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Introduction
Obesity is caused by an increased intake of highly caloric foods 

and by a sedentary lifestyle. Therefore, it is important to search for new 
strategies or therapies that prevent weight gain or are helpful to lose 
weight. Pharmacological therapy is a complementary strategy to low-
caloric diet and physical activity for weight loss and weight maintenance. 
There are many drugs approved by the Food and Drug Administration 
indicated for weight loss in obesity, which can be classified by their 
mechanism of action: 1) appetite suppression, 2) lipase inhibitors and 
3) increased energy expenditure. Nevertheless, such drugs might have
many side effects [1].

It has been demonstrated that numerous foods have beneficial 
effects in body-weight management [2,3] but only a few bioactive 
elements have been discovered and studied, such as resveratrol from 
grapes, genistein from soy and quercetin from onion [4,5]. Capsaicin, 
the bioactive component of red pepper, has been shown potent effects 
as lipid metabolism modulator [6]. However, its therapeutic use has 
been limited due to its high pungency. For this reason, the synthesis of 
capsaicin analogue molecules without pungency, may be an excellent 
alternative strategy for treating obesity and its associated health 
complications.

In this review we addressed the compilation and analysis of the 
most recent studies about the pharmacological effects of natural and 
synthetic capsaicin analogs in energy balance and adipocyte biology. 
The scientific data of its possible mechanisms of action is also discussed.

Pathogeny of Obesity
The abnormal increase of adipose tissue in the body is the cause of 

overweight and obesity. Despite the complexity of their etiology, the 
low energy expenditure due to less physical activity and the intake of 
a High-Caloric Diet, are advised the major causes. Excess in energy 
balance (blood stream), induces adipocytes to accumulate energy as 
triglycerides that leads to hypertrophic adipose tissue. The free fatty 
acid (FFA) flux from adipocyte lysis, together with the metabolic 
abnormalities of cholesterol in hypertrophied adipocytes cause the 
obesity-related dyslipidemias, exacerbating the problem. The well-
known lipid master regulators, members of the PPAR (Peroxisome 
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Proliferator-Activated Receptor) family, principally PPAR-gamma, 
participate in lipid homeostasis abnormalities throughout the body 
and specifically in adipose tissue during obesity. When PPAR-gamma 
is over activated it promotes the activation of adipogenic genes and the 
blockade of anti-adipogenic genes [7]. Thus blocking of PPAR-gamma 
in obesity is one of the most important drug targets.

Capsaicinoids
Capsaicinoids are bioactive components than can be found in the 

fruits of the plant genus Capsicum, better known as chilli peppers. They 
are produced as secondary metabolites that deter consumption by 
vertebrates and discourage predators without deterring more effective 
seed dispersers [8]. Currently, capsaicinoids are known as chemicals 
responsible for the fruit's peppery heat, burning sensation and the hot 
or spicy flavor they confer [9]. There have been identified nine naturally 
occurring capsaicinoids in peppers which differences are centered 
on carbon-carbon double bonds and pungency levels according to 
Scoville´s heat unit scale [10,11].

 An aromatic ring integrates the chemical structure of capsaicinoids, 
named catechol or vaniloid ring which contains two substituents in 
the positions 3 and 4. Moreover, capsaicinoids also have a fatty acid 
hydrophobic side chain linked by an amide bond (Figure 1) [12]. Natural 
capsaicinoids are N-vanillylamides of fatty acids and their structural 
conformations depend on the number of lateral chain carbons or the 
presence/absence of unsaturations. In comparison, capsaicin synthetic 
analogs may have other modifications as addition/deletion of one or 
more functional groups [11].
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All these molecules have shown a wide variety of biological and 
pharmacological properties, as antiobesity on which relies their 
therapeutic values. On this regard, capsaicin has gained the most 
scientific interest. 

