
Research Article Open Access

Industrial Engineering & Management
Ind

us
tri

al
En

gineering &Managem
ent

ISSN: 2169-0316

Ozdemir and Asil, Ind Eng Manage 2017, 6:1
DOI: 10.4172/2169-0316.1000208

Volume 6 • Issue 1 • 1000208Ind Eng Manage, an open access journal
ISSN: 2169-0316

The Optimization of Query Processing in Sea Base Cloud Databases Based
on CCEVP Model
Abdulkadir Ozdemir1* and Hasan Asil2

1Faculty of Social Sciences, Ataturk University, Erzurum, Turkey
2Faculty of Computer, Azarshahr Branch, Islamic Azad University, Azarshahr, Iran

Abstract
A cloud database is a distributed database that can provide services for distributed data. The Sea Base is a

cloud database that can offer integrated services from different databases. Several methods have been proposed for
query processing in cloud databases. This study intends to propose a new method to optimize query processing in
cloud databases. By detecting frequent queries sent to the database and keeping their execution plans, this method
attempts to optimize query processing in the Sea Base. It is composed of three parts: separator, similarity detector and
replacement policy. The results of system simulation show, that the system time response is reduced by 1.9 percent with
this method. In future, this optimization can improve by improving the said parts.

*Corresponding author: Ozdemir A, Faculty of Social Sciences, Ataturk University,
Erzurum, Turkey, Tel: 904422311961; E-mail: o.abdullkadir@atauni.edu.tr

Received January 11, 2017; Accepted March 10, 2017; Published March 13,
2017

Citation: Ozdemir A, Asil H (2017) The Optimization of Query Processing in
Sea Base Cloud Databases Based on CCEVP Model. Ind Eng Manage 6: 208.
doi:10.4172/2169-0316.1000208

Copyright: © 2017 Ozdemir A, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: Cloud databases; Sea base; Query processing; Adapting;
DBMS

Introduction
Database management systems are software packages that can be

used to create and maintain one or more databases. However, with the
rise of cloud computing, database management systems have become a
new kind of service with unique advantages. In these services, DBMS is
a part of a larger service which is likely to be more effective in terms of
results and assigned tasks [1,2].

A cloud database is a database usually installed on cloud computing
software platforms. Using a virtual machine, users can independently
launch databases on cloud, or they can purchase an account to access
database services maintained by cloud database providers [3].

Sea Base is an implementation based on cloud computing. Based
on CCEVP model, it can convert different data types into one. In
fact, Sea Base is a relational cloud database which can merge a pair of
databases together. Like SQL server, DB2, Sybase, MySQL, and other
similar databases, Sea Base was designed in order to integrate data
taken from several heterogeneous databases and provides users with
them in a unified way [1]. Figure 1 indicates the structure of Sea Base
based on CCEVP model.

The CCEVP model uses three layers: physical, virtual and effective.
The physical layer is a set of multisource physical tables from similar or
dissimilar databases. The virtual layer is a set of relationship schemas
determined by the Sea Base users. The effective layer allows users to
create a unified vision to the Sea Base.

Optimizing Query Processing in Cloud Database
There are several methods for query processing in cloud databases.

Many of these methods have offered new technologies to optimize query
processing in the database [3]. Some of these methods use replication
for query processing and accelerate the process by data sampling. Some
methods use traditional methods for query processing in the database.
Some methods attempted to optimize the execution plans, which are
known as Salinger methods [4,5].

Most of these methods use a special procedure (Salinger-Style) for
optimization, and generally after query processing and query execution,
the plan optimized for query processing is eliminated. But today, in
addition to these methods, other methods are also being offered to

optimize query processing in the database [6]. But the question is that
whether the produced optimized plan (or the frequent queries sent
to the Sea Base) can be used for executing subsequent queries. As we
know, in the application-related databases, usually the queries sent to
the database have high adaptability power because in these systems, the
queries sent to the database have the same structure and are adapted
as soon as possible. This method can be used to optimize the Sea Base.

The Proposed Method
The aim of this study was to optimize query processing in the

Figure 1: CCEVP Model (Cloud Computing-based Effective-Virtual-Physical) [1].

