let (IL,ℑ) be a fuzzy unit interval topological space and 

1 2
( , )

, ILL
Oψ ψ

ℑ
∈ . Then the characterized fuzzy unit interval space 

(IL,ψ1,2.intI) is characterized fuzzy compact FT2-space.

Proof: Let 1,2( , .int )ψ
ITI  be an ordinary characterized usual space. 

Then, 1,2( , .int )ψ
ITI  is characterized compact space in the classical 

sense, that is, every filter on I has ψ1,2-adherence point. Consider the 
mapping 1,2 1,2: ( , .int ) ( , .int )ψ ψ ℑ→T LI

f I I  defined by: ( ) =f α α  for 

all α∈I, then it is easily to seen that f is ψ1,2ψ1,2-fuzzy homeomorphism 
between 1,2( , .int )ψ

ITI  and (IL,ψ1,2.intI). Therefore, (IL,ψ1,2.intI) is 
characterized fuzzy compact space. Since (I,TI) is ψ1,2T2 -space, then 

1,2( , .i )TI
I ntψ  is characterized FT2-space and therefore by using the 

same 1,2ψ1,2-fuzzy homeomorphism, we have for all , LIα β ∈  such 

that α β≠ 
, the infimum 

1,2 1,2
( ) ( )ψ ψα β∧ 

N N  does not exists. 

Consequently, (IL,ψ1,2.intI) is characterized FT2-space and therefore 
(IL,ψ1,2.intI)is characterized fuzzy compact FT2-space.

Now, we are going to prove an important relation between the 
characterized compact FT2-spaces and the characterized FT4-spaces. 
For this reason at first, we give a new property for the characterized 
FT2-spaces by using the φ1,2-fuzzy neighborhood filters for the fuzzy 
subsets.

Proposition 4.3

Let (X,τ) be n fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
every disjoint φ1,2-fuzzy compact subsets F1 and F2 of in the characterized 
FT2-space (X,φ1,2.intτ) have two disjoint φ1,2-fuzzy neighborhood filters 

11,2
( )ϕ FN  and 21,2

( )ϕ FN  for which F1 and F2 are separated by them. 

Proof: Let F1 and F2 are two φ1,2-fuzzy compact subsets of the 
characterized FT2-space (X,φ1,2.intτ) such that F1 ∩ F2 = ∅. Then, for all 
Mi ∈ FLFi there exists Ki ∈FLFi such that Ki ≤ Mi and 

1,2
( )ϕ≤

i ixNK  
for some xiFi, where i∈{1,2}. Since FLFi ≤ FLX for all i∈{1,2}, then 
we can say that 

1,2 1,2
( ) ( )ϕ ϕ≤ ≤

i i ix FN NK  and therefore there is 

1 2= ∧ ∈ L XFK K K such that 
1,2

( )ϕ≤ ixNK  for some xi  Fi. Since 

(X,φ1,2.intτ) is characterized FT2-space, then x1 = x2 which contradicts 

F1 ∩ F2 = ∅. Hence, for every L ∈FLX we get 11,2
( )ϕ≤/ FL N  or 

21,2
( )ϕ≤/ FL N  which means that the infimum 1 21,2 1,2

( ) ( )ϕ ϕ∧F FN N  
does not exists and therefore F1 and F2 can be separated by two disjoint 
φ1,2-fuzzy neighborhood filters.

Secondly, the notion of the fuzzy compactness for the characterized 
fuzzy spaces fulfills the following property which will be also used in 
the prove of this important result which given in Proposition 4.4.

Lemma 4.1

Let (X,τ) be a fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
every φ1,2-fuzzy closed subset of the characterized fuzzy compact space 
(X,φ1,2.intτ) is φ1,2-fuzzy compact. 

Proof: Let F is φ1,2-fuzzy closed subset of the characterized fuzzy 
compact space (X,φ1,2.intτ) and let M ∈FLF. Then, 

1,2
( )ϕ≤ xM N  

implies that x∈F. Since FLF ≤ FLX, then M∈FLX and hence there exists 
K∈FLX such that K ≤ M and 1,2

( )ϕ≤ xNK . Since M ∈ FLF and 

K ≤ M, then K ∈FLF. Thus, for all M ∈FLF we get K ≤ M such that 

1,2
( )ϕ≤ xNK . Therefore, x∈F is φ1,2-adherence point of M, that is, F 

is φ1,2-fuzzy compact.
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Proposition 4.4 

Let (X,τ)be an fuzzy topological space and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then every 
characterized fuzzy compact FT2-space (X,φ1,2.intτ) is characterized 
FT4-space. 