Capsaicin
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the most 

abundant capsaicinoid in peppers comprising the 50-60% [13]. It was 
discovered by Tresh in 1846 and its chemical structure was determined 
by Nelson in 1919. Following years of study, it has been demonstrated 
that capsaicin is one of the most promissory constituents because 
its important pharmacological effects of which antinociception was 
the first evidenced [14]. Capsaicin is currently used for treatment of 
several pain syndromes, including diabetic neuropathy [15]. Moreover, 
capsaicin has also demonstrated beneficial effect on osteoarthritis pain 
relief due to its high capacity to inhibit P substance release, a powerful 
neuropeptide pain neuromodulator from the sensory nerves to the 
central nervous system [16].

Capsaicin has also shown potential effects as anti-obesity drug 
[6]. There is plenty of evidence that capsaicin can induce body weight 
reduction, [17] increases energy expenditure, [18] improves lipolysis in 
adipocytes [19] (Table 1). Additionally, some clinical studies support 
that capsaicin ingestion increased satiety and reduced energy and fat 
intake during negative energy balance [20]. Similar studies have shown 
that capsaicin increases the sensation of fullness and decreases the 
desire to eat [21-27].

Despite the wide evidence of the favorable capsaicin effects in 
metabolism regulation, applications of this molecule are limited by its 
pungency. For the same reason, the doses employed in clinical trials are 
lower than those reported in vitro and in vivo preclinical tests. Thus it 
has been difficult to achieve similar effects in clinical research until date. 

Mechanism of action

Binding of capsaicin to its receptor TRPV1: Capsaicin is a potent 
agonist of the transient receptor potential cation channel subfamily V 
member 1 (TRPV1), better known as vanilloid receptor 1. This receptor 
is a nonselective cation channel that allows the transient influx of Ca2+ 

when is activated during the detection and transduction of nociceptive 
stimuli [28]. Its structure and topology have been well characterized 
[29]. This receptor was initially found on key sensory afferents neurons 
and it has recently been shown expressed in hepatocytes, kidney cells 
and adipocytes [30]. Several studies have focused on elucidating how 
capsaicin interacts and regulates TRP channels. Such may help as model 
of the capsaicin-channel complex for pharmacological applications and 
would potentially guide further developments of capsaicin analogs. 
These experimental reports have shown that capsaicin binds to a pocket 
of TRPV1 in a conformation where the vanillyl ring points toward the 
S4-S5 linker, while the lipid tail points upward in the direction of the S4 
helix, [31] where Tyr511 was critical for vanilloid sensitivity [32] Yang 
et al. proposed that, though matching with the ‘tail-up, head-down’ 
model, the specificity for ligand binding is bestowed by hydrogen bonds 
that formed between its vanillyl head with residues E571 and Tyr511 of 
the TRPV1 channel [33].

Capsaicin molecular target in adipocyte: It has not yet been 
clarified in detail the mechanism by which capsaicin exerts its anti-
adipogenic effect, however, some findings suggest the possible signaling 
pathways, which are described in Figure 2.

Because capsaicin and its analogues are lipophilic, they pass 
through the cell membrane and act on binding site located in the 
intracellular portion of the TRPV1 receptor. The interaction of vanillyl 
head of capsaicin with residue Tyr 511 (located between the second 
and third transmembrane domain) of the TRPV1 receptor leads to a 
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Figure 1: Capsaicin chemical structure. All capsaicinoids are quite similar to capsaicin, they preserve the catechol/vaniloid ring (A) and the amide bond (B), while 
they differ on the fatty acid side chain (C).Figure 1: Capsaicin chemical structure. All capsaicinoids are quite similar to 
capsaicin, they preserve the catechol/vaniloid ring (A) and the amide bond (B), 
while they differ on the fatty acid side chain (C).

