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Introduction
Survival analysis is generally defined as a set of methods for 

analyzing data where the outcome variable is the time until the 
occurrence of an event of interest [1]. The time to event or survival time 
can be measured in days, weeks, years, etc. In survival analysis, subjects 
are usually followed over a specified time period and the focus is on 
the time at which the event of interest occurs. A number of models 
are available to analyze the relationship of a set of predictor variables 
with the survival time. Methods include parametric, nonparametric 
and semiparametric approaches. Parametric methods assume that the 
underlying distribution of the survival times follows certain known 
probability distributions. Popular ones include the exponential, 
Weibull, and lognormal distributions.

The Birnbaum-Saunders (BS) distribution has a close relation to the 
normal distribution and has been applied in a wide variety of fields and 
distribution is a non-negative support that has attracted considerable 
interest [2]. This distribution is positively skewed, unimodal and 
has two parameters [2,3]. Generalized Birnbaum-Saunders (GB-S) 
distribution is a flexible lifetime model that admits different degrees of 
kurtosis and asymmetry while possessing unimodality and bimodality 
proposed by Díaz-García et al. ., Owen and Leiva [4-8]. Also, GB-S 
distributions produce models whose parameter estimates are usually 
non-sensitive to outliers and robust to irregular data [8-11]. This 
interest in the GB-S distribution is due to its physical and theoretical 
arguments, relationship with the normal distribution and other 
attractive properties.

For t>0, the survival function, cumulative distribution function 
and probability density function of the GB-S distribution are [6,7]:
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Where Φ(.) is the standard normal cumulative distribution 
function, α>0, β>0 and λ>0 are shape scale and location parameters, 
respectively.

In survival analysis, there are situation which the studied population 
is a mixture of uncured (susceptible individuals - who may experience 
the event of interest), and cured (non-susceptible individuals - who will 
never experience the event), the standard survival models are usually 
not appropriate because they do not account for the possibility of cure. 
Many patients with disease like cancer can be long-term survivors, 
and thus cure models can be a useful tool to analyze and describe their 
survival data.

Cure rate models contain situations where subjects not sensitive 
to the occurrence of the event of interest there are situations where 
a fraction of individuals are not expected to experience the event of 
interest ; that is, those individuals are cured. These models have become 
very popular due to the significant progress in treatment therapies 
leading to enhanced cure rates. In the medical studies, many patients 
with disease like cancer can be long-term survivors, and thus cure 
models can be a useful tool to analyze and describe their survival data.

The most popular type of cure rate model is the mixture cure model 
(MCM) which was introduced by Boag to study cases where there was 
a proportion of cured patients among treatment receivers for mouth 
cancer [12]. This model was developed later by Berkson et al. [13-16].
In this distribution, it is assumed that a specific number of the patients, 
say p0, are cured, in the sense that they do not present the event of 
interest during a long period of time and can be observed as to be 
immune to the cause of death under study or cured. In this model, the 
survivor function for the entire population is given by
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Abstract
The cure rate survival models are generally used to model lifetime data with long term survivors. We assumes the 

number of competing causes of the event of interest has the Poisson distribution and the time to the event of interest 
follows the Generalized Birnbaum-Saunders distribution. The Poisson GB-S distribution has been defined and useful 
representations for its density function have been presented which facilitates obtaining some mathematical properties. 
The parameters of the model with cure rate have been estimated using the maximum likelihood method. For different 
sample sizes and censoring percentages, several simulations have been performed and a real data set from the medical 
area has been analyzed.
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where S (t) is survival function and p0 is the cured fraction.

The other type of cure rate model is the Non-Mixture Cure Model 
(NMCM), which was first proposed by Yakovlev et al.  and was further 
extended by some other authors [17-23]. The literature on distributions 
which accommodate other different latent competing causes is rich and 
growing rapidly.

Cancho et al. introduced the Geometric Birnbaum–Saunders 
regression model with cure rate with an application to a cutaneous 
melanoma data. It was demonstrated that it can provide better fitting 
in comparison with the MB-S distribution [24]. Hashimoto et al. and 
Cordeiro et al. presented the Poisson Birnbaum–Saunders model 
with long-term survivors in breast cancer data and Negative binomial 
Birnbaum–Saunders model with long-term survivors in melanoma 
data [25,26].

In this pepper, we have proposed a new distribution family here, 
the Poisson generalized Birnbaum–Saunders cure rate model (PGB-S), 
which is conceived inside a latent competing causes scenario with cure 
fraction where there is no information regarding the exact cause of the 
individual death or tumor recurrence and only the minimum lifetime 
value among all of the risks is observed and a fraction of the population 
is not susceptible to the event of interest.

