The Optimal Tax Model

Valeria Bondarenko*

Research Assistant, University of Beira, Covilha, Portugal

Abstract

In this paper we analyze and propose new method and algorithm of selecting the optimal labor time as a function of skills following our main references. The optimal labor time is a situation when the utility function of individual reaches a maximum. One of the main differences with is our algorithm for creation the skill distribution. Saez proposed and considered the distribution of skills with using empirical distribution of income and the approximation the labor income tax by linear model. The author proved that with using the presented utility function of consumption and labor effort, it will be possible to obtain some level of skills which will be adaptable with observed (public information) taxable revenue which corresponds proposed linear tax schedule.

Keywords: Optimal income taxation • Tax progressivity • Non-linear tax • Quality criterion • Approximation of a convex function

Introduction

The theory of optimal taxation is an investigation of development of the tax that decreases interferences and deformation (caused by the tax schedule) in the market under some constraints. One of the first applications of this theory is an analysis of the optimal income tax mechanism (Mirelles). The agents have innate abilities for producing and obtaining income. However, the abilities are known and available only to the agents, but not to the developers of the income tax system [1-3]. The developers maximize some function of social welfare, where the egalitarian preferences (opportunity to equalize the individual utilities of agents) are taken into account to some extent.

Let us introduce the following notation:

1) \(\pi \) is an individual employee productivity = payment for her/him per unit of time. This productivity is considered to be a positive random variable (it is different for different workers) with a probability density distribution \(f(x), x > 0; f(x) = 0, i f x < 0 \):

\[
P{a < n < b} = \int_a^b f(x) \, dx.
\]

2) \(l \) is an individual labour time \(l \leq L \) (gross earned income).

3) \(T(z) \) is an income tax of \(z; c = z - T(z) \) is a net income after tax.

The assumptions on the function \(T(z) \) are given below:

4) \(u(c, l) \) is a utility function

\[
u(c, l) \geq 0, \quad v(0, l) = 0.
\]

So \((c, l)\) is assumed to be the same for all individuals. This function increases and is convex upward (concave) in the first variable \(c \) and decreases in the second variable \(l \). The utility function of a taxpayer takes the following form:

\[
u(c, l) = u(\pi l - T(\pi l), l), \quad \text{soit depends on the variables} \quad \pi, \quad l.
\]

The key to the following articles is a proposal for the tax productivity [2].

Optimal income taxation • Tax progressivity • Non-linear tax • Quality criterion • Approximation of a convex function

*Address for Correspondence: Valeria Bondarenko, Research Assistant, University of Beira, Covilha, Portugal, Tel: 0785414501; E-mail: valeria_bondarenko@yahoo.com

Copyright: © 2020 Bondarenko V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received 02 December 2020; Accepted 05 December 2020; Published 12 December 2020
where $G(z)$ is a positive increasing concave function, E is also known as the expectation (mean), which is corresponding to the random productivity distribution n. Let's assume that $\mathbb{G}(z) = t$.

Note that the key assumptions is that choices for the working time are made only by certain group of workers. This assumption leads to the maximum value in the mathematical model: the equation (1) defines only a local maximum point under the additional condition

$$\nu^*(l) = \frac{c^2}{d^2} u(n l - T(n l), l) = n^2 (1 - T') \frac{2 a_2}{a_2} + 2 n (1 - T') \frac{2 a_2}{a_2} + \frac{3 a_2}{a_2} - n^2 T' \frac{2 a_2}{a_2} < 0$$

(2)

The solution of system (1), (2) requires the application of the implicit function theorem, which is local in nature.

In [1] the existence of a global maximum function $\nu(l)$ seems problematic even for the simple examples of the utility functions.

This paper is a continuation of research on optimal taxation.

The proposed optimality criterion and statement of problem

The other approaches to calculate the optimal tax are as follows. Let's assume a pair (n, l) as a random vector \mathbf{r}, where $0 \leq l \leq 1$ with distribution density $f(x, y) = \int_0^1 f(x, y) \, dx \, dy = 1$. Here L is a maximum labour time for an individual.

The plot of function $T(z)$ is presented in Figure 1 with some simplification.

If the gross income $z \in [0, M]$, then the tax is progressive, and the curve $T(z)$ is convex. For $z > M$ the function $T(z)$ is linear. Otherwise:

$$0 \leq z \leq M \leq 0 < T(z) \leq T(M) \equiv A < 1; T(z) \geq 0;$$

$$T(z) < T(M) \equiv T_c$$

$$z > M \Rightarrow T(z) = \frac{z}{M}.$$

Here $\frac{T_c}{M}$ is a maximum tax rate $\frac{T_c}{M} = 0.45 \ln FR\text{and} e$ and the constraint $A < 1$ is empirical.