Proof: Follows directly from Lemma 4.1 and Proposition 4.3.

One of the application of Proposition 4.4, we have more generally 
the following result to the characterized fuzzy unit interval space.

Proposition 4.5

Let (IL,ℑ) be an fuzzy unit interval topological space and 
1 2

( , )
, ILL

Oψ ψ
ℑ

∈ . Then the characterized fuzzy unit interval space 

(IL,ψ1,2.intI) is characterized 1
23 -FT space. 

Proof: Because of Proposition 4.2, the characterized fuzzy unit 
interval space (IL,ψ1,2.intI) is characterized fuzzy compact FR2-space. 
Therefore from Proposition 4.4, we get (IL,ψ1,2.intI) is characterized FR4-
space. Hence, Proposition 4.6 in Abd-Allah [11] gives us that, (IL,ψ1,2.
int I) is characterized 1

23 -FT space.

The φ1,2-fuzzy compactness in the characterized fuzzy spaces is 
applied to fulfilled the Generalized Tychonoff Theorem [11] and from 
(2) in Proposition 2.6, the characterized fuzzy product space of the 
characterized FR2-spaces is also characterized FR2-space. Hence, by 
means of Propositions 4.2 and 4.4, the following result goes clear.

Proposition 4.6 

Let (IL,ℑ) be a fuzzy unit interval topological space and 
1 2

( , )
, ILL

Oψ ψ
ℑ

∈ . Then the characterized fuzzy cube is characterized 

FT2-space and it is characterized FT4-space. 

Proof: Since the characterized fuzzy cube is product of copies of 
the characterized fuzzy unit interval space (IL,ψ1,2.int ℑ) and by means of 
Proposition 4.2, (IL,ψ1,2.int ℑ) is characterized fuzzy compact FT2-space. 
Then because of Proposition 2.6, part (3) and Generalized Tychonoff 
Theorem in Abd-Allah [11], it follows that, the characterized fuzzy 
cube is characterized FT2-space. Moreover, Proposition 5.1, it follows 
that the characterized fuzzy cube is characterized FT4-space.

Lemma 4.2 

Let (X,τ) and (X,σ) are two fuzzy topological spaces such that τ 
is finer than σ If 1 2 ( , )

, XL
O

τ
ϕ ϕ ∈

), 1 2 ( , )
,

σ
ψ ψ ∈ XL

O and (X,ψ1,2. intσ) is 
characterized fuzzy compact space, then (X,φ1,2.intτ) s also characterized 
fuzzy compact space. 

Proof: Let 
1,2

( )ϕ xN  and 
1,2

( )ψ xN  are the φ1,2-fuzzy neighborhood 

and ψ1,2-fuzzy neighborhood at x with respect to ψ1,2.intτ and ψ1,2.intσ, 
respectively. Since τ is finer than σ, then 

1,21,2
( ) ( )ϕψ ≤x xN N  for all 

x∈X. Because of ψ1,2,intσ, is characterized fuzzy compact space, then for 

all M∈FLX, there exists K ∈ FLX such that K ≤ M and 
1,2

( )ψ≤ xNK  

for all x  X. Therefore 1,2
( )ϕ≤ xNK  for all x  X. Consequently, (X,φ1,2.

intτ) is characterized fuzzy compact space.

Proposition 4.7

Let (X,τ) and (X,σ) are two fuzzy topological spaces such that  is 
finer than 1 2 ( , )

, XL
O

τ
ϕ ϕ ∈ and 1 2 ( , )

,
σ

ψ ψ ∈ XL
O . If (X,ψ1,2.intσ) is 

characterized fuzzy compact space and (X,φ1,2.intτ) is characterized FT2-
space, then (X,φ1,2.intτ) and (X,ψ1,2.intσ) are φ1,2ψ1,2-fuzzy isomorphic. 

