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Abstract
We consider a (real or complex) analytic manifold M. Assuming that F is a ring of all analytic functions, full 

or truncated with respect to the local coordinates on M; we study the (m ≥ 2)-derivations of all involutive analytic 
distributions over F and their respective normalizers. 
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Introduction and Preliminary
We know several embedding theorems in differential geometry, 

some of them are of John F. Nash in Riemannian manifolds [1,2], of 
Whitney [3] in differentiable manifolds and of Grauert in analytic 
manifolds cf. [4]. They make easy certain study on a differentiable 
manifold. Here, we are interested to a real or complex analytic 
n-dimensional manifold M and let F(M) be the ring of all analytic
functions on M. We know that these manifolds can be considered as
smooth manifolds. But certain property on a smooth manifold cannot
be true on M, for example the global representation of a smooth
function germ theorem. Grabowski had this problem when he studied
derivations of the real or complex analytic vector fields Lie algebra cf.
[5] and he used Stein manifolds to avoid technical difficulties in them.
Here, we examine not only the derivations but the (m ≥ 2)-derivations
(generalization of derivation’s notion) of a Lie subalgebra of the
real or complex analytic vector fields Lie algebra on M, using Lie
algebra tools. In advance, we state that the considered Lie algebras
have enough sections more than constant ones in the Lie algebra of
all analytic vector fields. Then, we consider only Stein spaces unless
expressly stated in a complex analytic case. In the real analytic one,
we don’t need more hypothesis because of the imbedding theorem of
Grauert and Cartan theorems [6]. More precisely, any real analytic
manifold can be considered as a closed submanifold of a certain l

(a ” real Stein manifold”). Now, an m-derivation of a Lie algebra A 
is a linear map from A to itself which is distributive on the brackets 

1 2 1[ ,[ , [ , ] ]]m mX X X X−  , where all Xi are in A. On the one hand, we 
have studied the m-derivations of polynomial vector fields Lie algebras 
on n in studies of 7. Randriambololondrantomalala [7], an important 
Lie subalgebra of analytic vector fields, we found that Lie algebras 
of derivations are different to those of (m > 2)-derivations. One can 
see the following example, on 3, the Lie -algebra is spanned by 

2, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
x y z y y

x y z x y z x x  and let’s define the −linear 

map D by 2( ) =D ∂ ∂ 
 ∂ ∂ 

y
x x  which is zero otherwise. It’s clear that D is not 

a derivation, but a 3-derivation. On the other hand, all m-derivations of 
a distribution over the full or truncated rings of smooth functions on a 
differentiable manifold in literature of Randriambololondrantomalala 
[8], are derivations. These facts lead us to ask if a distribution Lie 
algebra on an analytic manifold has results as the one or the other 
above results. So, we will divide our paper into three parts. First, we 
take a real or complex analytic involutive distribution Ω over M. That 
is to say, Ω is a F(M)-submodule of the analytic vector fields Lie algebra 

( )Mχ  on M. We can find some examples of these distributions and the 
interests for studying their derivations in literature of Grabowski and 
Cartan [5,6]. Here, we find the Ω’s centralizer and the derivative ideal 
of Ω. We can say also that the normalizer of Ω is a Lie subalgebra of 
analytic vector fields. In addition, we find out that all m-derivations of 
Ω (resp. of the normalizer of Ω) are inner with respect to a normalizer’s 
vector field (resp. are inner). Second, assuming that Ω is an involutive 
distribution on M over a subring F of F(M), namely an F-submodule 
of ( )Mχ  stable by the vector fields bracket, where F≠ F(M). One can 
consider a system of commuting vector fields on M as in studies of 
Randriambololondrantomalala [8] and all distribution Lie subalgebras 
of the Lie algebra of analytic vector fields which commute with this 
system. The normalizer of Ω is an analytic vector fields Lie algebra and 
contains locally all constant vector fields and Euler’s vector field. But in 
general, we can’t use the reasoning by Randriambololondrantomalala 
[7] to characterize m-derivations of Ω. We make more explicit all
m-derivations of Ω and of some of its normalizer. Whereas, in the end, 
we discuss the Lie algebras of holomorphic vector fields, especially
when the holomorphic manifold is not a Stein one, and Lie algebras
of locally polynomial vector fields on an analytic manifold M. Their
m-derivations as well as their normalizers can be characterized by
using some results of Randriambololondrantomalala [7].

