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Introduction
In course of evolution the development of a brain correlates with 

complication of a molecular nerve cell organization [1-3]. The activity 
of a neuron entails changes in its connections with other neurons as 
well as in its molecular networks. Over the last decade notion about 
the synapse as a relatively simple structure has transformed. Synapses 
are highly dynamic structures. Their molecular composition is altered 
in an activity-dependent manner, which modulates the efficacy of 
subsequent synaptic transmission events. The synapse is a zone of the 
contacts between cells, transmitting the information and processing 
it by detecting specific patterns of neural activity and converting this 
electrical activity into intracellular biochemical events that change the 
properties of the neuron [4]. Dendritic spines are the postsynaptic 
component of glutamatergic synapses that originates from an axial 
dendrite [5]. Dendritic spines are the structure of the excitatory 
synapse majority of a mammal brain. The flux of ions into postsynaptic 
terminal оf excitatory synapse is regulated by tuning the distribution 
of receptors and their subunit composition (synaptic plasticity) [5-
7] as well as tuning the morphology of dendritic spines (structural
plasticity) [8]. Learning and memory are associated with changes of
synaptic modulations that take place in the postsynaptic dendritic
part of synapse [9]. The hippocampus is a brain structure involved in
short-term memory and the phenomenon of long-term potentiation
(LTP) (increases the efficiency of synaptic transmission after an intense 
and short-term release of neurotransmitter) is the dominant cellular
model of learning and memory [10]. Proteomic studies have identified
hundreds of postsynaptic proteins organized through physical
interactions into multiprotein complexes and networks [11].

The implementation of the neuron function depends on actions 
of its numerous molecular systems. The generalization of the complex 
processes of emergence synaptic memory, that occur even in separate 
neuronal compartments, without special tools designed for formalized 
description and automated visualization of molecular networks is a 
difficult, if at all possible, task.

The main purpose of this review is a reconstruction of molecular 
network of the dendritic spine of pyramidal neurons of the CA1 
hippocampal region of rodent, and the action sequence of functional 
(executive) systems of the neuron involved in synaptic modulations in 
the early phase of long-term potentiation.

The Functional Systems of the Neuron Involved in 
Synaptic Modulations in the Early Phase of LTP

Dendritic spines are the postsynaptic component of glutamatergic 
synapses that originates from an axial dendrite (button less than 
1 µm3). Dendritic spines are the structure of the majority excitatory 
synapse of a mammal brain. Molecular networks of the dendritic spine 
of pyramidal neurons of the CA1 hippocampal region of rodent in the 
early phase of LTP have been reconstructed using GeneNet computer 
system [12-15]. The protein-protein interaction (PPI) network of 
dendritic spines is presented on the site (http://wwwmgs.bionet.
nsc.ru/mgs/gnw/genenet/viewer/Early long-term potentiation.html 
(PPI1)) Datasets of elementary units of the protein-protein interaction 
networks were made according to the expression of genes encoding 
proteins (mRNA) of pyramidal neurons of the CA1 hippocampal 
region of the adult rodent (mouse predominantly). We have used the 
experimental information which has been manually extracted from 
the published articles (PubMed) or databases (Swiss-Prot, EMBL, 
MGI, GeneCard, and TRRD). Journal publications which contain 
data about the behavior of molecules of dendritic spines of pyramidal 
neurons of the CA1 hippocampal region in the early phase of long-
term potentiation have been mainly used.
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Abstract
The neuron is a basic element of brain networks. Changes of nerve cell excitability, the conduction of excitation, 

synaptic memory-forming in the case of the temporal coincidence of synaptic events are the obvious functions 
of the neuron - element of brain networks. The implementation of the neuron function depends on actions of its 
numerous molecular systems. The generalization of the complex processes of emergence of synaptic memory, 
that occur even in separate neuronal compartments, without special tools is a difficult, if at all possible, task. A 
technology that combines the creation of databases (elements and their relationships) with a visual representation 
in the form of networks facilitates this process. The developed protein-protein interaction network in dendritic spines 
of hippocampal pyramidal neurons facilitates the synthesis of numerous experimental data in conceptual knowledge 
about the principles and molecular mechanisms of neurons functioning.
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In this schemes reflected the interactions between network objects 
(green arrows) and various the influence reactions (red arrows – 
on influence; dark arrows – off influence; pink arrows – increase 
influence; blue arrows – decrease influence) (Figure 1). PPI1 network 
contain the descriptions for 58 proteins (Mus musculus) in GeneNet 
database format. In this reflects the organization of dendritic spine 
in one of the possible states. In constructing PPI1 network, we have 
taken into account the ordered structure of spine with a specific 
horizontal and vertical compartmental organization at all levels: 
the membrane (synaptic, perisynaptic, extrasynaptic membrane 
(EM)); the submembrane (submembrane proteins and postsynaptic 
density (PSD)); the cytoplasm (the network objects interactions, the 
receptor intracellular store vesicles (recycling endosome), the receptor 
transporting vesicles (endocytic vesicle) (Figure 1). Each compartment 
contains the specific protein set, their functionality defined of synaptic 
activity.