Proof: Since τ is finer than σ, then ψ1,2.intσ ≤ φ1,2.intτ. Hence, because 
of Proposition 2.5, (X,ψ1,2.intσ) is characterized FT2-space. From Lemma 
4.2, we have (X,φ1,2.intτ) is characterized fuzzy compact space. Hence, 
we can find the identity mapping idX : (X,φ1,2.intτ) → (X,ψ1,2.intσ) which 
is bijective φ1,2ψ1,2-fuzzy continuous and its inverse is φ1,2ψ1,2-fuzzy 
continuous, that is, idX is φ1,2ψ1,2-fuzzy isomorphism. Consequently, 
(X,φ1,2.intτ) and (X,ψ1,2.intσ) are φ1,2ψ1,2-fuzzy isomorphic.

Proposition 4.8 

Let (X,τ) be a fuzzy topological spaces and 1 2 ( , )
, XL

O
τ

ϕ ϕ ∈ . Then 
every characterized fuzzy compact space (X,φ1,2.intτ) is characterized 
FT2-space if and only if it is characterized 1

23 -FT space. 

Proof: Let (X,φ1,2.intτ) is characterized fuzzy compact FT2-space. 
Because of Proposition 4.4 we have (X,φ1,2.intτ) is characterized FT4-
space and therefor Proposition 4.6 in Abd-Allah S [11], implies that 
(X,φ1,2.intτ) is characterized 1

23 -FT space. Conversely, let (X,φ1,2.intτ) 
is characterized 1

23 -FT space, then because of Proposition 3.2 in Abd-
Allah [11] and part (1) of Proposition 2.6, it follows that (X,φ1,2.intτ) is 
characterized fuzzy compact FT2-space.

From Lemma 4.2 and Corollary 3.3 in [22], we can prove the 
following result.

Proposition 4.9

Let (X,τ) and (X,σ) are two fuzzy topological spaces such that τ 
is finer than σ, 1 2 ( , )

, XL
O

τ
ϕ ϕ ∈ and 1 2 ( , )

,
σ

ψ ψ ∈ XL
O . If (X,φ1,2.intτ) is 

characterized fuzzy compact space and (X,ψ1,2.intσ) is characterized 
1
23 -FT space, then (X,φ1,2.intτ) and (X,ψ1,2.intσ) are φ1,2ψ1,2-fuzzy 

isomorphic. 

Proof: Follows directly from Corollary 3.3 in [22] and Lemma 4.2 
similar to the proof of Proposition 4.7. 

Some Relations Between Characterized FTs, Characterized 
FRk and Characterized Fuzzy Uniform Spaces

In this section, we are going to investigate and study the relations 
between the characterized FTs-spaces, the characterized FTk-spaces and 
the characterized fuzzy uniform spaces presented in Abd-Allah [12]. 
For this, we applied the notion of homogeneous fuzzy filter at the point 
and at the fuzzy set which is defined by (2.1), the superior principal 
fuzzy filter [µ] generated by µ∈LX and the φ1,2-fuzzy neighborhoods 
at the fuzzy set µ which is defined by (3.1) in the characterized fuzzy 
space (X,φ1,2.intτ). Specially, the relation between the separated fuzzy 
uniform spaces, the associated characterized fuzzy uniform FTs-spaces, 
the associated characterized uniform 1

22 -FR space and the Fφ1,2Ts-
space which introduced by Abd-Allah and Abd-Allah et al. in [8,11] 
are investigated for all 1{0,1,3 }2∈s .

By the fuzzy relation on the set X, we mean the mapping R : X×X 
→ L, that is, any fuzzy subset of X×X. For each fuzzy relation R on X, 
the inverse R–1 of R is the fuzzy relation on X defined by R–1 (x,y) = R 
(y,x) for all x,y∈X. Let U be a fuzzy filer on X×X. The inverse U –1 of U 
is a fuzzy filter on X×X defined by U –1 (R) = U (R–1) for all RLX×X. The 
composition R1 ᴼ R2 of two fuzzy relations R1 and R2 on the set X is a 
fuzzy relation on X defined by: 

1 2 2 1( )( , ) = ( ( , ) ( , ))
∈

∧∨

z X
R R x y R x z R z y

for all x,y∈X. For each pair (x,y) of elements x and y of X × X, the 
mapping (x,y)⋅ : LX×X → X defined by: (x,y)⋅ (R) = R (x,y) for all R ∈ X × X 
is a homogeneous fuzzy filter on X × X. Let U and V are fuzzy filers on 
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X × X such that (x,y). ≤ U and (y,z). ≤ V hold for some x,y,z∈X. Then the 
composition V ᴼ U of V and U is a fuzzy filter [13] on X × X defined by: 

1 2
2 1

( )( ) = ( ( ) ( ))
≤

∧∨




R R R
R R RV U U V

for all R ∈ LX×X.