Therefore, we have found the m-derivations of all distributions 
over a set of full or truncated analytic functions with respect to the 
local coordinates on M. When m = 2, we deduce from our results some 
[5]’s theorems. Third, we can apply our theorems on Lie algebras of 
real or complex analytic vector fields on M, of generalized foliation on 
M cf. [9], a Lie subalgebra of analytic vector fields on 2 and on 2, 
Riemann surfaces, etc. Relations between the Lie algebra of compactly 
supported vector fields and the compactness of M are discussed. 
Moreover, we emphasize the extensions of our theorems when the 
studied distributions are singular, by using the complexification of a 
real analytic manifold, Hartogs and Riemann extension theorems. Of 
course, in these circumstances, we can use theory of coherent sheaves 
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made by Cartan [6] in a Stein case or pass into Grabowski’s conjecture 
cf. [9]. We interpret our results in Chevalley-Eilenberg cohomology 
sense when m = 2.

Following the above notations, let M be a real or complex analytic 
n-dimensional manifold. In complex case, we regard a Stein manifold 
unless special mention. We denote by ( )Mχ  the Lie algebra of 
analytic vector fields on M and F(M) the ring of analytic functions on 
M. Throughout this paper, we take an atlas in which every chart are 
connected. Then, the open subset of a chart U where a non-trivial subset 
of ( )Mχ  doesn’t vanish, is dense on U (non-trivial means different 
to {0}). We can use certain results of Randriambololondrantomalala 
[7,8] because in the proofs of theorem of these papers we consider 
only analytic functions (polynomials, exponentials). In the same way, 
we don’t need partition of the unity to make global some local results 
cf. [10]. In all sections of this article, we set an integer m ≥ 2, recall 
that D is an m-derivation of a Lie algebra A if for 1( )i iX A≤ ≤ ⊂m , we get 

[ ] ( ) [ ] ( )1 2 1 1 2 1 1 2 1, , , , = , , , , , , , , .D X X X X D X X X X X X X D X− − −
          + +                   m m m m m m  

This D is said inner on a Lie algebra  containing A, if D is a Lie 
derivative with respect to an element of . Recall us another basic 
definition cf. [11]. 

Definition 1.1. A complex manifold M is a Stein manifold, if we 
have simultaneously the three following conditions: For every x ≠ y, 
both in M; there is a holomorphic function f over M such that f (x) ≠ 
f (y). For all x ∈ M, it exists n holomorphic functions (fi) over M such 
that dfi are linearly independent over  on x. If K is a compact set of M, 
the following set is compact (holomorphic convexity of M) 

/ ( ) sup ( ) , for all holomorphic functions over .
K

M M
∈

 ∈ ≤ 
 y
x f x f y f

From these assertions, every local ring of holomorphic functions 
around x ∈ M is spanned by holomorphic functions on M cf. [12].

 Some results of the Lie algebra of compactly supported vector 
fields Cc relative to a Stein manifold are the following, 

Proposition 1.2. A complex analytic manifold M is compact iff Cc 
is non trivial, particularly if M is a Stein holomorphic manifold, Cc is 
trivial. 

Proof. It’s obvious that if M is compact, then = ( )c MχC  and Cc is 
not trivial. Conversely, suppose that M isn’t a compact set and there is 
X ∈ Cc such that K = Supp(X) ≠ ∅. We can consider K ≠ M because M 
is not compact. Then, we have the nullity of X in the open set K ≠ ∅ . 
By analyticity, X vanishes in whole M. Hence, we have a contradiction 
about K ≠ ∅ and we obtain M is a compact set. It’s clear that a Stein 
space is never a compact set by definition, then its Lie algebra of 
compactly supported vector fields is trivial. 

The m-derivations defined by distributions on F(M) 

 Let Ω be a non-trivial involutive analytic distribution over the 
analytic functions ring on M. Let N be the normalizer of Ω in ( )Mχ
, that is to say that the set of all ( )X Mχ∈  such that [ ],X Ω ⊂Ω , and 

= { / ( ) {0}}M∈ Ω ≠x xB . We can choose a connected domain Ui of a 
chart. If we suppose that it exists an open set Oi in Ui where Ω vanishes, 
then | = {0}Ui

Ω  by analyticity. Otherwise, every open set in Ui contains 
an element of B. So, B∩Ui is dense over Ui. Moreover, the collection 
of Ui forms an atlas of M, then B is dense over M. The set B is an open 
analytic submanifold of M. Particularly, B is a Stein cf. [13]. Thus, 
every vector field defined over B admits a continuous extension on M, 
and if this last one is analytic, then it’s necessarily an element of the 
normalizer of Ω. We use this last fact when we deal with extension 
theorems.