Next, the situation is considered. $z \in [0, M]$. The quality criterion in determining the formula for $T(z)$ is a maximum of functional

$$W(T) = \int_0^M u(xy) - T(xy), y) \, f(x, y) \, dx \, dy$$

where the area D is defined by inequalities: $0 \leq xy \leq M, x \geq 0, 0 \leq y \leq 1$ under some budgetary constraints

$$\int_0^M T(xy) f(x, y) \, dx \, dy \geq K$$

Thus, the tax optimization is reduced to a variation problem

$$W(T) = \int_0^M u(xy) - T(xy), y) \, f(x, y) \, dx \, dy \rightarrow \max$$

(3)

$$D: \{0 \leq xy \leq M, x \geq 0, 0 \leq y \leq 1\}$$

under the constraints

$$\int_0^M T(xy) f(x, y) \, dx \, dy \geq K 0 < T(z) \leq A < 1; T(z) \geq 0$$

(4)

Let us replace the integration variables in (3) and (4)

$$xy = z, y = y; \, Jacobian f(y, z) = \frac{1}{2}, 0 \leq z \leq M, 0 \leq l \leq L$$

Then the problem is reduced to

$$W(T) = \int_0^M \int_{\mathbb{R}} u(z - T(z), y) f(\frac{z}{y}, y) \, dy \, dz \rightarrow \max$$

$$\int_0^M \int_{\mathbb{R}} T(z) f(\frac{z}{y}, y) \, dy \, dz \geq K 0 < T(z) \leq A < 1; T(z) \geq 0$$

(7)

The aim of this research is to propose a method for solving problem (6), (7) and to perform a numerical experiment for the simulation data.

Let us introduce the notation for the inside integrals:

$$\int_{\mathbb{R}} \frac{1}{y} u(z - T(z), y) f(\frac{z}{y}, y) \, dy = \Phi(z, T(z))$$

$$\int_{\mathbb{R}} \frac{1}{y} T(z) f(\frac{z}{y}, y) \, dy = \Psi(z, T(z))$$

$$\int_0^M \Phi(z, T(z)) \, dz \rightarrow \max$$

$$\int_0^M \Psi(z, T(z)) \, dz \geq K 0 < T(z) \leq A < 1; T(z) \geq 0.$$

It is proposed to find a solution to this problem by approximating the tax with convex functions

$$T(z) = \sum_{j=1}^M a_j \varphi_j(z), \varphi_j(0) = 0, \varphi_j(z) \geq 0, 0 \leq z \leq M.$$

where the non-negative coefficients a_j are satisfy by some empirical constraints.

In particular,

$$\varphi_1(z) = z, \varphi_2(z) = (z + 1) \ln(z + 1), \varphi_3(z) = z^{1+\xi}, \ldots,$$

$$\varphi_N(z) = z^{1+\xi(2-\xi)}, k \leq N.$$

(8)

Assuming

$$F(a_1, \ldots, a_N) = \int_0^M \Phi(z, \sum_{j=1}^N a_j \varphi_j(z)) \, dz$$

$$Q(a_1, \ldots, a_N) = \int_0^M \Psi(z, \sum_{j=1}^N a_j \varphi_j(z)) \, dz,$$

we get the problem of finding the maximum of the function N of variables $F(a_1, \ldots, a_N)$ with the constraint $Q(a_1, \ldots, a_N) \geq K$.

It is assumed that the utility function has the form:

$$u(c, l) = g(c) h(l); g: R^+ \rightarrow R^+;$$

$$g(0) = 0; \text{gis increasing and concave}\{g; \uparrow, \uparrow\}$$

h is decreasing and concave $\{h; \downarrow, \uparrow\}$.

The condition $g(\infty) = \infty$ is inconsequential, if $c \leq M$, so it allows to expand the number of examples.

In this case

$$\Phi(z, T(z)) = \int_{\mathbb{R}} \frac{1}{y} g(z - T(z)) h(y) f(\frac{z}{y}, y) \, dy$$

The Model example and numerical simulation. The random values n, l are assumed independent, so

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Tax as a function of gross income.}
\end{figure}
The density function is:

\[f_n(x) = \frac{2}{\pi} e^{-\frac{x^2}{2}} \cdot \mathcal{N}(x) \cdot x > 0; f(x) = 0, \text{ if } x \leq 0. \]

The parameters \(p, \mu \) are estimated by sample.