This paper is organized as follows: in Section 2 the PGB-S model is 
formulated by defining the density, cumulative distribution and hazard 
rate functions of the Poisson generalized Birnbaum–Saunders (PGB-S) 
distribution and some of its properties are also studied. In Section 3 we 
explain the maximum-likelihood estimation procedure and parameter 
inference. In Section 4 the performance of the parameter estimates 
using Monte Carlo simulation is evaluated. Then, an application to a 
real data set on breast cancer is given in Section 5. Finally, in Section 6 
some conclusions are drawn.

Materials and Methods
Model formulation

We formulate the model within a biological context. Let M 
define the random variable unobservable that denotes the number of 
causes (risk factors) of the event under study for an individual in the 
population. We assume that M follows a Poisson distribution with 
parameter φ and mass probability
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The promotion time for the jth cause (for example tumor cell) to 
produce the event of interest is defined by Zj, j=1,…, M. We assume 
that, conditional on M, the Zjs are i.i.d. random variables having the 
generalized Birnbaum–Saunders cumulative function given by eqn. (2). 
Also, we assume that Z1, Z2,… are independent of M. The observable 
time to event of interest is defined by the random variable T min (Z1,…, 
ZM), and T=∞ if M=0 with P(T=∞|M=0)=1. Under this setup and used 
the eqn. (5), the survival function for the population is
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The cure function is defined by p0=SPOP(∞)=exp(-φ) and the 
corresponding density function becomes:
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where fGB-S (t) is the probability density function of the distribution 
given in eqn. (3). In addition, the population hazard function is given by:
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The function hPOP(t) is multiplicative in φ and fGB-S(t) thus, it has 
the proportional hazard structure when the covariates are modeled 
through φ.

The distribution in eqn. (6) can be written as a mixture distribution 
[13]:
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Then, from eqns. (4) and (9), the survival function for the non-
cured population from the Poisson Generalized Birnbaum Saunders 
(PGB-S) survival function is hereafter given by

( ) ( )
( )

( )PGB S

1 texp exp
t

S t P T t|M 1
1 exp

λ λ

−

     β    −ϕΦ − − −ϕ     α β      = > ≥ =
− −ϕ

  (10)

It should be noted that S(PGB-S)(0)=1 and S(PGB-S)(∞)=0, so that 
it is a proper survival function. The density function of the PGB-S 
distribution is given by:
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From eqn. (11), the parameter β controls the scale of the density 
distribution while the parameters α, λ and φ control its shape. As 
φ approaches zero, the PGB-S distribution converges to a GB-S 
distribution. In Figure 1, the PGB-S density function has been plotted 
for selected values of the parameters. The PGB-S distribution can be 
used to model data in survival analysis.

From eqns. (10) and (11), it is easy to verify that the hazard rate 
function of the non-cured population is
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Numerical examples allow us to determine that the hazard rate 
function eqn. (12) is either increasing or unimodal (Figure 2).

The first moment [27] of the PGB-S distribution is given by
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where fPGB-S (t) is the probability density function of the distribution 
given in eqn. (11).

The skewness and kurtosis of the distribution can be calculated 
from the ordinary moments given in (13) using numerically obtainable 
in common statistical software such as SAS university. Figure 3 shows 
graphical representations of kurtosis and skewness where it can be 
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Figure 1: Probability density function of the PGB-S distribution. The parameters were fixed ϕ=0 1 2 4 8 10 and α=0.5, β=5.0, λ=0.5 (a), α=1.0, β=5.0, λ=0.5 
(b), α=0.5, β=5.0, λ=0.3 (c), α=1.0, β=5.0, λ=0.3 (d), α=0.5, β=5.0, λ=0.7 (e), α=1.0, β=5.0, λ=0.7 (f).

Figure 2: Hazard function of the PGB-S distribution. The parameters were fixed ϕ=0 1 2 4 8 10 and α=0.5, β=5.0, λ=0.5 (a), α=1.0, β=5.0, λ=0.5 (b), α=0.5, 
β=5.0, λ=0.3 (c), α=1.0, β=5.0, λ=0.3 (d), α=0.5, β=5.0, λ=0.7 (e), α=1.0, β=5.0, λ=0.7 (f).
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observed that both skewness and kurtosis are increasing functions of 
α, ϕ and λ.