We know by literature of Nagano’s [14] result that Ω is integrable, 
then it yields a generalized foliation F on M cf. [10]. So, Ω is the Lie 
algebra of tangent vector fields to the foliation and LF the one of all 
foliation preserving vector fields. It is known that the normalizer N in 

( )Mχ  of Ω contains LF cf. [10]. Hence, the restriction of the foliation 
in B is non singular. 

Proposition 2.1. The centralizer of Ω vanishes and the derivative 
ideal of Ω coincides with Ω itself. 

Proof. We say that ( )X Mχ∈  is in the centralizer of Ω if [X, Ω]={0}; 
and the derivative ideal of  denoted by [Ω, Ω] is the Lie algebra spanned 
by all brackets of two elements of Ω. Suppose there is an non zero 
element X of the centralizer, we have [ ] ( ), = ( ) = {0}X f X fΩ Ω , for 
all f ∈ F(M). It’s not possible in a Stein manifold or in a real analytic 
manifold if X doesn’t vanish identically over M and if Ω ≠ {0}. Along 
with this result, we can adapt the proof of Proposition 2.28 of studies of 
Randriambololondrantomalala [15] and assert that [Ω, Ω] = Ω. 

 Let’s recall an Hartogs’s extension theorem and Riemann extension 
theorem. 

Theorem 2.2. (Hartogs [16]) Let be t ≥ 2 and D be a bounded 
domain in t. In addition, K be a compact subset of D such that D − K 
is a connected set. Then all holomorphic functions f over D − K can be 
extended holomorphically to D. 

Theorem 2.3. (Riemann extension theorem) Let U be an open set 
in  and z0 ∈ U. If { }0:f U − →z   is holomorphic function such that 
z0 is a removable singularity of f, then f can be extended into an unique 
holomorphic function f  in U where ( )0 0

= ( )lim z zf f→z z . 

Theorem 2.4. In holomorphic case, all m-derivations of Ω, LF, and 
of N are Lie derivatives with respect to elements belonging to N. In real 
analytic one, we have the same results if B = M. 

Proof. We can prove this assertion over B by Theorem 2.1 of 
studies of Randriambololondrantomalala [8] using Proposition 2.1 and 
partially Theorem 3.7 of literature of Randriambololondrantomalala 
[10]. For the corresponding extension theorem over M, we adopt 
the following arguments. We know that B is dense over M, then the 
restriction of B in each domain of a chart U is dense over U (U is a 
bounded set). The complement of this B∩U in U can be considered as 
a compact set of the chart such that B∩U is connected. In holomorphic 
case, when n ≥ 2, we use Hartogs’s theorem in a domain of the chart, so 
the extension theorem over M holds. If n = 1, we know by the isolated 
zeros principle that the domain of chart contains only a finite number 
of zeros in the corresponding restriction of B. By continuity at these 
zeros, which are removable singularities, the Riemann extension 
theorem can be used. Of course, if B = M in real analytic situation, the 
extension theorem is applicable. 

Definition 2.5. The complexification of a real analytic manifold 
M is a holomorphic manifold  such that there is a real analytic 
embedding f: M →  where  has a holomorphic atlas ( ),i i i

U ϕ  and 
( )( ) ( )= n

i i i if M U Uϕ ϕ∩ ∩ . We have a Stein complexification if  is 
Stein. 

 The next theorem is due by Grauert cf. [4,12]. 

Theorem 2.6. Every real analytic manifold has a Stein 
complexification and can be analytically properly embedded into an 
Euclidean space N . 

 The following complexification of a Lie subalgebra  of the real 
analytic vector fields Lie algebra of M is in the following sense: if M can 
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be embedded in a holomorphic manifold , the complexification   of 
 in  is such that | =M  . 

Theorem 2.7. If the complexification of Ω in a Stein space T is still 
an involutive distribution, then the first result of the Theorem 2.4 holds 
in real analytic case. 