By the fuzzy uniform structure U on a set X [13], we mean a fuzzy 
filter on X × X such that the following axioms are fulfilled: 

(U1) (x,x). ≤ U for all x ∈ X. 

(U2) U = U –1. 

(U3) U ᴼ U ≤ U. 

The pair (X,U) is called fuzzy uniform space. The fuzzy uniform 
structure U [13] on a set X is said to be separated if for all x,y∈X with 
xÏy there is R ∈ LX×X such that U (R) = 1 and R (x,y) = 0. In this case 
the fuzzy uniform space (X,U) is called separated fuzzy uniform space. 
Let U is a fuzzy uniform structure on a set X such that (x,x).≤ U holds 
for all x∈X and let M ∈ FLX then the mapping U[M]: LX → L which is 
defined by: 

( )
[ ]( ) = ( ( ) ( ))

η µ
µ η

≤
∧∨

R
RU M U M

for all µ∈LX is a fuzzy filter on X, called the image of M with respect 
to the fuzzy uniform structure U[13], where η,R[η]∈ LX such that 

[ ]( ) = ( ( ), ( , )).η η
∈
∨
y X

R x y R y x

Each fuzzy uniform structure U on the set X is associated a 
stratified fuzzy topology τU on X. Consider 1 2 ( , )

,
τ

ϕ ϕ ∈ XL
O

U
, then the 

set of all φ1,2-open fuzzy subsets of X related to τU forms a base for an 
characterized stratified fuzzy space on X generated by the φ1,2-interior 
operator with respect toτU denoted by φ1,2.intU and (X,φ1,2.intU) is the 
related stratified characterized fuzzy space. In this case, (X,φ1,2.intU) will 
be called the associated characterized fuzzy uniform space [12] which is 
stratified. The related φ1,2-interior operator φ1,2.intU is given by: 

(φ1,2.intUµ) (x) = U[ẋ](µ)                 (5.1)

for all x∈X and µ∈LX. The fuzzy set µ is said to be φ1,2U–fuzzy 
neighborhood of x∈X in the associated characterized fuzzy uniform 
space (X,φ1,2.intU), provided [ ] µ≤ xU . Because of (2.1), (3.1) and 
(5.1) we have that 

1,2 1,2
[ ] = ( ) and [ ] = ( ) x xϕ ϕµ µU N U N                  (5.2) 

for all x∈X and µ∈LX. In this case
1,2

( )ϕ xN and
1,2

( )ϕ µN are the φ1,2-fuzzy 

neighborhood filters of the associated characterized fuzzy uniform 
space (X,φ1,2.intU) at x and µ, respectively.

Proposition 5.1 

Let X be a non-empty set, U is a fuzzy uniform structure on X and 
1 2 ( , )
, .

τ
ϕ ϕ ∈ XL

O
U

 Then the fuzzy uniform space (X,U) is separated if and 
only if the associated characterized fuzzy uniform space (X,φ1,2.intU) is 
characterized FT0-space. 

Proof: Let (X,U) is separated and let x,y∈X such that x ≠ y. Then, 
there exists R ∈ LX×X such that U(R) = 1 and R (x,y) = 0. Consider µ = 
R[y1] for which 

1 1( ) = [ ]( ) = ( , ) ( ) = 0µ
∈

∧∨
z X

x R y x R z x y z  and 

1,2 ( )
( .int )( ) = [ ]( ) = ( ) ( ) = 1

η µ
ϕ µ µ η

≤
∧∨

R
y y R yU U U

for all η∈LX. Hence, there exists µ∈LX and α∈L0 such that µ (x) < α 

≤(φ1,2.intUµ)(y), that is, (X,φ1,2.intU) is characterized FT0-space.