Then \(W(T) = \int_0^N g(z - T(z)) q(z) \, dz \rightarrow \max \)

where the function is:

\[q(z) = \int_0^L h(y) \frac{1}{y} \frac{\mu^2}{L(1 + \mu^2 L)} f_1(y) \, dy \]

Let's choose for this example:

The components of utility function:

\[g(z) = \ln(1 + z); h(y) = E \left(1 - e^{-\frac{y^2}{L}} \right), 0 \leq y \leq L; h(L) = B(1 - e^{-L}), L > y > L. \]

The distribution density

\[f_n(x) = \mu^2 x e^{-\mu x}, x > 0; f_1(y) = \frac{1}{L}, 0 \leq y \leq L; f(y) = 0, y > L. \]

This choice allows obtaining explicit analytic expressions for functions in a direct variation problem. So,

\[q(z) = \mu^2 \int_0^L \left(1 - e^{-\frac{y^2}{L}} \right) e^{-\mu z} \, dy \]

and this integral can be computed by replacing \(z = \frac{L}{y} \).

\[q(z) = \mu^2 \frac{L^2 + [\mu^2 - \mu^2 \mu^2 L^2]}{L(1 + \mu^2 L)} e^{-\mu z} \frac{1}{y} \]

The integral constraint (7) is reduced to its form

\[\int_0^N T(z) e^{-\mu z} \, dz \geq K \]

The final formulation:

to define a convex function

\[T(z) > 0; 0 \leq z \leq N. \]

as a solution to an extremal problem for an integral functional:

\[\int_0^N \ln \left(1 + z - T(z) \right) \frac{1 + \mu z - \mu^2 z^2}{L(1 + \mu^2 L)} e^{-\mu z} \, dz \rightarrow \max \]

which satisfy the below conditions:

\[\int_0^N T(z) e^{-\mu z} \, dz \geq K, 0 < T(z) \leq A < 1. \]

For example, let us assume that a standard interval of time is one week.

We may choose the following values of a parameter \(M, A, L, \mu \)

\[M = 4000 \text{ (euro)} / \text{week}, \quad L = 40 \text{ (hours/week)}. \]

Assume \(\mu = 1, A = 0, 8 \).

The maximum taxable value \(T_0 \) is not fixed.

Assume the following (8):

\[T(z) = a_1 z + a_2 (z + 1) \ln(z + 1) + a_3 z^{1.5} + a_4 z^{1.2} + a_5 z^{1.3} \]

Let us choose the conditions which are more flexible for the taxpayer in the coefficients:

\[a_1 \geq a_2 \geq a_3 \geq a_4 \geq a_5 > 0. \]

The problems (9), (10) can be reduced of finding a conditional extremum of a function of two variables:

\[\{a_1, a_2, a_3, a_4, a_5\} = \int_0^N \ln \left(1 + z - a_1 z - a_2 z + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.2} \right) e^{-\mu z} \, dz \rightarrow \max \]

\[\frac{\mu Y}{L} \int_0^N (a_1 z + a_2 z^{1.2} + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.3}) e^{-\mu z} \, dz = K \]

under the budget constraints (11).

The maximum of function \(T \) is finding with a fixed value \(K \).

The problems (9), (10) can be reduced of finding a conditional extremum of a function of two variables:

\[\{a_1, a_2, a_3, a_4, a_5\} = \int_0^N \ln \left(1 + z - a_1 z - a_2 z + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.2} \right) e^{-\mu z} \, dz \rightarrow \max \]

\[\frac{\mu Y}{L} \int_0^N (a_1 z + a_2 z^{1.2} + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.3}) e^{-\mu z} \, dz = K \]

For example, let us assume that a standard interval of time is one week.

We may choose the following values of a parameter \(M, A, L, \mu \)

\[M = 4000 \text{ (euro)} / \text{week}, \quad L = 40 \text{ (hours/week)}. \]

Assume \(\mu = 1, A = 0, 8 \).

The maximum taxable value \(T_0 \) is not fixed.

Assume the following (8):

\[T(z) = a_1 z + a_2 (z + 1) \ln(z + 1) + a_3 z^{1.5} + a_4 z^{1.2} + a_5 z^{1.3} \]

Let us choose the conditions which are more flexible for the taxpayer in the coefficients:

\[a_1 \geq a_2 \geq a_3 \geq a_4 \geq a_5 > 0. \]

The problems (9), (10) can be reduced of finding a conditional extremum of a function of two variables:

\[\{a_1, a_2, a_3, a_4, a_5\} = \int_0^N \ln \left(1 + z - a_1 z - a_2 z + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.2} \right) e^{-\mu z} \, dz \rightarrow \max \]

\[\frac{\mu Y}{L} \int_0^N (a_1 z + a_2 z^{1.2} + a_3 (z + 1) \ln(z + 1) + a_4 z^{1.5} + a_5 z^{1.3}) e^{-\mu z} \, dz = K \]

under the budget constraints (11).