Proof. We use the complexification of M on a Stein space T. 
Consequently, let be Ω  the complexification over T of Ω. Recall that 
Ω  is an involutive distribution over T where its normalizer on ( )Tχ  
is denoted by N0. So, all m-derivations of Ω, of LF, and of N have their 
complexified m-derivations over T on respectively Ω , the Lie algebra 
of all foliation preserving vector fields LF  on T and N0. By the results 
of Theorem 2.4, these last m-derivations are Lie derivatives with 
respect to elements belonging to N0. We can affirm that 0| =MN N  and 

|
=

M
L LF F  by | =MΩ Ω . Thus, we have the same result as in the first part 

of Theorem 2.4. 

 By definition, the first space of Chevalley-Eilenberg’s cohomology 
of a Lie algebra  denoted by ( )1H   is ( )Der / ad  with Der() the 
Lie algebra of all derivations of  and ad the set of inner derivations 
of .

Throughout this paper, we suppose that all hypothesis of Theorem 
2.7 are satisfied or B = M, in real analytic case.

Following ideas of Theorem 3.7, Corollary 2.14 and Remark 2.15 of 
literature of Randriambololondrantomalala [10], we state 

Corollary 2.8. The first space of Chevalley-Eilenberg’s cohomology of 
Ω, L

F
, and of N is respectively isomorphic to the following respective Lie 

algebras, N/Ω, N/L
F
, {0}. 

Remark 2.9. By Theorem 2.4, we deduce Theorem 3.2 and 4.1 of 
studies of Grabowski [5]. 

The m-derivations associated to a distribution over a subring 
of F(M) 

Let be an atlas of M such that Ω is locally spanned by 
1

i
i n≤ ≤

∂ 
 ∂ x

  over 

the ring F0 of real or complex functions depending only on 1( )j
j kx ≤ ≤  

with respect to the atlas (where 1 ≤ k < n). We can consider Ω to be 
a Lie algebra which commutes with a system S of commuting vector 
fields by the usual bracket. That is to say, 1= { , , }qS X X  such that 

, = 0i jX X    and S is locally of rank n − k (0 < q ≤ n). It is easy to check 
that [ ], =Ω Ω Ω  because of Randriambololondrantomalala’s [8] result. 
So with the same reason, every m-derivation of Ω is local. Moreover, 
the normalizer N of Ω is locally isomorphic to ( , or )l n kΩ⊕ −g    as a 
vector space. We consider the closed 1−differential forms αi and wi over 
a (n − k)-dimensional distinguished connected chart of the generalized 
foliation generated by S, where = 1, ,i k n+   and an m-derivation of 

Ω, 
( ) ( ), =

1

j j
jD

k j n

α α ∂
+ ⊗

∂
+ ≤ ≤

x
w w  such that 0

1

( ) ( )j
i

i k
ker F U

≤ ≤

∂
⊃

∂x
w and 

0
1

( ) ( )j
i

k i n
ker F Uα

+ ≤ ≤

∂
⊃

∂x
 (S in this chart is 1{ }j k j n+ ≤ ≤

∂
∂x

, F A  

denotes a module spanned by A over a ring F) cf. [8]. We have omitted 
all singular charts of the foliation because the open set R of all regular 
points is dense over M cf. [10], we have no problem for the extension 
of our results from R towards M as in the previous section. By adapting 
Theorem 3.12 of literature of Randriambololondrantomalala [8], we 
obtain easily 

Theorem 3.1. All m-derivations of Ω (resp. of N) are a sum of a Lie 
derivative with respect to one element of N and a derivation D(α,w) as 
denoted before (resp. are similar to m-derivations of Ω). 

 Hence, adopting the arguments of Theorem 3.19 of studies of 
Ravelonirina [17], we hold the following 

Corollary 3.2. When the rank of S is a positive constant n − k, the 
first spaces of Chevalley-Eilenberg’s cohomology of Ω and of N are both 
isomorphic to ( )( ) ( )2 2( ) ( )H B

− − + − − + −×
n k n k n k n k n k

R or   with HR (B) is the de 
Rham cohomology of foliation basic forms of M. 