 Conversely, let (X,φ1,2.intU) is characterized FT0-space and let x ≠ y 
in X. Then, there exists µ∈LX and α∈L0 such that µ (x) < α ≤(φ1,2.intUµ)

(y). This means that 
( )

( ) ( ) > ( )
η µ

η µ
≤

∧∨
R

R y xU  holds for all η∈LX. 

Hence, there is R∈LX×X for which R (x,y) = (φ1,2.intUµ)(x), if x = y and 
R (x,y) = µ (x), if x ≠ y such that R (x,y) = 0 and U (R) = 1. Thus, (X,U) 
is separated.

Corollary 5.1 

Let X be a non-empty set, U is a fuzzy uniform structure on X and
1 2 ( , )
, .

τ
ϕ ϕ ∈ XL

O
U

 Then the fuzzy uniform space (X,U) is separated if 
and only if the associated stratified fuzzy topological space (X,τU) is 
Fφ1,2-T0 space. 

Proof: Immediate from Proposition 5.1 and Theorem 2.1 in Abd-
Allah [8]. 

Proposition 5.2 

Let X be a non-empty set, U is a fuzzy uniform structure on X and 
1 2 ( , )
,

τ
ϕ ϕ ∈ XL

O
U

. Then the fuzzy uniform space (X,U) is separated if 
and only if the associated characterized fuzzy uniform space (X,φ1,2.
intU) is characterized FT1-space.

Proof: Let (X,U) is separated and let x,y∈X such that x ≠ y. Then, 
there exists R1, R2∈LX×X such that U(Ri) = 1 and Ri(x,y) = 0 for all i∈{1.2}. 

Consider µ = R[y1] and η = R[x1], then we have 1 1( ) = [ ]( ) =µ x R y x

1( ( , )
∈
∨
z X

R z x ∧ 1( )) = 0y z  and 2 1 2 1( ) = [ ]( ) = ( ( , ) ( )) = 0.
z X

y R x y R z y x zη
∈

∧∨  

Moreover, 1,2 1( )1
( .int )( ) = [ ]( ) = ( ( )

ρ µ
ϕ µ µ

≤
∧∨

R
y y RU U U ( )) = 1ρ y  and 

1,2 2( )1
( .int )( ) = [ ]( ) = ( ( ) ( )) = 1

ρ η
ϕ η η ρ

≤
∧∨

R
x x R xU U U  for all ρ∈LX. 

Hence, there exists µ,ηLX and α, ß L0 such that µ (x) < α ≤ (X,φ1,2.intUµ)
(y)and η (y) < ß ≤(φ1,2.intη)(x) are hold. Consequently, (X,φ1,2.intU)is 
characterized FT1-space.

Conversely, let (X,φ1,2.intU) is characterized FT1-space and let x 
≠ y in X. Then, there exists µ,η∈LX and α,ß∈ L0 such that µ (x) < α 
≤ (X,φ1,2.intµ)(y) and  (y) < ß ≤(φ1,2.intη)(x)are hold. This means that 

1( )1
( ( ) ( )) > ( )

ρ µ
ρ µ

≤
∧∨

R
R y xU  and 2( )2

( ( ) ( )) > ( )
ρ η

ρ η
≤

∧∨
R

R x yU  are 

also hold for all ρ∈LX. Hence, there is R1,R2L
X×X such that R1 (x,y) = 

(X,φ1,2.intµ)(x) if x = y and R1 (x,y) = µ (x) if x ≠ y such that R1 (x,y) = 0 
and U (R1) = 1 and R2 (x,y) = (X,φ1,2.intη)(x) if x = y and R2 (x,y) =η (y) 
if x ≠ y such that R2 (x,y) = 0 and U (R2) = 1. Thus, in every case (X,U) 
is separated.

Corollary 5.2

Let X be a non-empty set, U is a fuzzy uniform structure on X and 
1 2 ( , )
,

τ
ϕ ϕ ∈ XL

O
U

. Then the fuzzy uniform space (X,U) is separated if 

and only if the associated stratified fuzzy topological space (X,τU) is F 

φ1,2-T1 space. 

Proof: Immediate from Proposition 5.2 and Theorem 2.2 in Abd-
Allah [8].