CAPSAICIN
2011 Exerts lipolytic action by increasing the mRNA levels of HSL, CPTI-α, UCP2 genes in 3T3-L1 cells [19]
2013 Inhibit the LPL mRNA expression level in 3T3-L1 cells [22]

2013 Topical application reduces weight gain and visceral fat and decreases the expression of TNF-α and IL-6 in high-fat-induced 
obese mice [17]

2014 Inhibits proliferation and differentiation 3T3-L1 preadipocytes by decreasing the protein expression of LPL, leptin, PPARg 
and C/EBPα [23]

2014 Decreases the serum levels of TG, LDL and HDL and UPC2, PPARg, leptin gene expression in high- fat induced obese rats [24]
2014 Increases satiety and sensation of fullness in healthy humans [21]

2015 Inhibits the adipogenic differentiation of mesenchymal stem cells by repressing PPARg, C/ EBPα, FABP4 and SCD-1 gene 
expression [25]

SYNTHETIC ANALOGS
Nonivamide

2014 Reduces feelings of hunger and carbohydrates intakes in moderately overweight men [26]
2015 Reduces fatty acid uptake and increases the acetyl-coenzyme A synthetase activity by Caco-2 cells [27]
2015 Decreases lipid accumulation in 3T3-L1 cells by reducing the PPARg protein levels [73]

Olvanil
2015 Improves lipolysis process while decreases the intracellular triglycerides in 3T3-L1 cells [*]
2015 Inhibits adipogenesis by reducing the PPARg activity in 3T3-L1 cells [*]

Phenylacetylrinvanil 
Induces apoptosis and inhibits in vitro cell proliferation of carcinogenic cell lines HeLa, J774, CasKi, ViBo and P388. [79,80]

*Data send for publication
Table 1: Antiobesity effect of capsaicin and their synthetic analogs.
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Figure 2: Putative signaling pathways of capsaicin in the adipocyte . It has 
been described that capsaicin and its analogs bind the Transient Receptor 
Potential Vanilloid 1 (TRPV1), a non-specific cation channel located in the 
cellular membrane which comprises six putative transmembrane segments 
(S1-S6), intracellular N- and C-termini, and a cation-selective pore-forming 
reentrant loop between S5 and S6 with high permeability to calcium. Capsaicin 
and its analogues pass through the cell membrane by their lipophilic properties 
and bind their vanilloid ring to the residue Tyr511 located on the intracellular 
loop between S2 and S3 of TRPV1 leading to a conformational change that 
opens the cation-selective pore. This triggers an influx of extracellular Ca2+ 

resulting in a high cytosolic concentration. As it is well known that Ca2+ 

is one of the most versatile second messengers that can activate several 
Ca2+-binding proteins, we suggest that capsaicin and its analogues might 
activate calmodulin-calcineurin and then the MAPK pathway, which this has 
been reported to blockade PPARg- and C/EBPα-dependent adipogenesis 
by PPARg-phosphorylation, ubiquitination and degrading. In addition, since 
AMP-activated protein kinase (AMPK), a metabolic regulator that reduces 
the PPARg-mediated transcriptional activity, can be activated by calmodulin-
dependent protein kinase kinase-β (CaMMKKβ) through elevated intracellular 
Ca2+ levels, we propose this as an additional signaling pathway of capsaicin 
and its analogues. Furthermore, it has been found that the increase of 
intracellular Ca2+ activates connexin43 (Cx43), a major gap junction protein 
that should be degraded through the phosphorylation-ubiquitination course to 
allow the differentiation of adipocytes. We suggest that Cx43 is up-regulated by 
the Ca2+ influx after capsaicin and its analogues bound TRPV1, thus preventing 
adipogenesis by an unknown mechanism.

conformational change that opens the channel by the pore-forming 
S5–S6 transmembrane helix. Because TRPV1 is a Ca2+ channel with 
high permeability its activation triggers an influx of Ca2+, resulting 
in increased cytosolic concentration [34]. It is known that calcium in 

the cell is one of the most versatile second messengers in numerous 
intracellular signaling pathways, and a change in the intracellular Ca2+ 