 As we know, we can split the above Ω into a semi-direct sum of 
Lie algebras 1

SΩ  and 2
SΩ  as in studies of Randriambololondrantomalala 

[8], where they are modules on the ring F0(M) of constant functions 
over the leaves relative to the above generalized foliation. We notice 
that 2

SΩ  is spanned by S on F0(M). We can reason on a distinguished 

chart U with the coordinates 1( )i
i nx ≤ ≤ . The 0 ( )F U  is the set of all analytic 

functions depending only on 1( )i
i kx ≤ ≤ , 1

|S UΩ  is spanned by 
1

i
i kx ≤ ≤

∂ 
 ∂ 

 

and 2
|S UΩ  by 

1
i

k i nx + ≤ ≤

∂ 
 ∂   on 0 ( )F U .

Now, we discuss the m-derivations of 1
SΩ . The normalizer 

N1 of this Lie algebra can be written as a direct sum of Lie algebras 

[ ]1 1 1= , ,S S Ω Ω ⊕   N , where  is the centralizer of 1
SΩ  in ( )Mχ  and 

the center of 1
SΩ  is zero ( is locally spanned by 

1
i

k i nx + ≤ ≤

∂ 
 ∂ 

 on the 

ring of all analytic functions depending only on 1( )i
k i nx + ≤ ≤ ). By a 

similar argument of Nakanishi [18], we deduce that all m-derivations 

of N1 are a direct sum of those of 1
SΩ  and of . By Theorem 2.4, it’s 

clear that 

Theorem 3.3. Each m-derivation of 1
SΩ  (resp. of N1) is a Lie 

derivative with respect to an element of N1. 

 The normalizer of 2
SΩ  is locally the sum of the F0(U) -module 

spanned by 
1

ix
i n

∂
∂
≤ ≤

 and a vector space generated by 
1 ,

l
ix

x
k i l n

∂
∂

+ ≤ ≤
. That is to 

say, its normalizer is N. In addition, its centralizer is 2
SΩ  itself. Because 

of 2 2, = {0}S S Ω Ω   or 2
SΩ  is nilpotent of order 1, we obtain easily 

Theorem 3.4. Every endomorphism of 2
SΩ  is an m-derivation of 2

SΩ . 

So, it’s immediate that 

Corollary 3.5. The first space of Chevalley-Eilenberg’s cohomology of 
1
SΩ , 2

SΩ  and of N1 are respectively isomorphic to the following respective 
Lie algebras, 1 1/ SΩN , ( )2 2End /S SΩ Ω , {0} . 

Let’s consider 3
SΩ  the Lie subalgebra of Ω, spanned by Xi over a ring 

( )F F M⊆ . That is to say, F is locally the set of all analytic functions 
depending only on ( )i

l i nx ≤ ≤  where 0 < l < k + 1 (resp. k + 1 < l < n + 1). 
When F = F(M) (resp. 0= ( )F F M ), it is a special case of Lie algebras 
defined in Theorem 2.4 (resp. in Theorem 3.1) when the submodule is 
generated by Xi. In the distinguished local coordinates, 3

SΩ  is spanned 

by 
1

j
k j n+ ≤ ≤

∂ 
 ∂ x  over F. The normalizer N3 of 3

SΩ  coincides with the 

sum of 3
SΩ  and 4

SΩ  where the element of this last one is locally the 

following analytic vector fields ( , ) ( ,1 )
1 1

i t j t
i j

l

f l t k t k
i k j l

∂ ∂
≤ ≤ + ≤ ≤

∂ ∂
≤ ≤ ≤ ≤ −

x g x
x x  
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1

resp. ( ,1 ) ( , )
1 1

i t j t j
i jf t k h l t n

i k k j l

 
∂ ∂ ≤ ≤ + ≤ ≤ ∂ ∂ ≤ ≤ + ≤ ≤ − 

x x x
x x

. In the first case, we can 

adapt Theorem 2.4 because all analytic functions depending on ( )jx  
where 1k j n+ ≤ ≤ , are in the base ring of 3

SΩ . In the following case, it is 
easy to see that Theorem 3.1 can be adapted to 3

SΩ . Thus 

Theorem 3.6. In the first case, every m-derivation D of 3
SΩ  is a Lie 

derivative with respect to a N3’s element; in the second, it is a sum of a Lie 
derivative of an element of N3 and a D(α,w) analogous to that of Theorem 
3.1. In addition, the corresponding extension theorems hold. 