For each fuzzy uniform structure U on the set X, the mapping h : 
FLX → FLX which is defined by h (M) = [M] U for all M ∈ FLX is global 
homogeneous fuzzy neighborhood structure on X [13]. The mapping 
h will be called global homogeneous fuzzy neighborhood structure 
associated to the fuzzy uniform structure U and will be denoted by hU. 



Citation: Abd-Allah AS, Al-Khedhairi A (2017) The Relations between Characterized Fuzzy Proximity, Fuzzy Compact, Fuzzy Uniform Spaces and 
Characterized Fuzzy Ts–Spaces and Fuzzy Rk–Spaces. J Appl Computat Math 6: 337. doi: 10.4172/2168-9679.1000337

Page 14 of 15

Volume 6 • Issue 1 • 1000337J Appl Computat Math, an open access journal
ISSN: 2168-9679 

The global fuzzy neighborhood structure h on the set X is said to be 
symmetric [13], provided that h (L) ∧ M exists if and only if L ∧ h 
(M) exists for all M, L ∈ FLX. As shown in Gähler [13], for each fuzzy 
uniform structure U, the associated homogenous fuzzy neighborhood 
structure hU is symmetric and both the global homogenous fuzzy 
neighborhood structures associated to the fuzzy uniform structures U 
and its homogenization U * are coincide. 

Proposition 5.3

Let f : (X,U) → (Y,V) be an fuzzy uniformly continuous mapping 
between fuzzy uniform spaces. Then the mapping f : (X,hU)→ (Y,hV) 
between the associated global homogeneous fuzzy neighborhood 
spaces is (hU,hV)-fuzzy continuous [13]. 

Proposition 5.4

Let f : (X,U) → (Y, V) be an fuzzy uniformly continuous mapping 
between fuzzy uniform spaces, 1 2 ( , )

, XL U
O

τ
ϕ ϕ ∈ and 1 2 ( , )

, YL V
O

τ
ψ ψ ∈ . 

Then the mapping f : (X,φ1,2.intU) → (X,φ1,2.intU) between the associated 
characterized fuzzy uniform spaces is φ1,2ψ1,2-fuzzy continuous. 

Proof: Immediate from Proposition 3.3 in Abd-Allah [11] and 
Proposition 5.3.

In the following, we prove that for each fuzzy uniform structure on 
a set X, there is an induced stratified fuzzy proximity on LX. Moreover, 
both the fuzzy uniform structure and this induced stratified fuzzy 
proximity are associated with the same stratified characterized fuzzy 
uniform space.

Proposition 5.5

Let X be a non-empty set, U is a fuzzy uniform structure on X and 
1 2 ( , ), X U

O τϕ ϕ ∈ . Then the binary relationδU on LX which is defined by:

1,2 1,2( , .int ) = ( , .int )δϕ ϕX XU U
                 (5.3) 

for all µ,ρ∈LX is a stratified fuzzy proximity on X. Moreover, both the 
fuzzy uniform structure U and the induced stratified fuzzy proximity 
δU are associated with the same stratified characterized fuzzy uniform 
space, that is, 1,2 1,2( , .int ) = ( , .int )δϕ ϕX XU U

. 

Proof: Immediate from (5.2), (5.3) and Proposition 3.2.

Corollary 5.3

Let (X,U), (Y,V) are two fuzzy uniform spaces, 1 2 ( , ), τδ
ϕ ϕ ∈ XO

U
 and 

1 2 ( , ), τδ
ψ ψ ∈ YO

V
. Then the mapping f : (X,U) → (Y,V) is fuzzy uniformly 

continuous between fuzzy uniform spaces if and only if the mapping 
1,2 1,2: ( , .int ) ( , .int )δ δϕ ψ→f X Y

U V
 is φ1,2ψ1,2-fuzzy continuous between 

the associated stratified fuzzy proximity spaces. 

Proof: Immediate from Propositions 5.4 and 5.5. 

Because of Propositions 3.7 and 5.5 and Corollary 5.3, we can 
deduce the result.

Proposition 5.6

Let (X,U) be an fuzzy uniform space, F,G∈P (X) such that 

[ ] = [ ] =χ χ ′ ′≤ 

 F GF GU U  and 1 2 ( , ), X
U

O τδ
ϕ ϕ ∈ . If Φ is the family of 

all fuzzy uniformly continuous functions f : (X,U) → (IL,U
*) for which 

x∈X implies 0 ( ) 1f x≤ ≤ , then χF and χG are Φ–separable.