Proteins that anchor the receptors and bind them to the cytoskeleton 
(scaffold proteins), protein kinases, proteases, and GTPases form the 
postsynaptic density (PSD) located under the synaptic membrane 
[16]. Scaffold proteins control the size and stability of the PSD. These 
proteins have one or several short conserved sequences of amino acids, 
called PDZ microdomains. PDZ-microdomains perform high affinity 
interactions between proteins (not enzymatic). Scaffold proteins form 
an orthogonal framework of vertical (mostly protein PSD95, SAP97, 
and S-SCAM) and horizontal (primarily proteins Shank and GKAP) 

filaments [17]. PSD anchors glutamate receptors in the active area of 
a dendritic spine.

Glutamate receptors are receptor-channel complexes. The 
classification of these receptors is based on their sensitivity to 
N-methyl-D-aspartate and (NMDA) and α-amino-3-hydroxyl-5-
methyl-4-isoxazole-propionate (AMPA). In mature hippocampal 
neurons, AMPA receptors (AMPAR) comprise two of three subunits 
(GluR1-3), such as AMPAR type 1/2 (GluR1/GluR2) and AMPAR type 
2/3 (GluR2/GluR3) [18]. AMPARs are permeable to Na+. NMDARs are 
permeable to Ca2+, have chemo- and potential-sensitivity. Mg2+ blocks 
the ability of NMDAR to bind glutamate at the resting potential (this 
block is removed by depolarization) [19].

NMDARs are directly anchored at the center of the PSD and 
AMPAR are anchored through a family of stargazin proteins at the 
periphery [20,21]. In PSDs there are the physical interactions between 
molecules and positioning the partner molecules in complexes (micro 
microdomains). AMPARs and NMDARs form a connection with a 
specific set of proteins in PSD [10].

The dendritic spine cytoskeleton comprises a polymeric (F-actin) 
and monomeric (G-actin) actin, and F-actin is dominant. A family 
of small GTPase proteins and actin-binding proteins regulate spinal 
morphology and synaptic function by modulating reorganization and 
F-actin turnover. Actin-binding proteins regulate the disassembling of 
actin microfilaments, the formation of growth complexes, branching 
and stabilizing of filaments. Dimers of myosin II support the actomyosin 

Figure 1: Fragment of network (Early long-term potentiation) (screenshot)). Fragment of network reflecting the basic mechanisms which provide the translating 
of the neurotransmission to the dendritic spine cytoarchitecture change. Main processes (blue rectangles): inductions (High Frequency Stimulation, membrane 
depolarization) and expression (breaking of the submembrane actin network - form actomyosin complexes, cross-linking and contractile of actin filaments; form of 
new the submembrane actin network – elongation and branching of actin filaments).
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tension of the actin cytoskeleton. Transport myosins relocate endo and 
exovesicles in the spine. Cytoskeletal reorganization in the spines is 
triggered by mediators through receptor activation (Figure 2).