Citation: Ozdemir A, Asil H (2017) The Optimization of Query Processing in Sea Base Cloud Databases Based on CCEVP Model. Ind Eng Manage
6: 208. doi:10.4172/2169-0316.1000208

Page 2 of 5

Volume 6 • Issue 1 • 1000208Ind Eng Manage, an open access journal
ISSN: 2169-0316

database model. Matching techniques were used to optimize processing.
This method was proposed in order to use the optimal schemas
generated for the execution of next queries or the ones frequently sent
to the database. An agent was added to this model for implementation.

Combining the technologies of optimizing queries and agents in
this algorithm, a multi-agent system was proposed. Using information
collection technology based on processing users’ queries, this system
tries to provide users with an adaptable environment based on the
query types and how they are made [7-10].

Given the fact that requests are sent to the system by applications
or users, the majority of queries have the same structure. They are
repeated over time. Therefore, this paper was intended to propose a
method by which the database could identify the queries of the same
type over time. Using a specific schema of execution, it was also
intended to identify the highly frequent queries sent to the database
and answer them. Put another way, the database was to be matched
so that the queries would be processed with the prepared execution
schemas at a lower cost. In fact, it was meant to decrease the number
of steps required for processing highly frequent queries sent to the
database [11-15].

In this algorithm, an agent was added to Sea Base so that a matched
cloud database would be generated. Decreasing the number of steps
required for processing the highly frequently queries sent to the cloud
database, this algorithm tried to increase the optimization of query
processing in cloud databases.

This research uses the previous heterogeneous distributed database
query processing method and develops it for Sea Base [4].

The algorithm uses a method for optimizing query processing in
the heterogeneous distributed databases. This method was designed
for cloud-based databases. The algorithm is composed of three
components:

•	 Multi Cloud query Separator

•	 Query similarity detector based on the execution plan

•	 Replacement policy

The main objective of this approach is to identify the most frequent
instructions sent to the cloud database and store their execution
plans in the system so that in case of a request to the database, the
same execution plan is used for query execution. The separator part
separates instructions and the instructions whose execution plan
has not high cost. The query similarity detector is used to identify
similar instructions. The replacement policy detects the most frequent
instructions sent to the Sea Base and stores their execution plans. The
following algorithm shows the structure of this method (Figure 2).

Separator of distributed instructions
Distributed instructions are instructions which include several

sub-queries and receive information from several DBMSs.

The purpose of this function is to identify functions that, based
on assessment, need more time for execution or receive information
from several databases. Different queries are sent to the Sea Base,
and the database needs cost to respond to queries depending on their
type and structure. As mentioned, three layers are used to execute the
instructions sent to the database: physical, virtual and effective. Based
on the layer, the separator detects instructions that require the use of
several databases. The separator aims to identify the instructions that
use multiple databases and need a link.

The query similarity detector based on execution plan

Any query for execution in the cloud database requires the same
steps used in a non-cloud database. Any query for execution must have
a specific plan. In applications, requests are usually sent to the database
with a specific format and different parameters. The purpose of this
section is to identify queries with similar plans.

To make adaptive the query processing in the database, we need
a part in the proposed system that can compare the sent queries and
identify similar queries. For example, consider the following two
queries.

Query 1

FROM tblKala INNER JOIN

tblHavaleKala ON tblKala.KalaiD = tblHavaleKala.KalaID INNER
JOIN

tblHavale ON tblHavaleKala.HavaleID = tblHavale.HavaleIDwhere
kalaid=20

Query 2

FROM tblKala INNER JOIN tblHavaleKala ON tblKala.KalaiD =
tblHavaleKala.KalaID INNER JOIN

tblHavale ON tblHavaleKala.HavaleID = tblHavale.HavaleIDwhere
kalaid=31

As can be seen, these two instructions request information on
products 20 and 31 from the database. But the two instructions are the
same and can be executed with the same plan. This part of the system
should be able to detect such instructions.

Replacement policy

In the algorithm, a set of frequent execution plans must be kept

Query processing optimization in SeaBase

1. Begin

2. Examine query by separator(can

Separate distributed query)

3. Produce query execution plan if query

is one of exceptions

4. If it's not an exception check it's

execution plan availability in system

by similarity recognizer

4.1 If execution plan exists select it

4.2 otherwise,

4.3 send it in order to producing

execution plan

5. executing plan for replying to query

6. Check whether it's the time for

substituting or not?

6.1 If so, do substitution

7. END

Figure 2: Suggested algorithm.