Proof: Immediate from Propositions 3.7 and 5.5 and Corollary 5.3. 

Now, we shall prove that the stratified characterized fuzzy uniform 

space which associated with an fuzzy uniform structure is characterized 
1
22 -FR space in sense of Abd-Allah et al. [11].

Proposition 5.7

Let X be a non-empty set, U is a fuzzy uniform structure on X 
and 1 2 ( , ), X U

O τϕ ϕ ∈ . Then the associated stratified characterized fuzzy 
uniform space (X,φ1,2.intU) with the fuzzy uniform structure U is 
characterized 1

22 -FR space. 

Proof: Let xX, F ∈ φ1,2C(X) such that x Ï F. Since 'F
χ  is φ1,2 U 

– fuzzy neighborhood of x, that is, [ ] =xU 1,2
( )ϕ ′≤ x FN . On 

account of Proposition 5.6, we get that x1 and χF are Φ–separated by 
the fuzzy uniformly continuous function f : (X,U) → (IL, U

*). Because 
of Proposition 5.4, the function 1,2 1,2: ( , .int ) ( , .int )ϕ ψ ∗→ Lf X IU U

 is 
φ1,2ψ1,2–fuzzy continuous. Consequently, (X,φ1,2.intU) is characterized

1
22 -FR space.

Corollary 5.4 

Let (X,U) be a separated fuzzy uniform space and 1 2 ( , ), τϕ ϕ ∈ XO
U

. 
Then the associated stratified characterized fuzzy uniform space (X,φ1,2.
intU) with the fuzzy uniform structure U is characterized 1

23 -FT space. 

Proof: Immediate from Propositions 5.2 and 5.7.

In the following we give an example of a homogeneous fuzzy uniform 
structure and we show that the associated stratified characterized fuzzy 
uniform space is characterized fuzzy uniform 1

23 -FT space.

Example 5.1

The fuzzy metric in sense of S. Gähler and W. Gähler [24] is 
canonically generate a homogeneous fuzzy structure as follows: 
Consider X is non-empty set and d is a fuzzy metric on X, then the 
mapping Ud:L

X× X → L which is defined by: 

d 0 < , d,
( ) =

δ εα δ
α

≤
∨

 R
RU

for all R∈LX×X is a homogeneous fuzzy uniform structures on X. 
Moreover, the associated stratified characterized fuzzy uniform 
space 

d1,2( , .int )ϕX U  is identical with the associated characterized fuzzy 
metrizable space 

d1,2( , .int )τϕX , that is, 
d d1,2 1,2( , .int ) = ( , .int )τϕ ϕX XU . Because 

of Proposition 3.1 in Abd-Allah et al. [22], we have, 
d1,2( , .int )τϕX  is 

characterized FT4-space and therefore 
d1,2( , .int )ϕX U  is also characterized 

FT4-space. Hence from Proposition 4.6 in Abd-Allah et al. [11], we get 

d1,2( , .int )ϕX U  is characterized 1
23 -FT space.

Conclusion
In this paper, we studied the relations between the characterized 

fuzzy Ts–spaces, the characterized fuzzy Rk–spaces presented in 
Abd-Allah and Abd-Allah and Al-Khedhairi [8-10,11] and the 
characterized fuzzy proximity spaces presented by Abd-Allah [12], 

for 1
2{0,1,2,3,3 ,4}∈s  and 1

2{1,2,2 ,3}∈k . We also introduced and 
studied the relations between our characterized fuzzy Ts–spaces, the 
characterized fuzzy Rk–spaces and the characterized fuzzy compact 
spaces presented by Abd-Allah [12] as a generalization of the weaker 
and stronger forms to the G-compactness defined by Gähler in 1995. 
Moreover, we shows here the relations between these characterized 
fuzzy Ts–spaces, the characterized fuzzy Rk-spaces and the characterized 
fuzzy uniform spaces introduced and studied by Abd-Allah in 2013 as 
a generalization of the weaker and stronger forms of the fuzzy uniform 
spaces introduced by Gähler et al. in 1998.
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