The maximum of function \(T \) is finding with a fixed value \(K \).

1 \(\leq K \leq K_{\text{max}} \)

Where for \(K > K_{\text{max}} \) in this case the optimization problem has no solution.

The Values Of The Parameters Given In Table 1 (\(K_{\text{max}} = 9 \)).

The Tables 1 & 2 show the coefficient values \(a_1, a_2, a_3, a_4, a_5 \):

The Figures 2-4 show the main tax schedules \(T(z) \) and the derivate \(T'(z) \) for \(K = 1, K = 5, K = 9 \).

<table>
<thead>
<tr>
<th>K</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00495687</td>
<td>0.00415431</td>
<td>0.0030862</td>
<td>0.00215656</td>
<td>0.00141307</td>
</tr>
<tr>
<td>2</td>
<td>0.00981394</td>
<td>0.00830828</td>
<td>0.0061753</td>
<td>0.0043130</td>
<td>0.00282615</td>
</tr>
<tr>
<td>3</td>
<td>0.01480709</td>
<td>0.01246298</td>
<td>0.0092587</td>
<td>0.0068985</td>
<td>0.00429232</td>
</tr>
<tr>
<td>4</td>
<td>0.01982789</td>
<td>0.01861725</td>
<td>0.0132950</td>
<td>0.00886281</td>
<td>0.00565231</td>
</tr>
<tr>
<td>5</td>
<td>0.02478487</td>
<td>0.02077156</td>
<td>0.0165431</td>
<td>0.01082826</td>
<td>0.00765539</td>
</tr>
<tr>
<td>6</td>
<td>0.02974184</td>
<td>0.02492587</td>
<td>0.0198517</td>
<td>0.01299391</td>
<td>0.00847846</td>
</tr>
<tr>
<td>7</td>
<td>0.03468822</td>
<td>0.02908019</td>
<td>0.0231603</td>
<td>0.01515957</td>
<td>0.00989154</td>
</tr>
<tr>
<td>8</td>
<td>0.03965579</td>
<td>0.03232540</td>
<td>0.0165772</td>
<td>0.01732522</td>
<td>0.01130462</td>
</tr>
<tr>
<td>9</td>
<td>0.04461277</td>
<td>0.03738881</td>
<td>0.02977763</td>
<td>0.0194087</td>
<td>0.01271770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-value</th>
<th>Tax amount</th>
<th>Tax rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>301.6</td>
<td>8.77</td>
</tr>
<tr>
<td>2</td>
<td>603.2</td>
<td>17.54</td>
</tr>
<tr>
<td>3</td>
<td>904.7</td>
<td>26.30</td>
</tr>
<tr>
<td>4</td>
<td>1206.3</td>
<td>35.07</td>
</tr>
<tr>
<td>5</td>
<td>1507.9</td>
<td>43.84</td>
</tr>
<tr>
<td>6</td>
<td>1809.5</td>
<td>52.61</td>
</tr>
<tr>
<td>7</td>
<td>2111.1</td>
<td>61.37</td>
</tr>
<tr>
<td>8</td>
<td>2412.7</td>
<td>70.14</td>
</tr>
<tr>
<td>9</td>
<td>2714.2</td>
<td>78.91</td>
</tr>
</tbody>
</table>
Discussion

The given simulation example allows to evaluate the adequacy of the proposed mathematical model. The qualitative considerations are confirmed by results: 1. Tax burden ratio $T(z)$ to rise with the increased budget allocations K. The highest growth is expected with high lift coefficients (for example, as the absence of constraint (11)). Let us consider a problem of generalization, that is proposed in the [5], where the object of research is a married couple. Let us assume \mathbf{n} and \mathbf{l} as the random vectors for each couple: $\mathbf{n} = (n_1, n_2)$, $\mathbf{l} = (l_1, l_2)$, where n_k is a spouse's productivity, l_k is a labour time. Then the gross family income $z = (n, l) = n_1 l_1 + n_2 l_2$, and the problem is reduced of maximizing the integral functional in 4-Dimensional Euclidean Space \mathbb{R}^4.

Conclusion

In this paper, a mathematical model of the progressive tax as a solution to the variation problem under the budget constraints has been proposed. The numerical experiment is performed without the errors for a model example. The proposed method of formation tax debate is assuming the practical model with the worked examples of utility function.

References