Citation: Ozdemir A, Asil H (2017) The Optimization of Query Processing in Sea Base Cloud Databases Based on CCEVP Model. Ind Eng Manage
6: 208. doi:10.4172/2169-0316.1000208

Page 3 of 5

Volume 6 • Issue 1 • 1000208Ind Eng Manage, an open access journal
ISSN: 2169-0316

in the agent and in case of request, the same query request should be
used. The replacement policy is used to create and update the set. An
important part of this research is to determine the replacement action
is done how, when and with what policy.

As know adding an agent to Sea Base, which always adapts queries,
constrains cost to system. For adapting system the method examines
sent queries to database for a while and the execution plan of similar
frequent queries is substituted in database. (It’s considered that only
queries receipted by separator will be sent to this part). The time
between two adaptation said that this time is calculated by value of
adapted queries and dynamically. It means that whatever score goes up,
adaptable queries will stay in the system for longer time and if adapting
enjoys low score they will stay in the system for shorter time. It was
found that on the long run, the increasing score of adapted queries
have increase this time. The method does adapting on queries sent to
database in busy hours. The method saves queries in busy hours and
in quiet hours it will does adapting on these queries when it’s time to
adapt.

Now about the ways of adapting, at first create a bank of sent queries
then if sent query was similar to one of available queries in database we
increase the weight of query and also if sent query was not available in
the bank the method adds it to databank and continues adapting. After
adapting the method saves queries with high scores. Ways of saving
queries in database follows a distinct format and standard in order to
constrain less cost when the queries are examined.

Assessment and Practical Results
Several methods are currently used to measure the performance

of the database system. One of the most common methods among the
above methods is runtime in the system. Runtime is the time from the
sending moment to the system response. This study tries to identify the
most frequent queries sent to the database and keep their execution
plans for executing subsequent queries. In fact, this method tries to
make the query processing in the database adaptive.

For assessment, this method is implemented as a system for a fully
object-oriented simulation. The system is added to the Sea Base as an
agent. Then the results of execution using this method are compared
with the Sea Base without this agent. Furthermore, we need the desired
data based on relationship dependence. For this purpose, the SQL Tool
belt database and simulator is used to create data and determine the
table dependence.The.NET and the SQL API functions are used to
implement the algorithm and make comparisons. The following figure
shows some of the code in this system:

After simulation of the system, the following results will be
provided (Figure 3).

•	 The query runtime cost in a normal manner

•	 This cost is equal to the time required for the Sea Base query
processing and respond to the user. This cost is assessed without adding
the agent to the system.

•	 The cost of the proposed algorithm execution

•	 After adding the agent to the Sea Base, the adaptability cost
and the query execution cost must be added up and evaluated. The
algorithm execution cost is the adaptability cost.

•	 The execution cost of the adapted query as an execution plan

This cost is the execution cost of query with the help of agent. It is
worth mentioning that with regard to the adaptability of some queries,
the cost of some queries is normal and some less.

After obtaining the above results, the second and third costs are
added up and compared with the first cost.

In the algorithm, the times required for executing the queries sent
to the database are compared in adaptive and non-adaptive databases.
Figure 4 shows the time required to respond to the adaptive and non-
adaptive queries per day. A cloud database with adaptive queries is
called adaptive cloud base.

Figure 3: Part of the simulation.

Citation: Ozdemir A, Asil H (2017) The Optimization of Query Processing in Sea Base Cloud Databases Based on CCEVP Model. Ind Eng Manage
6: 208. doi:10.4172/2169-0316.1000208

Page 4 of 5

Volume 6 • Issue 1 • 1000208Ind Eng Manage, an open access journal
ISSN: 2169-0316

query processing time. This method used adaptability for optimization.
The purpose of this method is to make adaptive the execution plans of
high-traffic queries sent to the Sea Base. For adaptability, this method
uses three parts: separator, similarity detector and replacement policy.
This method is added to the database as an agent. The results show
that the system optimizes query processing in the database and reduces
response time by one percent. Based on the replacement policy, this
method also reduces workload. In the future, response time can further
decrease by changing the replacement policy.

References

1. Guo S, Yuan Z, Zha L, Xu Z (2014) Sea base: an implementation of cloud
database. 10th International Conference on Semantics, Knowledge and Grids,
Beijing.