levels, actives a number of intracellular Ca2+-binding proteins, including 
calmodulin (CaM), calcineurin B, protein kinase A (PKA), S100B and 
DREAM [35]. Calcineurin mediates the calcium-dependent inhibition 
of adipogenesis in 3T3-L1 cells by preventing the expression of the 
pro-adipogenic transcription factors peroxisome proliferator-activated 
receptor gamma (PPARɣ) and CCAAT/enhancer-binding protein alpha 
(C/EBPα) by a still unknown mechanism [36]. These results were tested 
again and found that the increase of extracellular Ca2+ influx activates 
connexin43 (Cx43) [37], a major gap junctions protein that should be 
phosphorylated and degraded to allow the differentiation of adipocytes 
[38]. Therefore, calcium influx induced by the action of capsaicin 
might probably act on the maintaining of Cx43 thus interrupting the 
adipocyte differentiation and adipogenesis. Additional work suggests 
that activation of AMP-activated protein kinase (AMPK), a regulator 
pathway of metabolism, reduces the PPARɣ- mediated transcriptional 
activity [39,40]. Reports supported that AMPK can be activated by an 
elevated intracellular Ca2+ level mediated by calmodulin-dependent 
protein kinase kinase-β (CaMMKKβ) [41].

Despite these investigations, there are still some questions about the 
intracellular downstream signaling targets of capsaicin in adipocytes 
and thus the real mechanism is still unknown. 

Capsaicin Analogs
Capsaicin analogs are molecules that preserve all or part of the 

aromatic catechol ring in its chemical structure, which are clearly 
demonstrated to be TRPV1 receptor agonists [42]. Nevertheless, they 
may or may not have similar effects due to different functional groups 
and variable number of carbon-carbon double bonds located in different 
positions along the chain, which may modify its pungency level and 
biological activity [43]. Here we present the current knowledge of some 
of the most studied. 

Natural analogs
Capsiate: It was the first natural capsaicin analogue characterized 

in the CH-19 sweet pepper variety (Capsicum annum L.) [44]. Similar 
to capsaicin, is the most abundant capsinoid in peppers of this variety. 
The main difference between capsiate and capsaicin is the pungency 
level; capsiate is a non-pungent capsinoid. Capsiate is structurally 
identical to capsaicin, except that it has an ester bond rather than an 
amide bond between the vanilloid ring and the fatty acid chain (Figure 
3). It is known that this molecule exerts some of the same effects as 
capsaicin, such as the increase in swimming endurance capacity of mice 
by raising fat oxidation, thus improving carbohydrate utilization [45] 
and glucose homeostasis while, decreasing fat accumulation in diabetic 
rats [46] and suppressing fat accumulation in adipocytes 3T3-L1 [47]. 
Capsiate, also increases energy expenditure and enhances fat oxidation 
at high doses in humans [48]. Additionally, recent research has shown 
that capsiate also activates TRPV1 and other TRP channels by an as yet 
unknown mechanism by which evokes its action [49].

Resiniferatoxin (RTX): RTX is also a natural ultra-pungent 
capsaicin analogue found in the latex of Euphorbia resinifera, a cactus-
like plant and is ten times as pungent as capsaicin. This molecule 
preserves the aromatic catechol ring and contains an ester bond rather 
than an amide bond in its chemical structure (Figure 3). It has been 
shown that unlike the capsaicin-induced adrenaline increase, RTX 
produced only a slowly initiated adrenaline reaction [50]. However, 
it preserves the analgesic effect because it diminishes thermal pain 
sensitivity but increases the sensitivity to tactile stimulation in adult 
rats [51]. Studies on the potential role of RTX in the regulation of lipid 
metabolism are limited.
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Figure 3: Names and chemical structure of natural and synthetic analogs of capsaicin.

Piperine: Piperine is the molecule responsible for the pungency 
of black pepper and is also considered a capsaicin analogue due to 
its capacity to produce a clear agonist activity at the TRPV1 receptor 
[52]. Nevertheless, piperine contains a benzodioxole ring rather 
than an aromatic catechol ring present in capsaicin (Figure 3), it is 
considered a capsaicin analogue due to its high TRPV1 affinity [53]. 
A number of studies have been addressed to elucidate the biological 
roles and physiological effects of piperine, such as the enhancement 
of the digestive capacity, the reduction of the gastrointestinal transit 
time for food, its ability to protect against oxidative damage and 
increasing the bioavailability of a number of therapeutic drugs, and 
some anti-tumoral effects as well [54]. To date, piperine has been 
reported to exhibit similar biological activities as capsaicin, including 
inhibition of adipogenesis by antagonizing PPARɣ activity in 3T3-L1 

cells [55], reduction of HFD-induced hepatic steatosis by decreasing 
triglycerides, free fatty acids and cholesterol in liver, as well decrease 
of hepatic lipogenic markers such as LXR, SREBP1c, Leptina, aP2 y 
CD36 in mice [56]. Nevertheless, other in vivo studies reported that 
piperine consumption does not amplify beneficial effects of caloric 
restriction in obese mice [57].