Inference

The lifetimes of all the sampling units may not be observable, due 
to censoring that could be present in the data. We consider the case that 
the minimum lifetime of all the competing causes is not completely 
observed and is subject to right censoring. If we consider Ci denote the 
censoring time, Then we observe δi=I(Ti ≤ Ci) and ti min{Ti, Ci}, where 
δi 1 if Ti is the observed time to the event defined before and δi 0 if it 
is right censored, for i =1… n. Hereafter, we Consider γ (α ,β ,λ)T as 
the parameter vector of the distribution function of the time-to-event, 
from n pairs of times and censoring indicators (t1, δ1), . . , (tn, δn), the 
observed likelihood function under non-informative censoring [28] is
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where SPOP(ti) and fPOP(ti) ,respectively, have been defined in eqns. (6) 
and (7). In much medical research, the lifetimes are usually affected 
by explanatory variables such as the sex, age, and many others. The 
parameter ϕ in eqn. (6) is now linked to a vector Xi of explanatory 
variables by assuming a log link, ( )  1,  T

i ilog X i nη= = … , that is

( ) ( )0 exp ( ) T
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where η (η1,… , ηp) denotes the vector of regression coefficients. 
However, we consider ω (γ,η) as the vector of model parameters. By 
substituting eqns. (6) and (7) into eqn. (14), and use of eqn. (15) the 
log-likelihood function is
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Figure 3: The skewness (right) and kurtosis (left) of the PGB-S distribution as functions of α for some values of ϕ and, λ=0.5 (a, b), λ=0.3 (c, d), λ=0.7 (e, f).
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We can derived the model parameters by numerical maximization 
of the log-likelihood function obtained from eqn. (16) using the 
mathematical and statistical software’s. The computational program 
is available from the authors upon request. Under suitable regularity 
conditions, the maximum likelihood (ML) estimator ω̂  can be 
approximated by the multivariate normal distribution with mean 
vector ω and covariance matrix ( )  ˆ ˆestimated at∑ =ω ω , namely the 
information matrix which is as follows:

( ) ( )
12

T
l
 

ϑ

ϑ ϑ

−
 ω

Σ ω = − 
ω ω  

 				                 (17)

The required second derivatives can be computed numerically. 
Different models may be compared by penalizing over-fitting using 
the Akaike information criterion (AIC) and the Schwartz Bayesian 
criterion (SBC). The model with the smallest value of any of these 
criteria is taken as the preferred model for describing the given data 
set. The quasi-Newton and Nelder-Mead methods (we can use option 
TECH in PROC NLP of SAS) were utilized to obtain the maximum 
likelihood estimates and asymptotic tests for the parameters were 
performed [29].

Simulation study

We considered the proposed model with the PGB-S distribution 
for the event times (T) with the parameters α 2, β=2 and λ (0.4, 0.5, 
0.6). For each individual i, i=1,…, n, the number of causes (Ni) of the 
event of interest for the ith individual is generated from the Poisson 
distribution with parameter ( ) ( )0i 0 1 ip exp exp( exp x ).= −ϕ = − η + η  
Single binary covariate x was considered with values drawn from a 
Bernoulli distribution with a parameter of 0.5.We took η0 .5 and η1 -1 

so that the cured fraction for the two levels of x1 are ( )0
0p 0.192 =  and 

( )1
0p 0.545  =  respectively.

The censoring times are selected from the uniform distribution 
on the interval (0, τ), where τ was adjusted in order to control the 
proportion of censored observations. The proportion of censored 
observations was equal to 40% on average.

We took the sample sizes to be n=50, 100, 500 and 1000. For each 
sample, we calculated the average of maximum likelihood estimates of 
the cured fraction ( ) ( )0 1

0 0( p and p ) , standard deviations (SD) and square 
root of mean square errors (SRMSE) of the maximum likelihood 
estimates for 1000 conducted simulations. The simulated data of 
PGB-S cure models are shown in Table 1. As the sample size increases, 

the average of maximum likelihood estimates becomes closer to the 
true values of cured fraction, with the SDs and SRMSEs decreasing.

Results
We discuss an example employing the modeling approach presented 

in Section 2. The data set includes 557 women with breast cancer who 
were visited and treated at Cancer Research Center in Shahid Beheshti 
University of Medical Sciences, Tehran, Iran during 1992 to 2012; the 
patients were followed up until October 2014. The patients or patients’ 
family members were contacted via phone calls to confirm their health 
status (i.e. whether they are still alive or not) and to fill any gaps in their 
medical records. We had to exclude some patients because of some 
reasons, first their medical records had incomplete information, second 
they were related to male and third, their cause of death was not breast 
cancer. The mean of observed time (t) is 4.07±0.94 years with ranges 
from 3.23 to 211.97 months, (from 0.2692 to 17.66 years) and refers to 
the time until the patient’s death or the censoring time. The Patients 
who died from other causes, as well as patients who were still alive at 
the end of the study were censored observations (83%).Stage of cancer 
(I, n=126; II, n=252; III, n=163; IIII, n=16), grade of cancer (I, n=61; II, 
n=312; III, n=184), Estrogen Receptor (absent, n=169; present, n=388) 
and Progesterone Receptor (absent, n=369; present, n=188) are taken 
as covariates. The Kaplan-Meier estimate of the surviving function is 
given in Figure 4. The presence of a flat line above 0.4 indicates that the 
cure models are suitable choices for analyzing this data set.