Corollary 3.7. The first space of Chevalley-Eilenberg’s cohomology of 
3
SΩ  is respectively isomorphic to 4

SΩ  in the first case;

( )( ) ( )( )14 ( )( 1) ( )( 1)H B
l k l k l k l k l k

S R ou
− − − − − − − −′Ω ⊕ ×  

in the other one if S has a constant rank (⊕ is a module direct sum and 
B′ is the set of the corresponding foliation basic forms of M). 

 When we regard all the above normalizers on a distinguished 
chart, they contain locally all constant fields and Euler vector field. So, 
we ask one question: could we adapt Theorem 3.6 and Theorem 3.9 
in [7] to these normalizers? The following remark shows us that this 
argument is false. 

Remark 3.8. On 3, we consider the Lie -algebra A spanned by 

, , ,∂ ∂ ∂
∂ ∂ ∂x y z  2 2, , ( ) , , , ,ye e e∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂



y yx y z y y y y
x y z x x x x x

. 

Lemma 2.3 of literature of Randriambololondrantomalala [10] is not 
true for A, so the arguments proposed in the proof of Theorem 3.6 of 
Princy [7] don’t hold in this situation. 

Whereas, let P be a Lie subalgebra consisting locally of polynomial 
vector fields in ( )Mχ , where the Euler vector field and all constant 
vector fields are locally in P. Especially, M is not supposed to be a Stein 
in the holomorphic case. Let’s recall a well known theorem, 

Theorem 3.9. (The maximum principle) [12] Let be M a connected 
holomorphic manifold and f a holomorphic function on M such that 

( ) ( )0f f≤z z , where z0 ∈ M for all z ∈ M; then f is a constant function. 

One consequence of the maximum principle is the following, if 
the holomorphic manifold M is compact, every holomorphic function 
on M is constant in every connected component of M. We know that 
M is locally connected, then each function over M is locally constant. 
Therefore, it’s clear that if M is a compact and connected holomorphic 
manifold, the ring of all holomorphic functions on M is the complex 
constant functions ring. It’s confirm that results of the following 
theorem complete our study about an involutive analytic distribution 
when F(M) is reduced to .

By adapting Randriambololondrantomalala’s [7] theorems and 
taking account that the vector field found in the proof of Theorem 3.6 
of Princy [7] is analytic, it follows that 

Theorem 3.10. When m is even, all m-derivations of P (resp. of the 
normalizer  of P in ( )Mχ ) are a Lie derivative with respect to one and only 
one vector field belonging to  (resp. to the normalizer of  in ( )Mχ ). If 
m is an odd number, they are sum of a Lie derivative with respect to one 
element of  (resp. of the normalizer of ) and an m-derivation of local 
homogeneous degree -2 of P. 

 So, taking into account: the vanishing of the centralizer of P 
cf. [19] p.91; both the proofs of Theorem 2.12 of Ravelonirina [19], 

Corollary 3.12 of Randriambololondrantomalala [7] and Theorem 3.7 
in literature of Randriambololondrantomalala [10], we obtain 

Corollary 3.11. The first space of Chevalley-Eilenberg’s cohomology 
of P, of  and of N is respectively isomorphic to the following respective 
Lie algebras  / P, N / , {0}, where N is the normalizer of . 

Illustrations
Some illustrations of our theorems are given in this section. 

Example 4.1. It’s clear that Theorem 2.4 works well on the Lie 
algebra of all analytic vector fields ( )Mχ , that is to say, all m-derivations 
of ( )Mχ  are Lie derivatives by elements of ( )Mχ . We can define the 
Lie algebra of compactly supported real analytic vector fields C and this 
theorem holds for this last one. In particular, 1H ( ) = ( ) /MχC C  for a 
non-trivial C. More, 1H ( ) = {0}C  if and only if M is compact. Obviously, 
we can use the above cited theorem on the Lie algebras of vector fields 
relative to a generalized foliation over M. We can cite some well known 
Stein spaces, n, an open poly-disc in n, non-compact Riemann 
surfaces, ... and build our results in these. 