Transduction of signals from receptors to the actin cytoskeleton 
is mediated by the small GTPase family, protein regulators of small 
GTPases, kinases, phosphatases, and numerous regulatory proteins 
that directly interact with G- and F-actin. The Rho family of small 
GTPase, such as RhoA, Rac1, and Cdc42, are well represented in 
PSD and are included in the functional microdomains of glutamate 
receptors, e.g., small GTPase RhoA is anchored to NMDAR (through 
scaffold proteins S-SCAM) [22]. This relationship depends on the level 
of receptor activation: the more the receptor is activated, the weaker 
is the relationship [23]. Small GTPases circulate between two states: 
active - GTP-bound (guanine triphosphate) and inactive - GDP-
bound (guanine diphosphate). Transitions are regulated by guanine 
nucleotide-exchange factors (GEFs), which promote the transition 
of GDP into GTP, and GTPase activating proteins (GAPs) promote 
hydrolysis of guanine nucleotides and the transition of GTP into 
GDP. Each Rho small GTPase has a specific GEFRho and GAPRho. GEFs 
and GAPs are present in PSDs where they are ideally situated to be 
regulated by glutamate receptors and calcium/calmodulin dependent 
protein kinaseII (CAMKII) or recruit glutamate receptors into spines 
and PSDs in response to high levels of Ca2+ [24]. For example, our 
network is shown that the small GTPase Rac1 is activated by the GEF 
Tiam1Rac1 and inactivated by the GAP MEGAPRac1, and is indirectly 
regulated through SynGAPRas. The NMDAR-Ca2+-CAMKII cascade 

positively affects Rac1 activation through phosphorylation of GEF 
Tiam1Rac1 [25], and negatively through activation of SynGapRas [26]. 
The small GTPase Rac1 binds to p21 protein (Cdc42/Rac)-activated 
kinase1 (PAK), which in turn is recruited to the PSD through the 
formation of a complex with Shank scaffold protein and GEF PIXRac1/

Cdc42. Thus, PSD scaffold proteins are the original sites for the assembly 
of functional microdomains, providing a point of physical interaction 
between effectors, acceptors, and their activators and inhibitors [27].

PPI1 network of dendritic spines reflects the molecular systems, 
which provides an increase of efficacy of synaptic transmission after 
an intense and short-term release of neurotransmitter. Such pattern 
of glutamate receptors activation leads to a transition of spine at the 
level, corresponding to more efficient synaptic transmission and causes 
increase of the spine volume. Temporal blocks can be select to describe 
the behavior of spine molecular system during the transition at the 
new level. During basal glutamate receptors activation the electrical 
signal propagates from the spine to the soma within milliseconds. After 
synaptic potentiation paradigm, in the range of 30 to 60 s, the NMDAR-
mediated Ca2+ input triggers the lateral relocation of AMPAR1/2 from 
extra synaptic to synaptic zone [5,6,28]. Immobilization of AMPAR1/2 
in PSD significantly increases the amplitude of synaptic currents [29-
31]. NMDAR-mediated Ca2+ input is limited by the spine. Available 
Ca2+ decays with a time constant of about 0.1 s [32]. Ca2+-dependent 
activation of CaMKII is also limited by the spine, and decays with a 
time constant of about 10 s (self-inhibition). CaMKII integrates the 
NMDAR-mediated Ca2+ signals [33]. Activation of Rho GTPases 
switches the short-term signaling of CaMKII for the long-term 
synapse-specific signaling required for the structural plasticity of spines 
associated with remodeling of the actin cytoskeleton [34].

The spatiotemporal dynamics of Rho GTPases differ. Activation of 
RhoA and Cdc42 reaches a maximum in about 30 s and then activity is 
reduced and stably maintained for more than 30 min [35]. Activation 
of Cdc42 is limited by the activated spine. The high spatial gradient 
of Cdc42 between the stimulated spine and dendrite is maintained for 
more than 30 min, Cdc42 must be continuously activated in spines 
during plasticity, and is inactivated immediately after exiting from 
the spine [34]. Ras activation increases to a maximum within 1 min 
after stimulation and returns to a baseline within 15 min [34]. Active 
RhoA and Ras require about 1 s to relocate from the spine to the 
dendrite. Active Rases are propagated about 10 µm by diffusion along 
of the parent dendrite and invade about 10 to 20 neighboring spines 
[35], active RhoAs are propagated about 5 µm [34]. A propagation 
mechanism of Rho GTPases along the parent dendrite might underlie 
the association of signals coming out of the neural network to the 
neighboring spines.