In the next step the maximum likelihood estimates of the coefficients 
as well as AIC and SBC selection criteria the PGB-S model are given 
in Table 2. We also reported the results of Hashimoto. According to 
both criteria, the PGB-S model stands out as the best one. In order to 
compare the nested models, which is the case when comparing the 
PGB-S and PB-S models, one can compute the maximum values of 
log-likelihoods to obtain the LR statistics for testing H0:λ=0.5 versus 
H0:λ≠0.5. The result of this test shows that the null hypothesis can be 
rejected (p<0.05).

The quantile-quantile plot (QQ plot) of the normalized randomized 
quantile logarithm residuals from Dunn and Smyth [30], Rigby and 
Stasinopoulos [31] in Figure 5 suggests that the PGB-S model has 
yielded a good fit. From Table 2 for two models, the covariate stage of 
cancer had a significant effect (III and IV) on the reduction of the cured 
fraction. This estimate can easily be computed from Table 2 due to the 
parametrization of the cured fraction.

N ( )0
0 p ( )1

0 p

Average SD SRMSE Average SD SRMSE
λ=0.4 50 0.221 0.024 0.037 0.5756 0.0228 0.038

100 0.220 0.019 0.034 0.5730 0.0243 0.037
500 0.220 0.017 0.033 0.5743 0.0211 0.036
1000 0.219 0.018 0.032 0.5739 0.0224 0.036

λ=0.5 50 0.212 0.018 0.027 0.5775 0.0197 0.038
100 0.211 0.016 0.025 0.5699 0.0250 0.035
500 0.213 0.017 0.027 0.5689 0.0225 0.033
1000 0.213 0.018 0.027 0.5679 0.0224 0.032

λ=0.6 50 0.211 0.020 0.027 0.5672 0.0201 0.030
100 0.210 0.019 0.026 0.5648 0.0194 0.028
500 0.210 0.018 0.025 0.5553 0.0222 0.024
1000 0.208 0.018 0.024 0.5545 0.0225 0.024

Table 1: Averages of maximum likelihood estimates, standard deviation and 

square root of mean square error (RMSE) of cured fractions ( )0
0 p  and 

( )1
0p for the 

simulated data of PGB-S cure rate model.

Figure 4: Kaplan-Meier estimate of the surviving function to the breast cancer 
data set.
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Variable PB-S (Hashimoto et al. 
[26])

PGB-S (This Article)

Estimate SD Estimate SD
ηintercept -1.390283 0.552006 -1.219967 0.554269
ηStage 4 to 1 2.664943 0.486006 2.734685 0.511989
ηStage 3 to 1 1.612516 0.415637 1.629502 0.420455
ηStage 2 to 1 0.304332 0.434209 0.303773 0.438291
ηGrade 3 to 1 0.727723 0.484344 0.711619 0.493874
ηGrade 2 to 1 0.261274 0.463585 0.244934 0.470529
ηER+ to ER- -0.377558 0.373236 -0.362323 0.391168
ηPR+ to PR- 0.105269 0.368441 0.113465 0.384354
β 146.358428 22.145824 146.970379 34.521112
α 1.437391 0.046891 0.001651 0.136312
λ ---- --- 0.000748 0.061687
AIC 1179.5 1164.56
SBC 1239.8 1212.10

Table 2: Maximum likelihood estimates for the parameters (SD) of the PB-S and 
PGB-S models with the cure rate fitted to the breast cancer data set.

Figure 5: QQ plot of the normalized randomized quantile residuals with the 
identity line under the PGB-S model to the breast cancer data set.

Discussion and Conclusion
In the analysis of lifetime data we could have the presence of 

cure fraction and covariates, especially in medical applications. 
The Birnbaum-Saunders distribution has been extensively used for 
modeling in several fields such as medical sciences, biological studies, 
engineering and insurance. Because the generalized Birnbaum–
Saunders (GB-S) distribution is a highly flexible lifetime model, so it 
would be a better fit to the data model which was introduced by Owen 
[7].

In this paper, a PGB-S model for analyzing survival data with cure 
fraction was proposed which is conceived inside a latent competing 
cause’s scenario with cure fraction. We introduced a four-parameter 
continuous model called the PGB-S distribution which extends the 
GB-S one. We proposed cure rate model has the structure of the 
mixture cure rate model, and the PGB-S distribution represents the 
distribution associated with the individuals at risk.

The interpretation of the covariates turns out to be straightforward 
due to the parameterization of the cure fraction. Looking at the strong 
points of the PGB-S model, it can be employed as an interesting option 
to explain/predict the survival time for long-term individuals.
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