Example 4.2. Let be 2 a holomorphic compact connected 
manifold. It’s not a Stein manifold nor a submanifold of u for any u, 
it’s a compact Riemann surface. We choose the modified stereographic 
coordinates over this manifold. The 2 has an atlas composed by two 
charts (U, z1) and (V, z2) with the overlap map 1( ) =ψ −z z  in U ∩ V. We 
remark that the Lie algebra  of vector fields on M spanned over  by 
Y1, Y2 and Y3 is the one of all polynomial vector fields in 2, where

1
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:
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 ∂

z
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z
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. By Theorem 3.10, all m-derivations of  are Lie 

derivatives with respect to a vector field in  itself. That is to say, if D is 
an m-derivation of  defined by 1( ) = i

iD Y Yα , 2( ) = i
iD Y Yβ , 2( ) = i

iD Y Yγ ; 
we have 1 2 1

1 2 3
= L

Y Y Y
D

γ γ α− + + .

When we look at 2 as a real analytic manifold, we set the charts 
1 2( , ( , ))U x x  and 1 2( , ( , ))V y y  with the overlap map 

1 2
1 2 1 2

1 2 2 2 1 2 2 2( , ) = = , = .
( ) ( ) ( ) ( )

φ
 
 + + 

x x
x x y y

x x x x

We set the real analytic vector field 

1 2
1 2

3
1 2

1 2

in
:

in
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V

∂ ∂− − ∂ ∂
 ∂ ∂ +
 ∂ ∂

x x
x x

y y
y y

 on 2 

and the Lie algebra A of real analytic vector fields which commute with 
Y3. This A consists of real analytic vector fields Y such that 

2 1
1 2

1 21 1 2 2

2 1
1 2

3 41 1 2 2

in
:

in
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   ∂ ∂ +    ∂ ∂   
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x x x x
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where in the U ∩ V,
2 1 2 2

2 2 1 2
3 2 1 11 1 2 2 2 2 1 1

1= 2 ( ) ( )
( ) ( )

F F F F
         
− + −           +         

y y y y
y y

y y y y y y
 and 
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1 2 1 1
1 2 2 2

4 1 2 22 1 2 2 2 1 2 2
1= 2 ( ) ( )

( ) ( )
F F F F

         
− + −           +         

y y y y
y y

y y y y y y

with Fk are arbitrary convenient functions of one variable. So, we can 
apply all theorems in Section 3 to A. Particularly H1() = {0} and 

1 1 2H ( ) = ( )RH B ×A . 

Example 4.3. Indeed, Theorem 3.10 can be applied to a polynomial 
vector fields Lie algebra on the real analytic manifold n or the Stein 
manifold n having the corresponding hypothesis. 

Example 4.4. We set the Lie algebra  over the Stein manifold 3 

spanned over  by 1 2 3 2 2 2
1 2 3 1 2 3 1 1, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

z z z z z
z z z z z z z z

.  The 

normalizer of  is 0 =  + R, where R is the space over  generated 

by 1 2 3 2 3
1 2 3 3 1, , , ,∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
z z z z z

z z z z z
. It is permit to use Theorem 3.10 

and when m is even, every m-derivation of  is inner on 0. If m is odd, 
the m-derivation is a sum of an inner derivation on 0 with a -linear 

map D defined by 2 2
1 1( ) =D α∂ ∂ 

 ∂ ∂ 
z

z z
 which is zero otherwise (α 

∈ ). Moreover, all m-derivations of 0 are inner for all m ≥ 2. So, 

1 1 2 3
1 2 3H ( ) R ∂ ∂ ∂

≅ + +
∂ ∂ ∂

z z z
z z z

   and ( )1
0H {0}≅ . 

Remark 4.5. In the following example, Theorem 3.10 cannot be 
applied. We take the 2-torus 2 = /(+i), which is a holomorphic 
connected compact manifold cf. [20], it’s not a Stein. All overlap maps 
are translations, that is to say, they are holomorphic. We can define 
globally the Lie algebra of all constant vector fields Q on M and find 
that Q is the Lie algebra of all holomorphic vector fields over M. All 
endomorphisms of each Lie subalgebra of Q, which is inevitably 
nilpotent of order 1, are m-derivations of this subalgebra. The normalizer 
of this subalgebra or its centralizer is the Lie algebra of all vector fields 
over 2. But 1H ( ) End( ) / ad≅ QQ Q  and 1

( )H ( ( )) End( ( )) / ad MM M χχ χ≅

since 1H ( ( )) = {0}Mχ  in smooth cases. 
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