Gingerol: 6-gingerol is the bioactive constituent of the rhizome 
of fresh ginger (Zingiber officinale). Chemically, gingerol contains the 
characteristic vanilloid ring without the amide bond and the double 
bond in the carbon chain. It has an insertion of a hydroxyl group at 
C-5 (Figure 3) and has been used as a medicinal plant since ancient 
times because it possesses several pharmacological activities, including 
the effect on lipid metabolism [58]. Previous research has shown that 
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6-gingerol may reduce adiposity by promoting the catabolism of lipid 
through the increase of acetyl-coenzyme A acyl-transferase in high-fat 
diet mice [59]. It has also been shown a decrease in glucose levels, body 
weight, leptin, insulin and tissue lipids in high-fat diet-induced obese 
rats treated with 6-gingerol [60,61]. Furthermore, gingerol prevents 
adipogenesis in 3T3-L1 through the significant down-regulation of 
PPARɣ and C/EBPα [62,63].

Synthetic analogs

Since the discovery of multiple capsaicinoid effects, a number of 
researchers have focused in the chemical characterization of these 
molecules [64,65]. However, the development of additional potential 
of capsaicinoids as drugs has been restricted by their limited natural 
availability and low structural variability. At the moment, chemical 
synthesis has been an alternative tool to discover new capsaicin analogs 
without the inherent and undesirable effects [66,67]. In this section, 
we described the knowledge on synthetic analogs molecules that have 
shown similar effects to capsaicin, emphasizing the effect on lipid 
metabolism and energy balance.

Palvanil: N-Palmitoyl-vanillamide is a non-pungent capsaicin 
analogue, which is currently obtained by enzymatic synthesis [68]. 
It contains the aromatic catechol ring linked to a palmitic acid (CH3 

(CH2)14COOH) by an amide bond in its chemical structure (Figure 
3). Recent studies have shown that Palvanil is an antinociceptive 
agent because it inhibits inflammatory and neuropathic pain by 
activating TRPV1 receptor, besides, it has been demonstrated that this 
molecule produced significantly less side effects such as hypothermia 
and bronchoconstriction than capsaicin [69]. The use of Palvanil in 
the treatment of pathologies such as inflammatory and neuropathic 
hyperalgesia and other types of pain has been protected for commercial 
purposes [70]. However, there is a lack of studies regarding the potential 
effects of Palvanil in the regulation of lipid metabolism.

Nonivamide (VAMC9): The chemical name of Nonivamide is 
N-vanillylamide of nonanoic acid and is also obtained by enzymatic 
synthesis through a direct lipase-catalyzed reaction [71]. It contains the 
aromatic catechol ring linked to a pelargonic acid (CH3 (CH2)14COOH) 
by an amide bond (Figure 3). Nonivamide is a capsaicin analogue with 
two times less pungency than capsaicin (9,200,000 SHU compared to 
16,100,000 SHU for capsaicin). It has been reported to exhibit similar 
biological activities as capsaicin, including the increase in intracellular 
Ca2+ levels via the activation of vanilloid receptors in some cell types 
[72], the reduction of lipid accumulation in adipocytes by decreasing 
PPARɣ protein levels in a similar way than capsaicin [73]. In the report 
of the only clinical trial performed with Nonivamide to our knowledge, 
is been shown that the addition of nonivamide to a glucose solution 
ad libitum, reduced the energy intake from a standardized breakfast in 
moderately overweight men [26]. This suggests that Nonivamide has 
a therapeutic potential as anti-obesity drug with better efficacy than 
capsaicin but without the undesirable effects of pungency.