Cascade NMDAR-CaMKII-Cdc42-Pak is specific for spine signal 
transduction; it cover the time from 1 s to 30 min. Minor proteins of 
the actin cytoskeleton are targets of RhoA-ROCK and Rac1/Cdc42-
PAK. Key proteins involved in spine cytoskeletal reorganization 
are presented in PPI1 network of dendritic spines. Ca2+/calmodulin 
complexes are key regulators of Ca-sensitive kinases and phosphatases 
[36]. In the first 2 min after potentiation, activation of the calcineurin-
cofilin, RhoA-ROCK-myosin II cascades leads to the breakdown of 
existing F-actin, appearance of the open ends of F-actin, and a pool 
of G-actin, which is necessary for the nucleation of new filaments, 
their branching, and elongation. Activation cascades of Rac1/Cdc42-
PAK controls nucleation and branching of the actin network through 
activation of cortactin-Arp2/3-WAVE/N-WASP functional protein 

 - phosphorylated protein

 - regulatory interaction, which switch off the reaction. 

Figure 2: Schema regulatory interactions, which induced of synaptic activity 
and provided of dendritic spine cytoarchitecture remodelling.
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complex. Activation of the cascades is also important for stabilizing 
the new actin network that lasts up to 10 min. Cascades Rac1/
Cdc42-PAK, RhoA-ROCK through the activation of LIM-kinase 
and phosphorylation of cofilin stabilize new bundles and individual 
filaments of actin [37], PAK inactivates MLC-kinase, which reduces 
the activity of myosin II and F-actin tension [38].

PPI1 network of dendritic spines and the description of the 
processes that are initiated by activation of glutamate receptor reflect the 
ability of nanosized compartments of the neuron to self-development 
(the transition to a new level of efficient synaptic transmission) using 
the own resources. However, for maintaining the new state of spine 
resources from other compartments of the neuron are needed.

The synthesis of new proteins, occurring in the soma of the neuron, 
including AMPA receptors [39] is necessary to maintain long-term 
LTP. LTP in hippocampus is maintained for a long time, but not 
longer than 30-60 minutes if the synthesis of proteins is blockaded. To 
maintain the LTP in this initial period a post-translational modification 
of proteins and the formation of protein-lipid vesicles in the vacuolar 
system [40,41] are required to a greater extent than protein synthesis. 
Maintaining the new level of transfer is accompanied by replacement 
of AMPAR1/2 on AMPAR2/3 subtype [42]. The molecular network 
(PPI2), mediating these processes is available at: http://wwwmgs.
bionet.nsc.ru/mgs/gnw/genenet/viewer/AMPA.html.

The basal stocks of AMPARs2/3 are in the vacuolar system, where 
they are included in the vesicles and are delivered to the spines. The 
movement of proteins between compartments of vacuolar system 
(endoplasmic reticulum, Golgi apparatus, trans-Golgi network, 
endosomes) and their delivery to the spine are mediated by small 
transport vesicles, branching off from a donor compartment and 
then fuse with an acceptor compartment [43]. The accuracy of vesicle 
assembly is controlled by its coating proteins. The initiation of the 
vesicle coating formation and also its branching off from a donor 
compartment is regulated by small GTPas protein family – ARF (ADP-
ribosylation factor). The transport vesicles with AMPA receptors 
are delivered to the dendrite where they can be incorporated in the 
plasmatic membrane of spine dendrite or in the dendritic depot of 
receptors. Experimental data suggest that the violation of vesicle 
assemblage does not prevent a transition of spines to new level of the 
synaptic transmission efficiency but leads to a significant reduce of the 
synaptic transmission efficiency in the first 20 min after potentiating 
[44].

Conclusion
Simulation of complex systems is necessary, because 

multicomponent molecular system of nerve cell cannot be perceived 
as a whole without it. We integrated the proteins of pyramidal neurons 
of the CA1 hippocampal region of the early phase of LTP into a 
conceptual model. PPI1, PPI2 networks represent a basic set of the 
molecules and its functional interactions, required for translation of 
electrochemical signals into the following processes: inclusion of a 
neuron in the brain networks, recognition of synaptic activity patterns, 
converting the activation of glutamate receptors in change of the 
synaptic transmission efficiency/volume of the postsynaptic sides of 
synapses. Dendritic spines are a dynamic structure. GeneNet computer 
system can reflect the organization of the protein-protein interaction 
networks in one of the possible states. Reconstructed networks focus 
mostly on static interactions, mapping the set of potential interactions 
among proteins of neuronal compartment. Some interactions are 

transient and may occur only under specific conditions. In this article 
temporal dynamics of the process are brought in the form of a script. 
Perhaps PPI1, PPI2 networks can become fragments (subsystems) of 
complete electronic circuits of certain type neurons.
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