2. Shehri WL (2013) Cloud database as a service IJDMS 5: 1-12.

3. Costa CM, Sousa AL (2013) Adaptive query processing in cloud database
systems. IEEE International Conference on Cloud and Green Computing ISBN:
978-0-7695-5114-2.

4. Zafarani E, Derakhshi MRF, Asil H, Asil A (2010) Presenting a New Method for
Optimizing Join Queries Processing in Heterogeneous Distributed Databases.
WKDD 2010, Phuket, Thailand. ISBN: 978-1-4244-5398-6

5. Derakhshi MRF, Asil H, Asil A, Zafarani E (2010) Optimizing Query Processing
in Practical Software Database by Adapting. WKDD2010, Phuket, Thailand.
ISBN: 978-1-4244-5398-6.

6. Derakhshi MRF, Asil H, Asil A (2009) Proposing a New Method for Query
Processing Adaption in Data Base. WCSET 2009: World Congress on Science,
Engineering and Technology Dubai, United Arab Emirates ISSN 2151-9617.

7. Deshpande A, Ives Z, Raman V (2007) Adaptive query processing. Foundations
and Trends in Databases 1: 1-140.

8. Derakhshi MRF, Asil H, Asil A, Zafarani E (2010) Practical Software Query
Optimizing by Adapting Why and How?. Australian Journal of Basic and
Applied Sciences 4: 5300-5305.

9. Belkin NJ, Croft WB (1992) Information Filtering and Information Retrieval: Two
Sides of the Same Coin?. Communications of the ACM 35: 29-38.

10. Object Management Group (2000) Agent Technology Green Paper. OMG
Document agent/00-09-01, Version 1.0.

This diagram shows the total time required for executing adaptive
queries in the database as well as the total time for executing adaptive
queries in the non-adaptive mode. It should be noted that in this figure,
the adaptability cost is not currently added to the above calculations
because the system is not adaptive at any time and will do this action
only at certain times of low traffic. However, these costs will be taken
into account in the next assessments.

Figure 5 shows the reduced time of executing adaptive queries.
These queries in the Sea Base are queries which have become adaptive.
Obviously, due to making high-traffic queries adaptive, this method
reduces the server workload at times of high traffic.

The first row of Table 1 represents the total time for responding
to adaptive queries and reduced time of response time for all adaptive
queries sent to the database. It also shows the cost of making queries
adaptive. In this system, when sending queries to the database, the
query separator separates some queries and blocks their way to the
database. The second row represents time and cost for all queries sent
to the database plus adaptability cost [16-21]. As shown in Table 1, the
system reduced response time by 1.9 percent.

Conclusion
The increase in data volume in many applications and the need for

their calculations are the database challenges. Cloud computing and
the use of Sea Base databases are a solution to integrate a variety of
DBMSs and integrated access to tables in databases. This study tried to
optimize query processing in the Sea Base cloud database and reduce

Figure 4: Report of response time per day for adaptive queries.

Figure 5: Report of reduced cost of adapted query.

Decrease
response time

Total Execution
time

Type of queries Row

15% 100% Distributed queries (Join) 1
1.9% 100% All queries 2

Table 1: Total system evolution.

https://doi.org/10.1109/SKG.2014.14
https://doi.org/10.1109/SKG.2014.14
https://doi.org/10.1109/SKG.2014.14
https://pdfs.semanticscholar.org/9be9/6860856b2eb37d75111eb2bd8134e8034bd4.pdf
https://doi.org/10.1109/CGC.2013.39
https://doi.org/10.1109/CGC.2013.39
https://doi.org/10.1109/CGC.2013.39
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.122
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.122
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.122
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.121
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.121
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.121
https://arxiv.org/ftp/arxiv/papers/1001/1001.3494.pdf
https://arxiv.org/ftp/arxiv/papers/1001/1001.3494.pdf
https://arxiv.org/ftp/arxiv/papers/1001/1001.3494.pdf
https://doi.org/10.1561/1900000001
https://doi.org/10.1561/1900000001
https://pdfs.semanticscholar.org/4ba1/21e443566e61e26944e60c2cf6bb76bd76b4.pdf?_ga=1.173914407.565445555.1489149652
https://pdfs.semanticscholar.org/4ba1/21e443566e61e26944e60c2cf6bb76bd76b4.pdf?_ga=1.173914407.565445555.1489149652
https://pdfs.semanticscholar.org/4ba1/21e443566e61e26944e60c2cf6bb76bd76b4.pdf?_ga=1.173914407.565445555.1489149652
https://doi.org/10.1145/138859.138861
https://doi.org/10.1145/138859.138861
http://www.objs.com/agent/agents_Green_Paper_v100.doc
http://www.objs.com/agent/agents_Green_Paper_v100.doc