Arvanil: The Arvanil´s chemical name is N-Vanillylarachidonamide. 
It contains the aromatic catechol ring linked to an arachidonic acid 
by an amide bond in its structure (Figure 3). It is also obtained by 
enzymatic synthesis and it has been demonstrated that only one 
modification in its chemical structure changes its biological activity. 
For example, methylation of the amide group decreases the affinity to 
TRPV1, and the substitution of the 3-methoxy group with a chlorine 
atom on the aromatic ring, increases its capacity to inhibit fatty acid 
amide hydrolase [74]. It has been shown that Arvanil has a beneficial 

effect in a rat model of Huntington´s disease, reducing ambulatory 
and stereotypic activity, and increasing the activity [75]. Moreover, it 
has been demonstrated the beneficial potential of Arvanil in neuronal 
affectations such as astrocytomas and mild cognitive impairment [76]. 
However, there is a lack of evidence about the Arvanil effects on the 
regulation of lipid metabolism. 

Olvanil: Olvanil is a non-pungent capsaicin analogue that is also 
obtained by enzymatic synthesis through a direct lipase-catalyzed 
reaction [66,77]. It contains the aromatic catechol ring linked to an 
oleic acid by an amide bond (Figure 3).

Although its antinociceptive effect was discovered in 1990, no 
more studies on its potentially actions have been published to date. In 
our group, we found that olvanil treatment improves lipolysis while 
decreases the amount of intracellular triglycerides in 3T3-L1 cells 
in a similar manner to capsaicin. We also found that olvanil inhibits 
adipogenesis by reducing the activity of PPARɣ and preventing the 
maturation of 3T3-L1 preadipocytes (data send for publication).

Phenylacetylrinvanil (PhAR): PhAR is a capsaicin analogue, 
without pungency but with one thousand more affinity to TRPV1 
receptors than capsaicin [78]. It contains an insertion of a hydroxyl 
group at C-12 of the chemical structure of olvanil and the presence of 
an additional functional group (Figure 3). About the potentials of this 
molecule, only the anti-carcinogenic effect has been evidenced. Recent 
studies have proven that PhAR induces apoptosis in leukaemia cell 
lines, such as P388, J774 and WEHI-3 [79] and it also inhibits in vitro 
cell proliferation of carcinogenic cells such as HeLa, CasKi and ViBo 
[80]. However, no evidence was found of its possible role in energy 
metabolism regulation.

Conclusions
Synthesis of capsaicin analogs and its chemical variants are a 

very useful alternative tool for drug therapy of obesity. Besides, 
their study might be helpful to understand the structural-activity 
relationship of molecules that have shown a highly medicinal value 
but with undesirable side effects, like capsaicin. Information found in 
scientific literature about the biological activity on metabolic disease 
of capsaicin analogs synthetized until now, adds knowledge about the 
plausible molecular mechanisms and possible portion of the capsaicin 
chemical structure responsible for its effect that is not completely 
understood.

Vanillyl structure was considered very important for activation of 
the TRPV1 receptors, however, as can be seen in the available data, it 
has been recently found that molecules lacking the vanillyl structure 
can also activate the TRPV1 receptors and in some cases magnify 
the affinity to these receptors, higher than capsaicin itself. This could 
lead to the conclusion that there are other structural moieties or 
functional groups than can activate TRPV1 receptors, inducing the 
same or enhanced biological effects, therefore, the concept “capsaicin 
analogue” can be difficult to define. Another important subject is the 
fact that many capsaicin analogs, despite having different pungency 
levels, have the same receptor affinity and different antinociception 
capacity but some preserve, and in some cases increase, their potential 
benefits in the regulation of metabolism, like nonivamide and olvanil 
compared to capsaicin. The majority of evidence provided suggest 
that the pungency level of these molecules does not determine the 
biological effect discussed here. Additional work should be conducted 
on synthetizing different analog molecules with some structural 
modifications, based in previous research to obtain a better molecule 
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with the highest potential therapeutic effect but with less inherent 
undesirable side effects.
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