Citation: Ozdemir A, Asil H (2017) The Optimization of Query Processing in Sea Base Cloud Databases Based on CCEVP Model. Ind Eng Manage
6: 208. doi:10.4172/2169-0316.1000208

Page 5 of 5

Volume 6 • Issue 1 • 1000208Ind Eng Manage, an open access journal
ISSN: 2169-0316

11. Sheth BD (1994) A learning approach to personalized information filtering.
Master Thesis, MIT Media Laboratory, Massachusetts Institute of Technology.

12. Moukas A (1997) Amalthaea: Information filtering and discovery Using
Multiagent Evolving System. Master Thesis, MIT MediaLaboratory,
Massachusetts Institute of Technology pp: 73-76.

13. Maleki-Dizaji S, Nyongesa HO, Siddiqi J (2002) Fuzzy Relevance Feedback
and Evolutionary Reinforcement in Adaptive Information Retrieval Systems.
Proceedings of 7th Annual CSI Computer Conference pp: 15-21.

14. Zacharis ZN, Panayiotopoulos T (2001) Web Search Using a Genetic Algorithm.
IEEE Internet Computing 5: 18-26.

15. Zhang B, Seo Y (2001) Personalized Web-Document Filtering using
Reinforcement Learning. Applied Artificial Intelligence Journal pp: 665-685.

16. Chen L, Sycara K (1998) WebMate: Personal Agent for Browsing and
Searching. Proceedings of 2nd International Conference on Autonomous
Agents pp: 132-139.

17. Widyantoro DH, Ioerger RT, Yen J (1999) An Adaptive Algorithm for Learning
Changes in User Interests. Proceedings of 8th InternationalConference on
Information and Knowledge Management pp: 405-412.

18. Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval. ACM
Press, Addison-Wesley, Reading, MA.

19. Rogers, Prugel-Bennett A (1999) Modeling the Dynamics of a Steady State
Genetic Algorithm. Proceedings of the Fifth Workshop on Foundations of
Genetic Algorithms, Morgan Kaufmann, pp: 57-68.

20. Yao YY (1995) Measuring Retrieval Effectiveness Based on User Preference
of Documents. Journal of the American Society for Information Science 46:
133-145.

21. Kalantar M (2003) Adaptive Web Information Filtering System Using Genetic
Algorithms. Master Thesis, Ferdowsi University.

https://dspace.mit.edu/handle/1721.1/37998
https://dspace.mit.edu/handle/1721.1/37998
https://dspace.mit.edu/handle/1721.1/62338
https://dspace.mit.edu/handle/1721.1/62338
https://dspace.mit.edu/handle/1721.1/62338
https://doi.org/10.1109/4236.914644
https://doi.org/10.1109/4236.914644
http://www.ri.cmu.edu/publication_view.html?pub_id=3720
http://www.ri.cmu.edu/publication_view.html?pub_id=3720
https://doi.org/10.1145/280765.280789
https://doi.org/10.1145/280765.280789
https://doi.org/10.1145/280765.280789
https://doi.org/10.1145/319950.323230
https://doi.org/10.1145/319950.323230
https://doi.org/10.1145/319950.323230
ftp://mail.im.tku.edu.tw/seke/slide/baeza-yates/chap10_user_interfaces_and_visualization-modern_ir.pdf
ftp://mail.im.tku.edu.tw/seke/slide/baeza-yates/chap10_user_interfaces_and_visualization-modern_ir.pdf
https://doi.org/10.1002/(SICI)1097-4571(199503)46:2%3c133::AID-ASI6%3e3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-4571(199503)46:2%3c133::AID-ASI6%3e3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-4571(199503)46:2%3c133::AID-ASI6%3e3.0.CO;2-Z

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Optimizing Query Processing in Cloud Database
	The Proposed Method
	Separator of distributed instructions
	The query similarity detector based on execution plan
	Replacement policy

	Assessment and Practical Results
	Conclusion
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	References

